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This Supplementary Material (SM) is organized as follows. Section SM-1 describes the
procedure used for estimating the model parameter values. Section SM-2 shows the data
used for calibration, extracted from [1] and [2]. For completeness, Section SM-3 provides a
detailed description of the mathematical analysis of model dynamics. Finally, section SM-4
delivers additional analysis of the virtual population for the HDLM-2 scenario.

1. Estimation of the model parameter values

Parameter estimation is performed for each scenario of interest, from the measure-
ments performed in [1] or [2]. We use the Bayesian approach for the parameter inference,
allowing us to consider both the uncertainties in the model and the experimental data [3–5].
A detailed tutorial on this approach focusing on tumor growth models is presented in [6].
The basis of the Bayesian calibration is the Bayes’ theorem. To present it in the context
of the desired estimation, let θ = {θ1, . . . , θk} be the vector of k parameters we want to
estimate and d = {d1, . . . , dn} the vector of n experimental data. These data may be, for
example, the number of tumor cells measured by BLI [7] at n different times. Like every
measure, each one is accompanied by uncertainties {σi}n

i=1, assumed Gaussian. Let Σ be
the associated covariance matrix. With these definitions, Bayes’ theorem states that:

ppost(θ|d) ∝ L(d|θ)pprior(θ) , (1)

where

• pprior is the prior probability distribution corresponding to our a priori knowledge on
θ;

• L is the likelihood function; it is a conditional function that allows updating the
knowledge about the parameters from the experimental data d;

• ppost is the joint posterior probability distribution, that represents the a posteriori
knowledge about the parameters after we know the data.

In this way, Bayes’ theorem updates the a priori knowledge, integrating information from
data. The result is the joint posterior probability distribution ppost which represents the
improvement of knowledge about the values of the parameters. The distributions of each
parameter are the marginal distributions, wherein the MLEs are the maximum a posteriori
estimates.
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For the definition of the likelihood function, we assume that the data are indepen-
dent and that the uncertainties in the measurements follow the Gaussian distribution as
mentioned above. Under these conditions, L is given by:

L(d|θ) = ((2π)n |Σ|)−1/2 exp
(
− 1

2
(dm − d)t Σ−1(dm − d)

)
, (2)

in which dm is the vector of the simulated values obtained with the model referring
to the experimental measurements using θ. Note that L(d|θ) provides a measure of the
knowledge brought by the data on parameter values for the model. Thus, the joint posterior
probability distribution is determined as:

ppost(θ|d) ∝ exp
(
− 1

2
(dm − d)t Σ−1(dm − d)

)
pprior(θ) . (3)

In the experiments performed in this work, we assumed uniform a priori distributions
in certain ranges. This means that each calibrated parameter follows a uniform a priori
probability distribution over interval (a, b), denoted by U (a, b). As the analytical solution
of (3) is restricted to particular cases, ppost is obtained via Markov Chain Monte Carlo
sampling procedures, usually requiring a large number of model simulations. In this work,
we used QUESO (Quantification of Uncertainty for Estimation, Simulation, and Optimization), a
free library for uncertainty quantification [8]. We used a multilevel Monte Carlo method
called DRAM, together with the directives available in the QUESO manual and 20,000
samples. Tumor growth parameters (r and b) were calibrated considering the part of the
proposed model associated with the growth of the tumor in the absence of immunotherapy,
i.e., dT/dt = rT(1− bT). Likewise, the cytotoxicity of the CAR-T cells parameter (γ) was
calibrated considering the model dT/dt = −γCTT. Since in [2] we also have experimental
data associated with the mechanism by which tumor cells inhibit effector cells, for RAJI-like
tumors (CD19 + lymphoma), we calibrated the parameter α in dCT

dt = φCT − ρCT + θTCM−
αTCT . In this case, we fixed all parameters but α considering experimental data for three
treatments, expressing or not the IDO enzyme: RAJI-control + CAR-T 19, RAJI-IDO+ +
CAR-T 19 and RAJI-IDO+ + CAR-T 19 + 1-MT.

