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Simple Summary: Treatment with chimeric antigen receptor (CAR)-T cells has improved the prog-
nosis of patients with non-Hodgkin lymphoma (NHL) substantially. Yet, as up to 60% of patients
eventually relapse, insights into factors determining treatment response are highly warranted. We
used mathematical modeling to characterize typical and individual concentration–time profiles of
four different CAR-T cell subtypes and tumor burden in 19 NHL patients and investigated patient-
/therapy-related factors associated with poor survival. A low CAR-T cell maximum expansion
capacity and no previous autologous stem cell transplantation were associated with a poor prognosis.
We next translated our most important model parameter into a clinical composite score, which
leverages but does not require the use of the model. Based on our clinical data, we propose a clinical
composite score cut-off value for early survival prediction. Additional data will be needed to update
and refine the developed model and the proposed clinical composite score cut-off value.

Abstract: Chimeric antigen receptor (CAR)-T cell therapy has revolutionized treatment of re-
lapsed/refractory non-Hodgkin lymphoma (NHL). However, since 36–60% of patients relapse,
early response prediction is crucial. We present a novel population quantitative systems pharmacol-
ogy model, integrating literature knowledge on physiology, immunology, and adoptive cell therapy
together with 133 CAR-T cell phenotype, 1943 cytokine, and 48 metabolic tumor measurements.
The model well described post-infusion concentrations of four CAR-T cell phenotypes and CD19+

metabolic tumor volume over 3 months after CAR-T cell infusion. Leveraging the model, we iden-
tified a low expansion subpopulation with significantly lower CAR-T cell expansion capacities
amongst 19 NHL patients. Together with two patient-/therapy-related factors (autologous stem
cell transplantation, CD4+/CD8+ T cells), the low expansion subpopulation explained 2/3 of the
interindividual variability in the CAR-T cell expansion capacities. Moreover, the low expansion
subpopulation had poor prognosis as only 1/4 of the low expansion subpopulation compared to 2/3
of the reference population were still alive after 24 months. We translated the expansion capacities
into a clinical composite score (CCS) of ‘Maximum naïve CAR-T cell concentrations/Baseline tumor
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burden’ ratio and propose a CCSTN-value > 0.00136 (cells·µL−1·mL−1 as predictor for survival.
Once validated in a larger cohort, the model will foster refining survival prediction and solutions to
enhance NHL CAR-T cell therapy response.

Keywords: chimeric antigen receptor T cells; non-Hodgkin lymphoma; CAR-T cells; mathematical
modeling; pharmacometrics

1. Introduction

Chimeric antigen receptor (CAR)-T cell immunotherapy for relapsed or refractory
B cell malignancies, such as acute lymphoblastic leukemia or non-Hodgkin lymphoma
(NHL), has shown remarkable success [1–4]. Yet, in NHL, only 40–64% of patients show
a durable response [1,5,6]. Thus, understanding the underlying factors of who will reach
long-term response or not is essential. Several factors influence both CAR-T cell expansion
and persistence, which are the two significant determinants of treatment response [7].
These factors include the design of the CAR construct [8], the manufacturing protocol [9],
the frequency of functionally active T cells in the manufacturing and infusion products [10],
the T cell phenotype [11,12], and the CD4+/CD8+ subset composition [12,13] in the infusion
product, the tumor burden [10], the tumor microenvironment [14,15] and the dose and type
of lymphodepleting chemotherapy [16,17]. Reported positive predictors for a long-term
response are a high CAR-T cell maximum concentration (Cmax) [7,18,19], and a high area
under the concentration–time curve in the first 28 days (AUC0–28d) [7]. Factors such as a
high fraction of central memory T cells (TCM) or T memory stem cells (TSCM) in manufac-
turing and infusion product have been linked to a high expansion and persistence [11,20].
Yet there is still sizeable unexplained variability in expansion, persistence, and response
amongst patients, i.e., interindividual variability [7].

Previous top-down and bottom-up mathematical models of CAR-T cell therapy have
described the kinetics of CAR-T cells [21], the quantitative relationship between CAR-
affinity, antigen abundance, tumor cell depletion, and CAR-T cell expansion [22], and the
kinetics and dynamics of effector and memory CAR-T cells and tumor cells [23,24]. While
‘top-down’ models refer to models developed based on observed new data, ‘bottom-up’
models are human physiology- and drug characteristics-based models [25]. A ‘top-down’
approach might describe the observed CAR-T cell kinetic data well, yet, little information
is gained about the underlying mechanisms, and prediction of a concentration–time profile
for a new individual might not be informative. Bottom-up approaches can add in-depth
insight into CAR-T cell-tumor dynamics on a cellular level but might be too complex for
clinical use and often underestimate the interindividual variability. To explain parts of this
variability and identify mechanistically plausible predictors for long-term response, we
developed a population quantitative systems pharmacology (QSP) model, characterizing
the human kinetics of four CAR-T cell phenotypes and CD19+ metabolic tumor volume
and the dynamics of their interactions. Combining top-down and bottom-up approaches,
our population QSP model uses prior information on CAR-T cell physiology together
with in vivo data to inform unknown model parameter values and their interindividual
variability [26]. Leveraging the model, we aimed to quantify different levels of variability
in a clinical cohort of 19 NHL patients and identify significant influential factors on CAR-T
cell expansion and survival. Finally, we sought to translate the model-estimated T cell
expansion capacity into a clinical composite score to propose a cut-off value that allows
survival prediction leveraging but not requiring the use of the model.

2. Materials and Methods
2.1. Patients and Treatment

Our clinical data contained a cohort of 24 adult patients with relapsed or refractory
large B cell lymphoma treated with standard of care, axicabtagene ciloleucel, at MD
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Anderson Cancer Center, Houston, Texas, USA. The study was approved by the MD
Anderson Cancer Center’s institutional review board and conducted in accordance with
the principles of the Declaration of Helsinki. The 24 patients had different subtypes of
non-Hodgkin lymphoma, such as diffuse large B cell lymphoma, primary mediastinal
B cell lymphoma and transformed follicular lymphoma. Prior to CAR-T cell infusion
on day 0, patients received a low-dose lymphodepleting chemotherapy consisting of
fludarabine (30 mg·m−2 body surface area per day) and cyclophosphamide (500 mg·m−2

body surface area per day) on days −5, −4, and −3. Further patient demographics
and clinical characteristics prior to lymphodepleting chemotherapy are shown in detail in
Supplementary Table S1. All patients received a single intravenous infusion of axicabtagene
ciloleucel at a target dose of 2 × 106 CAR-T cell·kg−1 body weight. Of the 24 patients, we
excluded five patients for the model analysis. Amongst these, one patient had no active
disease during the whole study, for two patients no baseline metabolic tumor volume
measurement was available, and for two patients, the staining steps during flow cytometry
to determine CAR-T cell concentrations failed.

2.2. Tumor Size Measurements and Endpoint Assessment

Metabolic tumor volumes were assessed at baseline, after one month and three months
after CAR-T cell infusion using fluorodeoxyglucose positron emission tomography com-
puted tomography (PET-CT). Anti-tumor responses were assessed according to the 2014
Lugano classification [27]. Progression-free survival (PFS) was defined as the time from
the start of the axicabtagene ciloleucel infusion to progression of disease, death, or last
follow-up (whichever occurred first). Overall survival (OS) was defined as the time from
the start of the axicabtagene ciloleucel infusion to death or last follow-up. Patients who
were lost to follow-up were from overseas or other US states and did not return to MD
Anderson Cancer Center for further monitoring.

2.3. CAR-T Cell Sampling, Detection, and Quantification
2.3.1. Sample Collection

Peripheral blood mononuclear cells (PBMCs) were isolated from blood samples by
density gradient separation at days 7, 14, and 25–28 after CAR-T cell infusion and cryopre-
served for batched analysis.

2.3.2. Cell-Free DNA Real-Time PCR

We used quantitative polymerase chain reaction (qPCR) to determine the DNA copy
number of the CAR-T product in patient plasma samples (cell-free DNA, cfDNA). We used
appropriate primers (FW—GGATTCGCCAGCCTCCAC; REV—AAACTTGGCTCTTGGAG
TTGT) and an endogenous probe (56—FAM/TCCCAGCCA/ZEN/ CTCCAGACCCTT/3IA
BkFQ/) that correctly identified the chimeric region of CD19-CAR T product in CAR-T-
transduced T cells. The DNA copy number from each mg of unknown cfDNA sample was
determined using a 10-fold standard curve in which the value corresponding to the DNA
copy number was calculated using regression analysis.

2.3.3. Flow Cytometry

PBMC were processed immediately after thawing; the cells were counted, analyzed for
viability, and stained using fluorescently labeled antibodies for 30 min (we used antibody
concentrations according to the manufacture’s recommendations) at room temperature.
We used two antibody panels to measure the phenotype and activation of CAR-T CD4
and CD8 fractions. All cells were pre-treated with an anti-Fc block (130-059-901, Miltenyi
Biotec, Bergisch Gladbach, Germany) and Aqua Live/Dead exclusion dye (L34957, Life
Technologies, Carlsbad, CA, USA). The list of antibodies in each staining panel is as
follows (the clone or reference number followed by the manufacturer’s name is annotated
in parenthesis): Cocktail 1—OX40 FITC (Cat No. 555837), anti-CAR T PE (KIP-1, BD
Biosciences), ICOS PE-TR (C398.4A, BD Biosciences), CD127 PerCP Cy5.5 (HIL-7R-M21, BD
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Biosciences, San Jose, CA, USA), CD69 APC (Cat No. 555533, BD Biosciences), CD28 APC-
H7 (CD28.2, BD Biosciences), CD4 AF700 (RPA-T4, BD Biosciences), 4-1BB BV421 (4B4-1, BD
Biosciences), CD14 BV605 (M5E2, BD Biosciences), CD8 BV650 (RPA-T8, BD Biosciences),
CD3 BV711 (UCHT1, BD Biosciences), and PD-1 BV786 (EH12.1, BD Biosciences); and
Cocktail 2—CD45RA FITC (Cat No. 555488, BD Biosciences), anti-CAR T PE (KIP-1, BD
Biosciences), CD4 PE-TR (RPA-T4, BD Biosciences), CD16 PE-CY7 (3G8, BD Biosciences),
CCR7 PerCP Cy5.5 (150503, BD Biosciences), CD25 APC-H7 (M-A251, BD Biosciences),
CD27 AF700 (O323, Biolegend, Santiago, CA, USA), CD38 BV605 (HB7, BD Biosciences),
CD8 BV650 (RPA-T8, BD Biosciences), CD3 BV711 (UCHT1, BD Biosciences), and CD56
BV786 (NCAM16.2, BD Biosciences). The acquisition of cytometric events varied and
depended on the number and the viability of the PBMCs (this number fluctuated from
2 × 105 to 1 × 106 cells). We used a 12-color multiparametric approach using a 3-laser FACS
Fortessa Cytometer (BD Biosciences, San Jose, CA, USA). We established a compensation
matrix using the DiVa 6.1.1 software with the acquisition of single staining controls. We
analyzed FCS files using FlowJo (BD Biosciences, San Jose, CA, USA). We plotted the
total events on an SSC vs. FSC quadrant, and we excluded the doublets by gating out the
cells on the periphery on the SSC vs. FSC plot (Supplementary Figure S1, top left). We
excluded all dead cells by plotting SSC vs. Aqua (Supplementary Figure S1, top middle)
and gated on the negative populations (live). We then re-plotted the live events using
SSC vs. FSC and gated the lower and upper populations on the right (we did this because
activated CAR-T cells appeared larger than normal lymphocytes) to select the lymphocyte
populations (Supplementary Figure S1, top right). From the selected gate, we plotted SSC
vs. CD3 (Supplementary Figure S1, bottom left); then, from the CD3+ populations, we
plotted CD3 vs. CAR-T to discriminate all CD3+CAR-T− from the CD3+CAR-T+ cells
(Supplementary Figure S1, bottom middle). Using the CD3+CAR-T+ populations, we
then plotted CD4 vs. CD8 to obtain single CD4+CAR-T+ and CD8+CAR-T+ populations
(Supplementary Figure S1, bottom middle right). To define the phenotype, we plotted
the CD4+ and CD8+ single-stained populations according to their level of expression of
CD45RA vs. CCR7, thus, CD45RA+CCR7− (TEff), CD45RA+CCR7+ (TN), CD45RA−CCR7+