1.1. Parameter inference for the HDLM-2 + CAR-T 123 scenario

First, we extracted data from [1] to estimate parameters r, b, and γ. For r and b,
we used data from Figure 4-B in [1], which are shown here in Table 1. As these data
represent untreated tumor growth, we calibrated r and b considering only the tumor
growth, i.e., using dT/dt = rT(1− bT). The uniform priors were set as: r ∼ U (0.01 , 0.1)
day−1, b ∼ U (10−13, 10−10) cell−1, and T0 ∼ U (106, 108) cell. Notice that the tumor initial
condition was also estimated due to great uncertainty about this value. The histograms
associated with the posterior distributions for r and b are presented in Figures 1a and
1b, together with their MLEs. To estimate γ, we used data from the standard in vitro
4-hour chromium-51 release assay data depicted in Figure 3-B from [1] (shown in Table
2). As described in [1], co-cultures of 1× 106 cancer cells and CAR-T 123 cells in different
proportions were generated. After 4 hours, the number of tumor cells remaining alive was
evaluated. To adjust these data, we considered only tumor mortality due to the presence
of effector cells, which led to dT/dt = −γCTT. The solution of this equation at 4 hours
was used to estimate γ with γ ∼ U (10−8, 10−5) (cell · day)−1 as a prior distribution, which
yielded γMLE and the histogram of the posterior distribution shown in Figure 1c.

Now, since experimental data from effector and memory CAR-T cells were not avail-
able in [1], all the other parameters were estimated through simulations of the three
population model. This means that extensive simulations were performed, fixing r, b, and
γ at their MLEs, until finding a set of parameters that can depict the experimental results
that indicate a fast decrease of the tumor after treatment and the tumor elimination after
the challenge [1]. Although good representations of the desired scenarios were obtained, it
is important to remark that parameter estimation in this way is not unique and could be
refined on the lights of more informative data.
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(a) rMLE = 5.650026× 10−2 day−1 (b) bMLE = 1.404029× 10−12 cell−1 (c) γMLE = 3.715843× 10−6 (cell · day)−1

Figure 1. HDLM-2 + CAR-T 123 scenario: posterior histograms of r (a), b (b), and γ (c) parameters.
The maximum a posteriori estimates of marginal distributions are indicated by the subscript MLE.
Since all priors were assumed uniform distributions, there was a substantial improvement of the
knowledge about the parameters with the application of Bayesian inference, with parameters pre-
senting log-normal-like posterior distributions. However, the inference of the inverse of the carrying
capacity (b) presents greater uncertainty which may be explained by the lack of saturation of the
tumor burden for the untreated mice (see Figure 4B of [1]).

1.2. Parameter inference for the RAJI + CAR-T 19 scenario

RAJI-like tumors (CD19 + lymphoma) expressing or not the IDO enzyme are quite
aggressive. None of the available experiments presented in [2] was able to eliminate the
tumor, which shows an exponential growth during the seven days corresponding to the
monitoring period. Due to this time frame, we set b = 0 cell−1 in dT/dt = rT(1− bT).

The r and γ parameters were estimated using the untreated tumor growth model
(dT/dt = rT) and the tumor decay model due to effector cells (dT/dt = −γCTT), respec-
tively. The uniform priors were set as: r ∼ U (0.1 , 0.9) day−1 and γ ∼ U (10−9, 10−7) (cel ·
day)−1. The histograms associated with the posterior distributions for r and γ are presented
in Figures 2a and 2b, together with their MLEs. Since there is no available data for CAR-T
cells (effector or memory), we estimated all the reminder parameters through extensive sim-
ulations for the RAJI-control tumor to represent the behavior of the tumor growth depicted
in Figure 2C from [2], whose data are shown in Table 3. Once this set of parameters were
obtained, we fixed all parameters but α. The α parameter, associated with the mechanism by
which tumor cells inhibit effector cells, was calibrated using the prior α ∼ U (10−8, 3× 10−8)
(cell · day)−1 in all the following situations. For RAJI-control + CAR-T 19, using the data
shown in Table 3, the histogram associated with the posterior distribution for α is presented
in Figure 2c, together with its MLE that amounts αMLE = 1.248506× 10−8 (cell · day)−1.
For the RAJI-IDO+ tumor, inference of parameter α was performed for the cases with and
without 1-MT, using the experimental data presented in Figure 3B from [2] (shown in
Table 4). As mentioned before, in these inferences only the parameter α was calibrated
to capture the effect of the immunosuppression mechanism, keeping all other parameter
values as set in Table 2 (main text). The MLEs obtained for the treatments with RAJI-IDO+