(TCM), and CD45RA−CCR7− (TEM) (Supplementary Figure S1, bottom far right). We
plotted each single subset vs. every single other marker included in each panel.

2.3.4. Cytokine Measurements

We measured plasma cytokines from CAR-T-infused patients at baseline (day 0), day
4, 7, 9, and 14 using the multiplex assay from Meso Scale Discovery system (Meso Scale
437 Diagnostics; Rockville, MD, USA). We ran 25 µL samples in duplicate to identify
Ang-1, Ang-2, EGF, G-CSF, GM-CSF, Granzyme B, GROa (CXCL1), I-TAC (CXCL11), IFN-γ,
IL-10, IL-15, IL-1RA, IL-1α, IL-1β, IL-2, IL-2RA, IL-3, IL-5, IL-6, IL-8, IP-10 (CXCL10),
M-CSF, MCP-1(CCL2), MIG (CXCL9), MIP-1α(CCL3), TNF-α, VEGF, and VWF, per the
manufacturer’s instructions.

2.4. Development of the CD19-Specific CAR-T Cell Quantitative Systems Pharmacology Model

We developed the population quantitative systems pharmacology CAR-T cell model
by integrating previous knowledge on T cell physiology, adoptive cell therapy, and previ-
ously published mathematical immunotherapy models [28,29]. We aimed for our model
to be as mechanistic as possible, allowing all parameters to have a physiological meaning
while, to enable clinical use, maintaining simplicity following the principle of parsimony.
We considered different sources of variability [26] by using a nonlinear mixed-effects
modeling approach [30,31].

2.4.1. Nonlinear Mixed-Effects Modeling

A nonlinear mixed-effects model consists of three submodels [32]: the structural
submodel, the statistical submodel, and the covariate submodel.
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2.4.2. Structural Submodel

The structural submodel (including so called ‘fixed effects’) characterizes the typical
concentration–time profile of one or more model species and is described using ordinary
differential equations.

2.4.3. Statistical Submodel

The statistical submodel (including so-called ‘random effects’) captures different
levels of unexplained variability around the parameters of the structural submodel and the
observations. During development of the CAR-T cell quantitative systems pharmacology
model, interindividual variability was evaluated on all structural model parameters using
exponential interindividual variability models (Equation (1)).

θik = θk· eηik ηik ∼ N (0, ω2
k

)
(1)

with the structural model parameter θk and individual model parameter θik for individual
i = 1, . . . ,N and model parameter k = 1, . . . ,N. Individual model parameters on which
interindividual variability was implemented were thus assumed to be log-normally dis-
tributed with ηik values following a normal distribution with mean zero and variance
ω2

k . To ease interpretation, the interindividual variability was expressed as coefficient of
variation, using Equation (2) [32].

CV, % =

√
eω2

k − 1 ·100 (2)

Residual unexplained variability, quantifying the remaining unexplained variability
after accounting for interindividual variability [32], was implemented for each model
species using a log-transform-both sides approach [30,32] (Equation (3)), equivalent to an
additive residual variability model on the log-scale.

ln
(

Yobs
ij

)
= ln

(
f
(
xij, θi

)
· eεij

)
εij ∼ N (0, σ2

ij

)
ln
(

Yobs
ij

)
= ln

(
f
(
xij, θi

))
+ εij with εij = ln(Yobs

ij )− ln(Ypred
ij )

(3)

In Equation (3), the logarithm of individual observation Yobs
ij for individual i = 1,...,N

and time point j = 1, . . . ,N are described as the logarithm of the function of independent
design variable xij (for example sampling times), given the vector θi of model parameters for
individual i = 1, . . . ,N, and the residual unexplained variability parameter εij. The residual
unexplained variability for individual i = 1, . . . ,N at time point j = 1, . . . ,N quantifying
the deviation between individual model prediction and observation, is implemented as an
exponential function and assumed to be normally distributed with mean zero and variance
σ2

ij. Applying a log-transformation to both the observation and the model predictions
increases the numerical stability of the model, especially if observed concentrations range
over several orders of magnitude. Analogous to Equation (2), the residual unexplained
variability was expressed as coefficient of variation, using Equation (4).

CV, % =
√

eσ2 − 1 ·100 (4)

2.4.4. Covariate Submodel

The covariate submodel (including ‘fixed effects’) aims to explain parts of the in-
terindividual variability identified in the statistical submodel. The covariates (patient-,
therapy-, or product-related characteristics) tested for significance during development of
the CAR-T cell quantitative systems pharmacology model were pre-selected based on prior
literature reports, physiological plausibility, and availability in our clinical study dataset.
Exploratory graphical analyses were used to assess the potential size of the covariate effect
and guide initial estimate selection.
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2.4.5. Model Estimation, Parameter Precision, and Software

In the nonlinear mixed-effects approach ‘fixed-effects-’ and ‘random-effects’ param-
eters are simultaneously estimated by maximizing the likelihood [33,34]. The objective
function value (OFV = −2·ln(likelihood)), a numeric criterion for quality of the model
fit, decreases as the quality increases. Model selection for the CAR-T cell quantitative
systems pharmacology model was thus based on the objective function value (OFV), pa-
rameter precision, and graphical goodness-of-fit evaluation. For the covariate submodel,
we evaluated and refined our covariate selection by assessing changes with respect to
parameter precision, model stability, individual model predictions, and significance of
covariate inclusion using likelihood-ratio tests. At α = 0.05, the inclusion of an additional
covariate significantly improved model predictions if the OFV decreased by a value of
3.84 points.

If we observed a bi- or multimodal distribution instead of a normal distribution
of the individual interindividual variability parameter estimates, suggesting separate
subgroups of individuals, we investigated the implementation of a mixture model, allowing
to define multiple subpopulations with different sets of typical parameter values. Even
though the underlying factor discriminating the subpopulations, i.e., a covariate, might
not be known, a mixture model allows to estimate the different parameter values of these
subpopulations [35]. During model estimation including a mixture model, the typical
values for the model parameters are estimated for each subpopulation. Furthermore, the
proportion of individuals in each subpopulation and the most likely subpopulation for
each individual are estimated.

To assess parameter uncertainty using standard errors, sampling importance resam-
pling (SIR) [36], using the NONMEM generated covariance matrix to define a proposal
distribution, was performed. More specifically, five iterations with 1000, 1000, 1000, 2000,
and 2000 samples and 200, 400, 500, 1000, and 1000 resamples, respectively, were cho-
sen. For easier interpretation, standard errors were reported in relation to the parameter
estimate [30] as relative standard errors (RSEs). In general, RSEs ≤ 30% for fixed-effects pa-
rameters and ≤ 50% for random-effects parameters are considered adequate [30], however,
higher RSEs might be acceptable based on the type of analysis, overall relevance of the pa-
rameter, and size of the dataset. All modeling activities were performed using the software
NONMEM® Version 7.4.3 (ICON Development Solutions, Ellicott City, MD, USA ), called
through Perl speaks NONMEM (PsN) Version 3.6.2 [37], using the modeling workbench Pi-
rana Version 2.9.7 (Certara, Princeton, NJ, USA) [38]. For parameter estimation, First-Order
Conditional Estimation with Interaction was used. Pre- and post-processing and model
evaluation were performed using R Version 3.5.1 (https://www.R-project.org/ (accessed
on 12 January 2021)) accessed through RStudio Version 1.2.1184 (http://www.rstudio.com/
(accessed on 12 January 2021)), using packages plyr, dplyr, Xpose4, ggplot2, and scales.

2.5. Characterization of Patients in Different Model-Defined (Sub)Populations

During development of the CAR-T cell quantitative systems pharmacology model,
two model-defined (sub)populations were identified based on their parameter values: a
reference expansion population and a low expansion subpopulation. We investigated
differences between both populations, which could potentially explain the observed dif-
ferences in the model parameters. Continuous variables, i.e., baseline metabolic tumor
volume and patient age, as well as frequencies of categorical covariates, i.e., disease type,
previous/no previous ASCT and patient sex, were compared. Furthermore, observed
and model-predicted cell kinetic parameters (i) maximum concentration of all CAR-T
cells (Cmax), (ii) time at maximum concentration of all CAR-T cells (Tmax), (iii) area under
the concentration–time curve from day 0 to day 28 (AUC0–28d) of all CAR-T cells, and
(iv) the ratio of Cmax of all CAR-T cells over baseline metabolic tumor volume, as a possible
predictor for a good prognosis [39], were compared between both subpopulations. To
assess statistical significance of differences between continuous covariate or cell kinetic
parameter values, two-sided non-parametric Wilcoxon tests (α = 0.05) using the function

https://www.R-project.org/
http://www.rstudio.com/
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‘compare_means’ of the R package ggpubr were performed. The results were visualized
with box-whisker plots for continuous covariates and bar plots for categorical covariates
using R package ggplot2.

2.6. Clinical Endpoints in Patients of Different Model-Defined (Sub)Populations

To compare clinical endpoints in different patient (sub)populations, Kaplan–Meier
curves were generated and stratified for the respective variable (e.g., expansion subpop-
ulation or previous/no previous ASCT) using the R packages survival and survminer.
Log-rank tests (α = 0.05) were used to assess if there was a significant difference between
the curves. If we compared several strata within one plot, we performed pairwise com-
parisons in addition to the global log-rank test. A possible correlation between model
parameter Vmax1 and clinical composite score (CCS) Cmax/baseline metabolic tumor vol-
ume was assessed for each CAR-T cell phenotype and the sum of CAR-T cell phenotypes
(Tall) using Pearson correlation tests through the ‘ggscatter’ function in the R package
ggpubr. For the CAR-T cell phenotype for which the CCS showed the highest correla-
tion with Vmax1, we assessed an optimal cut-off value of the CCS for detecting patients
in the low expansion subpopulation, by performing a receiver operating characteristic
(ROC) curve analysis using the R packages cutpointr and pROC [40]. Next, we performed
univariate cox-proportional hazard analyses using the R package survival to assess if
the identified CCS cut-off value for the chosen CAR-T cell phenotype was a significant
predictor for survival. We tested and confirmed the proportional hazard assumption using
the function ‘cox.zph’ in the R survival package. Finally, the correlation between the CCS
using flow cytometry and the CCS using qPCR was quantified using a Pearson-correlation
test. The CCSqPCR was compared between reference expansion population and low expan-
sion subpopulation using a two-sided Wilcoxon test. Two additional previously digitized
datasets [41], reporting Cmax (assessed by qPCR) and baseline tumor burden in CLL [42]
and MM [43] patients, were digitized (Supplementary Figure S2). Next, CCSqPCR were
computed and the differences between patients with CR/PR and PD/NR assessed using
two-sided Wilcoxon tests.