+ CAR-T 19 and RAJI-IDO+ + CAR-T 19 + 1-MT are αMLE = 1.461699× 10−8 (cell · day)−1

and αMLE = 1.261662× 10−8 (cell · day)−1, respectively. Note the decrease of αMLE when
the IDO inhibitor (1-MT) is used and the similarity between the αMLE values obtained for
RAJI-control + CAR-T 19 and RAJI-IDO+ + CAR-T 19 + 1-MT.

2. Data used for inferences

We used data from [1] and [2] for parameter inference. We extracted data from these
sources using the free software G3Data Graph Analyzer [9] and organized them in the
tables shown below.
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(a) rMLE = 5.071721× 10−1day−1 (b) γMLE = 3.365388× 10−8(cell · day)−1 (c) αMLE = 1.248506× 10−8(cell · day)−1

Figure 2. RAJI-control + CAR-T 19 scenario: posterior histograms of r (a), γ (b), and α (c) parameters.
The maximum a posteriori estimates of marginal distributions are indicated by the subscript MLE.
As in the case of HDLM-2 cancer, there was a substantial improvement of the knowledge about the
parameters with the application of Bayesian inference, with the calibrated parameters also presenting
log-normal-like posterior distributions.

Table 1: HDLM-2 tumor burden (data extracted from [1], Figure 4B).

Day HDLM-2 [BU]→ T [cell]

48 9.22± 4.27× 106

55 1.09± 0.36× 107

71 1.01± 0.40× 108

85 2.26± 0.68× 108

92 2.02× 108

97 9.51± 6.09× 108

108 1.31× 109

112 2.10× 109

120 1.26× 109

136 2.73× 109

142 7.55× 109

Table 2: Cytotoxic activity against HDLM-2 (data extracted from [1], Figure 3B).

Effector to target ratio Live cells
CT : T T [cell]

0.3 : 1 2.46× 106

0.6 : 1 9.90× 105

1.25 : 1 3.41× 105

2.5 : 1 1.82× 105

5 : 1 1.62× 105

10 : 1 9.65× 104

Table 3: Tumor burden (data extracted from [2], Figure 2C).

Day RAJI-IDO+ / RAJI-control [BU]→ T [cell]

0 1.05± 0.07× 108

Day RAJI-control + CAR-T 19 [BU]→ T [cell]

4 1.6± 2.1× 108

7 5.5± 7.4× 108
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Table 4: Tumor burden for RAJI-IDO+ treated with CAR-T 19 and with CAR-T 19+1-MT
(data extracted from [2], Figure 3B).

Day RAJI-IDO+ + CAR-T 19 [BU]→ T [cell]

4 4.98± 2.01× 108

7 16.82± 12.71× 108

Day RAJI-IDO+ + CAR-T 19 + 1-MT [BU]→ T [cell]

4 1.9± 1.3× 108

7 6.9± 4.9× 108

Table 5: Cytotoxic activity against RAJI-control and RAJI-IDO+ (data extracted from [2],
Figure 3D).

Effector to target ratio Cytotoxicity [%]
CT : T (1− T [cell] /106 [cell])· 100

40 : 1 73
20 : 1 69
10 : 1 63
5 : 1 56

3. Mathematical analysis of model dynamics

In this section, we present the mathematical analysis for the conditions of existence
and stability of equilibrium points in the ODE model. The nondimensional ODE system is
given by

dX
dτ

= −pX + qZY− sZX , (4)

dY
dτ

= uX− qZY− wY , (5)

dZ
dτ

= Z(1− Z)− XZ , (6)

where the dimensionless variables are given by X = γ
r CT , Y = γ

r CM, Z = bT, and τ = rt;
and the parameters are p = ρ−φ

r , q = θ
br , s = α

br , u = ε
r , and w = µ

r .

3.1. Equilibrium points

To find the equilibrium points, we set the derivative equal to zero in (6) and find Z = 0
or Z = 1− X. Substituting in (4-5) and setting the derivatives to zero, we find the trivial
equilibrium P0 = (0, 0, 0) for Z = 0 and the following system for Z = 1− X:

−pX + q(1− X)Y− s(1− X)X = 0 , (7)

uX− q(1− Z)Y− wY = 0 . (8)

Note that X = Y = 0 is a trivial solution for (7-8) and corresponds to the escape equilibrium
point P1 = (0, 0, 1). The nontrivial solutions are obtained in the following. Adding (7) and
(8), we have

(u− p)X− s(1− X)X− wY = 0 .

Solving for Y, we obtain

Y =
1
w
[ϑ− s(1− X)]X , (9)
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where ϑ = u− p > 0. Substituting (9) in (7) and simplifying, we obtain a second degree
polynomial equation:

qsX2 + (qϑ− 2qs− sw)X + (pw− qϑ + qs + sw) = 0 . (10)

We write (10) as f (X) = 0 where f (X) = a f X2 + b f X + c f , and denote the roots as

X2 =
−b f −

√
b2

f − 4a f c f

2a f
and X3 =

−b f +
√

b2
f − 4a f c f

2a f
. (11)

The solutions of (10) correspond to the nontrivial equilibria P2 and P3 given by

Pi = (Xi, Yi, Zi) =

(
Xi,

[ϑ− s(1− Xi)]Xi
w

, 1− Xi

)
, i = 2, 3 .

We now analyze the positiveness conditions for equilibria P2 and P3. Note that
f (0) = c f , f (1) = pw > 0 and f (−∞) < 0 since a f = qs > 0. Thus, if c f < 0, analyzing the
sign changes of f (X), we conclude that X2 < 0 < X3 < 1. Note that c f < 0 is equivalent

to ϑ > ϑT , where ϑT is defined as ϑT = (p+s)w
q + s. From (9), also note that Y3 > 0 when

ϑ > ϑT , because ϑ > s and X3 ∈ (0, 1). Hence, we have a unique positive equilibrium P3
when ϑ > ϑT .

For the other case, i.e., for ϑ < ϑT we make the variable change Z = 1− X in (9). Note
that “X∗ ∈ [0, 1] is a root of f (X) = 0 if, and only if, Z∗ ∈ [0, 1] is a root of f (1− Z) = 0”.
Thus, substituting X = 1− Z in (9) and simplifying, we obtain

sZ2 +

(
sw
q
− ϑ

)
Z +

pw
q

= 0 . (12)

We write (12) as g(Z) = 0, where g(Z) = agZ2 + bgZ + cg. Let ϑ0 = sw
q . If ϑ < ϑ0, we have

bg > 0. Since ag, cg > 0, it follows from Descartes’s Rule of Signs that we have no positive
roots for ϑ < ϑ0.

Now, suppose ϑ ∈ (ϑ0, ϑT). Hence, bg < 0. By Descartes’s Rule of Signs, there can be
0 or 2 positive roots. We analyze the discriminant of g(Z), given by

∆g = b2
g − 4agcg = ϑ2 − 2

sw
q

ϑ +
sw
q

(
sw
q
− 4p

)
.

When ∆g > 0, g(Z) has two positive roots, and if ∆g < 0, there are no positive roots. Note
that ∆g = ∆g(ϑ) is a 2nd degree polynomial in ϑ, with coefficients a∆ = 1, b∆ = − 2sw

q and

c∆ = sw
q

(
sw
q − 4p

)
. Thus, the graph of ∆g(ϑ) has a positive concavity and its minimum

occurs in

ϑV = − b∆

2a∆
=

sw
q

= ϑ0 .

Further, note that

∆g(ϑV) = −4p
sw
q

< 0 .