3. Results
3.1. The CD19-Specific CAR-T Cell Quantitative Systems Pharmacology Model

Based on previous reports regarding the impact of CAR-T cell phenotype composition
on CAR-T cell in vivo expansion and persistence [44], we chose to describe each CAR-T cell
phenotype measured in our clinical cohort (TN, TCM, TEM, and TEff) as individual species.
As a fifth species, we included CD19+ metabolic tumor volume as a pharmacodynamic
component and a key driver of CAR-T cell expansion. To jointly describe typical profiles
of concentrations of CAR-T cell phenotypes and CD19+ tumor volume across time and
different layers of variability, we used nonlinear mixed-effects modeling.

3.1.1. Structural Submodel

The structural submodel of the nonlinear mixed-effects quantitative systems pharma-
cology model consisted of five species: naïve CAR-T cells (TN), central memory CAR-T cells
(TCM), effector memory CAR-T cells (TEM), terminally differentiated effector CAR-T cells
(TEff), and CD19+ metabolic tumor volume (CD19+) (Figure 1). For the nonlinear processes
describing T cell expansion upon tumor contact and tumor killing upon CAR-T cell contact,
different functional forms were explored. While the numerator always consisted of the
product Vmax,x·CD19+·Tcell, we tested three versions for the denominator, limiting the
maximum expansion either by the respective T cell concentration, the metabolic tumor
volume or both. For both terms, the form which described the data best was selected.
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Figure 1. Schematic representation of the CD19-specific CAR-T cell population quantitative systems pharmacology model,
describing kinetics and dynamics of the four CAR-T cell phenotypes and CD19+ tumor metabolic tumor volume. Legend:
Non-red arrows pointing to the right describe differentiation processes. Non-red downward arrows represent cell death
processes. Circular arrows represent proliferation processes. The red arrow pointing to the right represents CD19+ tumor
death. Arrows pointing to parameter names indicate a positive impact on this parameter by the species of which the arrow
is originating from. Abbreviations—TN: naïve CAR-T cells; TCM: central memory CAR-T cells; TEM: effector memory
CAR-T cells; TEff: effector CAR-T cells; CD19+: CD19+ metabolic tumor volume; k12: rate constant for differentiation of TN

to TCM; k23: rate constant for differentiation of TCM to TEM; k34: rate constant for differentiation of TEM to TEff; ke1: death
rate constant for TN; ke2: death rate constant for TCM; ke3: death rate constant for TEM; ke4: death rate constant for TEff;
kp1: homeostatic proliferation rate constant for TN; kp2: homeostatic proliferation rate constant for TCM; kp3: homeostatic
proliferation rate constant for TEM; Vmax1: maximum expansion rate per mL tumor volume of TN, TCM and TEM upon
tumor contact; KM1: TN, TCM and TEM concentration at half-maximum expansion of TN, TCM and TEM; Vmax5,1: maximum
killing rate of metabolic tumor volume by TN; Vmax5,2 maximum killing rate of metabolic tumor volume by TCM; Vmax5,3:
maximum killing rate of metabolic tumor volume by TEM; Vmax5,4: maximum killing rate of metabolic tumor volume by
TEff; KM5: metabolic tumor volume at half-maximum killing rate; k5: proliferation rate constant of metabolic tumor volume;
K0: maximum tumor volume observable (tumor carrying capacity).

We described the lineage relationship of the four CAR-T cell phenotypes according to
the progressive differentiation model, which postulates the differentiation of naïve T cells
via memory T cells to terminally differentiated effector T cells [45,46].

Naïve CAR-T Cells (TN)

Upon contact with CD19+ tumor cells, we modeled TN to expand with maximum ex-
pansion rate per mL tumor volume Vmax1 and naïve T cell concentration at half-maximum
expansion rate KM1 (1.13 cells·µL−1, relative standard error (RSE): 22%). Independent of
expansion upon tumor cell contact, TN undergo homeostatic proliferation with a first-order
rate constant kp1 (0.0005·day−1) [47]. Furthermore, we described TN to differentiate into
TCM with the first-order rate constant k12 (0.140·day−1, RSE: 9%) and undergo apoptosis
corresponding to a typical lifespan of 1/ke1 (1/0.0104·day−1 = 96 days, RSE: 13%) days.
The resulting typical profile for TN is given by Equation (5).

d
dt

TN =
Vmax1· CD19+· TN

KM1 + TN
+ kp1·TN − k12·TN − ke1·TN (5)

Central Memory CAR-T Cells (TCM)

Analogous to TN, we modeled TCM to expand upon tumor contact with the same
Michaelis–Menten parameters Vmax1 and KM1 and to undergo homeostatic proliferation
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with the rate constant kp2 (0.007·day−1) [47]. Moreover, we described concentrations
of TCM to increase by differentiation of TN with the rate constant k12. In line with the
progressive differentiation model, concentrations of TCM were described to decrease due to
differentiation into TEM with the rate constant k23 (0.191·day−1, RSE: 11%) or apoptosis
after a typical lifespan of 1/ke2 (1/0.0104·day−1 = 96 days, RSE: 13%) days. The resulting
typical profile of TCM is given by Equation (6).

d
dt

TCM =
Vmax1 · CD19+· TCM

KM1 + TCM
+ kp2· TCM + k12·TN − k23· TCM − ke2· TCM (6)