On the other hand, for ϑ = ϑT , we have

∆g(ϑT) =

(
s− pw

q

)2
> 0 .

Thus, ∆g(ϑ) changes its sign between ϑ0 and ϑT , and it is increasing from ϑ0. Therefore, if
ϑSN is the root of ∆g given by
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ϑSN =
−b∆ +

√
b2

∆ − 4a∆c∆

2
,

then, we have that ϑSN ∈ (ϑ0, ϑT) and that

ϑSN =
sw
q

+ 2
√

p
sw
q

.

Thus, if ϑ ∈ (ϑ0, ϑSN) then ∆g < 0 and there are no positive roots; if ϑ ∈ (ϑSN , ϑT), then
∆g > 0 and we have two positive roots for g(Z) = 0. It remains to analyze whether these
positive roots satisfy Zi < 1, in order that Xi > 0. We have

g(0) =
pw
q

and
g(1) = s +

sw
q
− ϑ +

pw
q

= ϑT − ϑ > 0, for ϑ < ϑT .

Hence, g is positive at Z = 0 and Z = 1. Therefore, either the two roots of g occur in [0, 1]
(case A) or occur in [1, ∞) (case B). In case A, the two roots Z2 and Z3 give rise to two
positive equilibria P2 and P3. On the other hand, this does not occur in case B. Visually, we
note that what makes the distinction between the two cases is the slope of the graph of
g(Z) at Z = 1, which is given by

g′(1) = 2ag + bg = 2s +
sw
q
− ϑ .

In case A, we have g′(1) > 0, that is, ϑ < 2s + sw
q = ϑ0 + 2s. In case B, we have g′(1) < 0,

that is, ϑ > 2s + sw
q . To find the position of ϑi = ϑ0 + 2s with respect to ϑSN and ϑT , we

note that
ϑT = ϑ0 + 2ma ,

where ma =
1
2

(
pw
q + s

)
is the arithmetic mean between pw

q and s. Then

ϑSN =
sw
q

+ 2
√

pw
q

s = ϑ0 + 2mg ,

where mg =
√

pw
q s is the geometric mean between pw

q and s. We know that min
{

s, pw
q

}
<

mg < ma < max
{

s, pw
q

}
. Thus, if s < pw

q , we have s < mg < ma which implies in
ϑI < ϑSN < ϑT . In this case, if ϑ ∈ (ϑSN , ϑT) then ϑ > ϑI , and we are in case B; the two
roots are outside [0, 1].

Note that, if s > pw
q , we have mg < ma < s which implies in ϑSN < ϑT < ϑI . Hence, if

ϑ ∈ (ϑSN , ϑT), then ϑ < ϑI and we have case A, that is, the roots satisfy Z2, Z3 ∈ [0, 1].
With the above analysis, we identified the existence of three regions in the parameter

space where the existence of the nontrivial equilibria P2 and P3 is different:

(I) In region R1 = {(ϑ, s); 0 < s ≤ pw
q , ϑ < ϑT}

⋃{(ϑ, s); s ≥ pw
q , ϑ < ϑSN}, P2 and

P3 are not positive;
(II) In region R2 = {(ϑ, s); s > 0, ϑ > ϑT}, only P3 is positive;
(III) In region R3 = {(ϑ, s); s > pw

q , ϑSN < ϑ < ϑT}, P2 and P3 are positive.

3.2. Local stability

The local stability of the model equilibria is determined by assessing the system’s
Jacobian matrix (J) at each equilibrium point. The Jacobian matrix of the system (4-6) is
given by
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J(X, Y, Z) =

−p− sZ qZ qY− sX
u −qZ− w −qY
−Z 0 1− 2Z− X

. (13)

For the trivial equilibrium P0 = (0, 0, 0), the eigenvalues of J(P0) are easily determined,
and we find

λ1 = −p, λ2 = −w, and λ3 = 1 .

Therefore, P0 is always a saddle-point with a two-dimensional stable manifold. It is straight-
forward to see that the eigenvectors of J(P0) corresponding to the negative eigenvalues are
v1 = (1, u

−p+w , 0) and v2 = (0, 1, 0), and that they generate the XY plane (Z = 0), which
is invariant with respect to the flow of system (4-6). Thus, the plane Z = 0 is the stable
manifold of P0. Due to the invariance property, this means that mathematically the tumor
cells cannot be totally eliminated. However, for numerical reasons in our simulations,
when the number of tumor cells reaches a number less than 1× 10−6 (corresponding to
threshold Z < b× 10−6), it is set to zero, leading to tumor elimination.

With respect to the escape equilibrium point P1 = (0, 0, 1), we have

J(P1) =

−(p + s) q 0
u −(q + w) 0
−1 0 −1

 . (14)

The eigenvalues of J(P1) are λ1 = −1 and λ2 and λ3, which are eigenvalues of

A =

(−(p + s) q
u −(q + w)

)
. (15)

We have tr(A) = −(p + s + q + w) < 0. On the other hand, det(A) = q(ϑT − ϑ). Hence,
if ϑ > ϑT then det(A) < 0 and P1 is saddle-point, while if ϑ < ϑT then det(A) > 0 and
P1 = (0, 0, 1) is locally stable.

Now, we assess the stability of the nontrivial equilibria P2 and P3. Using the relation
Xi + Zi = 1, we obtain that the Jacobian matrix evaluated at these points is

Ji = J(Pi) =

 j11 qZi j13
u j22 −qYi
−Zi 0 −Zi

 , (16)

where
j11 = −p− sZi , j13 = qYi − sXi , and j22 = −qZi − w . (17)

Setting dX/dt and dY/dt = 0 in (4-5) and comparing with (17), we obtain alternative
expressions for j11, j13, and j22, which will also be used:

j11 = −q
YiZi
Xi

, j13 = p
Xi
Zi

, and j22 = −u
Xi
Yi

. (18)

From (18), we obtain that
j11 j22 = quZi . (19)

The characteristic polynomial of J(Pi) is

π(λ) = λ3 + a2λ2 + a1λ + a0 ,

where
a2 = −j11 − j22 + Zi ,
a1 = j11 j22 + Zi(j13 − j11 − j22 − qu) ,
a0 = −Zi(j13 j22 − j11 j22 + q(u + qYi)Zi) .

(20)
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The Routh–Hurwitz criterion states that the roots of π(λ) have negative real part if, and
only if, a2 > 0, a0 > 0, and a2a1 − a0 > 0. Substituting (17) in a2 given in (20), we obtain

a2 = p + sZi + qZi + w + Zi > 0 , (21)

whenever Pi is positive. Thus, the first condition is satisfied for i = 2, 3. Now, substituting
(19) in the expression for a0 we obtain

a0 = −Zi

(
j13 j22 + q2YiZi

)
.

Substituting (17), Zi = 1− Xi and Yi as given in (9) and simplifying, we have

a0 = ZiXi

(
2a f Xi + b f

)
, (22)

where a f and b f are the coefficients of (10). By (11), we conclude that

a0(P2) = −Z2X2

√
b2

f − 4a f c f and a0(P3) = Z3X3

√
b2

f − 4a f c f .

Therefore, if P2 is a positive equilibrium, then a0(P2) < 0 and not all eigenvalues of J(P2)
have real negative part. Thus, P2 is not stable. Since tr(J2) < 0, at least one eigenvalue
of P2 have real negative part. Hence, P2 is a saddle-point. On the other hand, the second
Routh-Hurwitz condition is satisfied for P3. Let us examine the third condition. First, we
simplify the expression for a1. Substituting (19) in a1 given in (20), we have

a1 = Zi(j13 − j11 − j22) .

Now, substituting (17), then Zi = 1− Xi and Yi from (9) and simplifying, we obtain

a1 =
Z
w

(
a f X2

i + b f Xi + c f + (qϑ− qs + qw + w2) + (qs− qw− sw)X
)

,

where a f , b f , c f are the coefficients of (10). Since Xi is a root of (10), we have

a1 =
Zi
w

(
qϑ− qs + qw + w2 + (qs− qw− sw)X

)
. (23)

Isolating ϑ in (9), we obtain

ϑ = s(1− Xi) + w
Yi
Xi

.