Effector Memory CAR-T Cells (TEM)

Analogous to TN and TCM, we modeled TEM cells to expand upon tumor contact
in a nonlinear process with the parameters Vmax1 and KM1. In addition, TEM cells
were described to undergo linear homeostatic proliferation with the rate constant kp3
(0.007·day−1) [47] and to be formed via differentiation of TCM with the rate constant
k23. Moreover, we described TEM to differentiate into TEff with the rate constant k34
(0.355·day−1, RSE: 13%) and to undergo apoptosis after a typical lifespan of 1/ke3
(1/0.0104·day−1 = 96 days, RSE: 13%) days. The resulting typical profile of TEM is given by
Equation (7):

d
dt

TEM =
Vmax1 · CD19+· TEM

KM1 + TEM
+ kp3· TEM + k23·TCM − k34· TEM − ke3· TEM (7)

Terminally Differentiated Effector CAR-T Cells (TEff)

In contrast to naïve and memory T cells, we considered TEff cells unable to expand
further in response to tumor contact or as homeostatic proliferation. We still considered
them to be formed by differentiation of TEM with the rate constant k34. In line with previous
findings [21,48], as shown in the high estimate for ke4, we approximated that a high fraction
of TEff will die each day (0.518·day−1, RSE: 13%). The resulting typical profile of TEff is
given by Equation (8).

d
dt

TEff = k34·TEM − ke4· TEff (8)

CD19+ Metabolic Tumor Volume (CD19+)

We modeled CD19+ metabolic tumor volume growth with a logistic growth func-
tion [28] with growth parameter k5 (0.0023 day−1) and carrying capacity K0 (5000 mL),
which represents the highest metabolic tumor volume observable (Equation (9)). Tumor cell
killing by the different CAR-T cell phenotypes was adapted from a previously published
tumor immune reaction mathematical model [28] as a nonlinear process with maximum
killing rate Vmax5,x (with x = 1−4 representing the four CAR-T cell phenotypes in the order
naïve, central memory, effector memory and effector), and metabolic tumor volume at
half-maximum killing rate KM5 (276 mL, RSE: 33%). While for parameter Vmax5,2, the max-
imum killing rate for TCM was estimated (4.04 mL·day−1·(cells·µL−1)−1, RSE: 39%), the
maximum killing rates for the other T cell phenotypes were fixed based on the estimate for
Vmax5,2 and fractional changes in killing capacities extracted from a digitized plot showing
in vitro killing capacities of different CAR-T cell phenotypes [49].

d
dt CD19+ = k5·

(
1 − CD19+

K0

)
·CD19+ − Vmax5,1 · TN · CD19+

KM5+CD19+

− Vmax5,2 · TCM · CD19+

KM5+CD19+ − Vmax5,3 · TEM· CD19+

KM5+CD19+

− Vmax5,4 · TEff· CD19+

KM5+CD19+

(9)
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3.1.2. Statistical Submodel

We implemented interindividual variability parameters on Vmax1 (446% CV) and
Vmax5,2 (307% CV) using Equation (1). The implementation of interindividual variability
parameters on other structural submodel parameters was not supported by the dataset.
Applying Equations (5)–(9) with the estimated parameter values to the measured concen-
trations of (i) the four CAR-T cell phenotypes and (ii) metabolic tumor volumes in our
clinical dataset (n = 19 patients, Table S1), population and individual model predictions
were in line with observed values for the majority of individuals. However, for some
patients, typical predictions exceeded the measured T cell concentrations by up to 270-fold.
A common feature of these patients was that T cells failed to expand as expected based
on the high baseline tumor burden. Furthermore, we observed a bimodal distribution
of individual Vmax1.base estimates. Based on this observation, we used a mixture model
to investigate the presence of two subpopulations with separate estimates for Vmax1,base.
We precisely estimated 20% (RSE: 11%) (n = 4) of patients to belong to a low expansion
subpopulation with a significantly reduced (by 92%, p = 0.0043) typical value for Vmax1,base
(Vmax1,base,low: 0.000700 (cells·µL−1)·day−1·mL−1, RSE: 17%) compared to the reference
population (Vmax1,base,ref: 0.00846 (cells·µ−1)·day−1·mL−1, RSE: 36%). The mixture model’s
implementation significantly improved and aligned typical and individual predictions for
the low expansion subpopulation (Supplementary Figure S3).

3.1.3. Covariate Submodel

We pre-selected a previous ASCT, the ratio of CD4+ to CD8+ CAR-T cells on day seven
and the concentrations of IL-2 and IL-15 for evaluation as covariates on model parameter
Vmax1,base. Furthermore, we pre-selected tumor type and concentrations of Granzyme-B,
TNFα, and IFN-γ on day seven for evaluation on model parameter Vmax5,2. Ratios of CD4+

over CD8+ CAR-T cells and cytokine concentrations were additionally available at baseline
and on days four, nine, 14 and 28. However, measurements were not available for all
patients at all time points. As measurements were available for 18 of 19 patients on day
seven, we chose this time point for implementation.

We identified two significant covariates on the baseline maximum expansion rates
Vmax1,base,ref and Vmax1,base,low. A previous ASCT was incorporated as dichotomous co-
variate (ASCT = 0: no previous ASCT, ASCT = 1: previous ASCT) and the change in
Vmax1,base due to a previous ASCT was implemented using a fractional change model
(ASCTVmax1: 2.53, RSE: 31%, translating into a 3.53-fold higher Vmax1,base value in patients
with a previous ASCT). Of note, the covariate effect for a previous ASCT was estimated
for all patients simultaneously using their respective Vmax1,base value (Vmax1,base,ref or
Vmax1,base,low) instead of estimating separate effects of a previous ASCT for Vmax1,base,ref
and Vmax1,base,low. The second covariate, the ratio of CD4+/CD8+ CAR-T cells at day seven
(CAR+CD4/CD8day7), was implemented on Vmax1,base,ref using a power function. An
increasing ratio of CD4/CD8+ CAR-T cells at day seven was associated with a moderate
decrease in Vmax1,base,ref (CD4/CD8exp: −0.385, RSE: 45%). As for the low expansion sub-
population, an exploratory graphical analysis showed that only a previous ASCT but not
the ratio of CD4+/CD8+ CAR-T cells at day seven was influential on the baseline maximum
expansion capacity Vmax1,base,low (Supplementary Figure S4) and only a previous ASCT
remained as covariate on Vmax1,base,low. There was no significant relationship between
other possible covariates and Vmax1,base. The final equations for Vmax1 applicable to the
reference and low expansion (sub)populations are shown in Equations (10) and (11), re-
spectively. In these equations, Vmax1,ref and Vmax1,low are the maximum expansion rates
per mL metabolic tumor volume in the reference and the low expansion (sub)population,
respectively, based on (i) the typical maximum expansion rates per mL metabolic tumor
volume in the reference population (Vmax1,base,ref) or the low expansion subpopulation
(Vmax1,base,low), (ii) the fractional change in Vmax1,base,ref or Vmax1,base,low due to a previous
ASCT (ASCTVmax1), and (iii) for the reference population the change in Vmax1,base,ref based
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on the measured ratio of CD4+/CD8+ CAR-T cells on day 7 (CAR+CD4/CD8day7) to the
power of model-estimated exponent CD4/CD8exp.

Vmax1,ref = Vmax1,base,ref·(1 + ASCTVmax1·ASCT)· (CAR+CD4/CD8day7)
CD4/CD8exp (10)

Vmax1,low = Vmax1,base,low·(1 + ASCTVmax1·ASCT) (11)

Upon implementation of mixture model and covariates, the interindividual variability
in Vmax1,base,ref was substantially reduced from 446% to 150% (RSE: 19%) CV. The interindi-
vidual variability in Vmax1,base,low was negligible and not included in the model. Final
model predictions for concentration–time profiles of all T cell phenotypes and metabolic
tumor volume corresponded well with the observations as shown in goodness of fit plots
(Figure 2) and observations overlaid with model predictions (Figure 3).

Both Figures 2 and 3 show individual and typical predictions, which are model predic-
tions considering and not considering unexplained interindividual variability, respectively.
Differences in typical predictions among individuals arose due to the explained interindi-
vidual variability already incorporated in the ‘fixed-effects’ parameters, such as different
metabolic tumor volumes as model input or covariate effects. The adequate alignment of
typical and individual predictions with the measured concentrations indicated no missed
important process in the structural model and/or no missing covariate. After account-
ing for interindividual variability we quantified the remaining unexplained variability
with residual unexplained variability parameters (CV: 59% (RSE: 11%), 86% (RSE: 9%),
120% (RSE: 9%), 71% (RSE: 10%), and 115% (RSE: 12%) for TN, TCM, TEM, TEff, and CD19+

tumor, respectively).

3.1.4. Model Estimation and Parameter Precision

No information regarding initial CAR-T cell concentrations in the individual infusion
products was available. We mainly focused on CAR-T cell expansion, which is primarily
influenced by the tumor burden and the intrinsic CAR-T cell expansion capacity. Thus, we
decided to discount the initial distribution phase and assume a low dose of 0.1 cells·µL−1

per phenotype as dose. It is plausible to observe this concentration after the initial dis-
tribution phase post-infusion. A subsequent sensitivity analysis showed that a ten-fold
change of this value had a minor impact on the time of maximum T cell concentration but
not on the maximum concentration itself (Supplementary Figure S5), which is in line with
previously published data [13]. In addition, our model’s ability to describe the observed
data well using the imputed doses supports previous findings of CAR-T cell doses not
being predictive of expansion or response [3,18,41].

Most of the parameter values were estimated based on clinical data of CAR-T cell con-
centrations and metabolic tumor volume. However, using our clinical data, not all model
parameters could be estimated: As our data only contained measurements of metabolic
tumor volume in the presence of CAR-T cells, parameters k5 and K0, which describe
undisturbed tumor growth and the largest tumor volume observable, were not identifiable
and fixed to plausible values. Similarly, homeostatic proliferation rate constants were set
to literature values [47] as we performed our CAR-T cell concentration measurements
during the rapid expansion phase. As the proliferation in response to target engagement is
much faster than homeostatic proliferation, homeostatic proliferation rate constants were
unidentifiable. Finally, death rate constants for TN, TCM and TEM were unidentifiable and
fixed based on the estimated death rate constant for TEff and the relationship between
death rate constants of short- and long-lived cells (2%), according to Stein et al. [21]. Final
model parameter values are shown in Table 1.
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Figure 2. Goodness of fit plots for the population quantitative systems pharmacology model using our clinical dataset
of 19 patients. Legend: (a) Typical predictions (not considering interindividual variability) vs. measured concentra-
tions/volumes for all species; (b) typical predictions (not considering interindividual variability) vs. measured concentra-
tions/volumes, stratified for species; (c) individual predictions vs. measured concentrations for all species; (d) individual
predictions vs. measured concentrations, stratified for species. Diagonal line: Line of identity. Tumor measurements marked
as a complete response were set to a value of 0 mL and are not shown. Abbreviations—TN: naïve T cells, TCM: central
memory T cells, TEM: effector memory T cells, TEff: effector T cells, CD19+ tumor: CD19+ metabolic tumor volume.
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Figure 3. Measured T cell concentrations/metabolic tumor volumes (data points) and simulated typical (dashed lines)
and individual (solid lines) model predictions for individual patients 1–16, and 18–19 in panels a–e and, as concentra-
tions/volumes of all species were significantly higher, for patient 17 in separate panel (f). Legend: (a) Naïve CAR-T cells;
(b) Central memory CAR-T cells; (c) Effector memory CAR-T cells; (d) Effector CAR-T cells; (e) CD19+ metabolic tumor
volume; (f) Concentrations of naive, central memory, effector memory, and effector CAR-T cells as well as CD19+ metabolic
tumor volume for patient 17. Abbreviations—TN: naïve CAR-T cells, TCM: central memory CAR-T cells, TEM: effector
memory CAR-T cells, TEff: effector CAR-T cells, CD19+ tumor: CD19+ metabolic tumor volume.
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Table 1. Final parameter estimates for the CD19-specific CAR-T cell quantitative systems pharmacology model.