Substituting this relation in (23), we obtain

a1 = Zi

(
w− sXi + q

(
1− Xi +

Yi
Xi

))
. (24)

Now, computing a1a2 − a0 using (21), (22), and (24), we obtain

a1a2 − a0 =
Yi
Xi

(
pq + q2Zi + qsZi + qZi

)
− pqXi + pq− psXi + pw− q2XiZi

+q2Zi − qϑXi − 2qsX2
i − 2qsXiZi + 2qsXi + qsZi − qwXi + qwZi

+qw− qXiZi + qZi − s2XiZi + swZi − sXiZi + w2 + wZi + qw
Yi
Xi

.

(25)

From dX/dt = 0 we have that
Yi
Xi

=
p + sZi

qZi
. (26)
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From (9), we obtain that
Yi
Xi

=
ϑ + s(1− Xi)

w
. (27)

Substituting (26) in the first term of (25), and (27) in the last term of (25), and then replacing
all Xi by Xi = 1− Zi, we obtain

a1a2 − a0 =
p2

Zi
+ pqZi + pq + psZi + ps + pw + p + q2Z2

i + qrZi

+qsZi + 2qwZi + qZ2
i + s2Z2

i + swZi + sZ2
i + w2 + wZi .

(28)

Equation (28) with i = 3 implies that a1a2 − a0 > 0, since Z3 > 0 whenever P3 is a positive
equilibrium. Therefore, we conclude that P3 is always locally asymptotically stable when it
is a positive equilibrium. This concludes the stability analysis.

4. In silico experiments with the virtual population for the HDLM-2 scenario

The VP for the HDLM-2 scenario was submitted to the immunotherapy with 1× 106

CAR-T cells and the overall treatment response was evaluated over 300 days. CR and
NR were attained by 4,354 and 645 VM, respectively. Figure 3 shows the tornado plots of
the correlation between the variability of the VM parameters with respect to T at t = 55
and t = 75 days for each of these outcomes. The most critical parameter for both CR and
NR cases is the tumor growth rate r, as expected. We can also observe the important role
of the cytotoxic coefficient γ in controlling the tumor burden for the CR case, in which
its negative effect on T somehow balances the positive effect of r, enabling the success of
therapy. While the correlation values at t = 75 days decreased when compared to those at
t = 55 days for the CR cases, they have remained practically the same in NR cases.

We then analyzed the frequency of parameter values in the VP and their distributions
for each of the two different therapy outcomes. Figure 4a shows the heterogeneity of the
parameter values (normalized) in the VP. Of note, to reflect the variability observed in the
experimental data reported in [1], parameters are almost evenly distributed in the range
limited by ±60% of the reference values indicated in Table 2 (main text) except ρ, ε, and r.
Some combinations of these parameters did not generate acceptable VM. For example, the
restrictions imposed by the control data of [1] prevented small values of r in the VP, which
probably would lead to overall survival outside the range of the actual population.

Figures 4b and 4c show the frequency histograms of the (normalized) parameter
values for the two therapy outcomes. CR was more likely to occur for higher differentiation
of CT into CM (ε) and intermediate values of the tumor growth rate (r). On the other hand,
the NR cases occurred more often for higher values of the inhibition coefficient of CT (α)
and the tumor growth rate (r), and lower values of the cytotoxic coefficient (γ). Of note,
the normalized values of the parameters were evaluated according to their corresponding
ranges of ±60% of the reference values.
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Figure 3. Tornado plots of the Pearson correlation with respect to T at t = 55 days (top panel) and
t = 75 days (bottom panel). VP was split into two groups according to the therapy outcomes at
300 days: CR (green color) and NR (red color). Solid bars indicate a positive effect while dashed bars
indicate a negative one. In all cases, sensitivities with respect to T indicate the critical role of the
tumor growth rate r. In the CR case, this positive effect seems to balance the negative effect due to γ.
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Figure 4. Frequency histograms of the values of the parameters for the VP (a) and different therapy
outcomes at t = 300 days: (b) CR and (c) NR.
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