Parameter (Unit) Description Estimate RSE or Literature
Source

Vmax1,base,ref
[(cells·µL−1)
·day−1·mL−1]

Maximum expansion rate per mL tumor volume of TN, TCM, and
TEM for the reference expansion population without previous
ASCT and a CD4+/CD8+ CAR-T cell ratio at day seven of 1

0.00846 36%

Vmax1,base,low
[(cells·µL−1)
·day−1·mL−1]

Maximum expansion rate per mL tumor volume of TN, TCM, and
TEM for the low expansion subpopulation without previous ASCT 0.000700 17%

ASCTVmax1 §
(−)

Fractional change in Vmax1,base,ref or Vmax1,base,low due to a
previous ASCT 2.53 31%

CD4/CD8exp †
(−)

Fractional change in Vmax1,base,ref due to a change of the
CD4+/CD8+ CAR-T cell ratio on day seven from a value of 1

−0.385 45%

KM1
(cells·µL−1)

TN, TCM, or TEM concentration at half-maximum expansion of TN,
TCM, or TEM

1.13 22%

kp1 (day−1) Homeostatic proliferation rate constant for TN 0.0005 [47]

kp2 (day−1) Homeostatic proliferation rate constant for TCM 0.007 [47]

kp3 (day−1) Homeostatic proliferation rate constant for TEM 0.007 [47]

k12 (day−1) Rate constant for differentiation of TN to TCM 0.140 9%

k23 (day−1) Rate constant for differentiation of TCM to TEM 0.191 11%

k34 (day−1) Rate constant for differentiation of TEM to TEff 0.355 13%

ke1 (day−1) Death rate constant for TN 0.0104 ‡ 13%

ke2 (day−1) Death rate constant for TCM 0.0104 ‡ 13%

ke3 (day−1) Death rate constant for TEM 0.0104 ‡ 13%

ke4 (day−1) Death rate constant for TEff 0.518 13%

Vmax 5,1 [mL·day−1

·(cells·µL−1)−1]
Maximum killing rate of metabolic tumor volume by TN 2.57 * 39%

Vmax 5,2 [mL·day−1

·(cells·µL−1)−1]
Maximum killing rate of metabolic tumor volume by TCM 4.04 39%

Vmax 5,3 [mL·day−1

·(cells·µL−1)−1]
Maximum killing rate of metabolic tumor volume by TEM 3.78 * 39%

Vmax 5,4 [mL· day−1

·(cells·µL−1)−1]
Maximum killing rate of metabolic tumor volume by TEff 4.24 * 39%

KM5 (mL) Metabolic tumor volume at half-maximum killing rate 276 33%

K0 (mL) Maximum tumor volume observable (tumor carrying capacity) 5000 -

k5 (day−1) Proliferation rate constant of metabolic tumor volume 0.0023 -

MIXP (−) Estimated proportion of patients in the reference population
using the mixture model 0.803 11%

IIV Vmax1,base,ref Interindividual variability in Vmax1,base„ref 150% CV 19%

IIV Vmax 5,2 Interindividual variability in Vmax 5,2 307% CV 19%

RUV TN Residual unexplained variability in observed TN concentrations 59.1% CV 11%

RUV TCM Residual unexplained variability in observed TCM concentrations 85.9% CV 9%

RUV TEM Residual unexplained variability in observed TEM concentrations 120% CV 9%

RUV TEff Residual unexplained variability in observed TEff concentrations 70.6%CV 10%

RUV CD19+

tumor
Residual unexplained variability in observed metabolic tumor

volumes 115% CV 12%

IIV: interindividual variability; RSE: relative standard error, % = (standard error/estimate)·100; §: implemented as fractional change
covariate model, †: implemented as power covariate model; ‡ derived using the estimated death rate constant for effector T cells ke4
and the relationship between death rate constants of short- and long-lived T cells in the publication by Stein et al. [21]; * derived using
the estimated maximum killing rate of metabolic tumor volume by TCM and the digitized relationships of tumor cell killing rates in the
publication by Schmueck-Henneresse et al. [49].
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3.2. Characterization of Patients in Different Model-Defined (Sub)Populations

To explore reasons for the differences between the reference (n = 15) and low expansion
(n = 4) (sub)populations, we compared clinical characteristics amongst patients in the
respective groups: the low expansion subpopulation showed a significantly higher baseline
metabolic tumor volume (median: 712 mL, range: 264 mL–3555 mL vs. median: 64.1 mL,
range: 2.54 mL–894 mL, p = 0.019, Figure 4a).

The median patient age (48 years vs. 58 years) (Figure 4b) and the number of previous
therapies (5 vs. 5) were similar in both (sub)populations. In addition, males and females
were similarly distributed in the reference population and the low expansion subpopulation
[females: 83% and 17%, respectively; males: 77% and 23%, respectively]. The patients in
the reference population (n = 15) had diffuse large B cell lymphoma (DLBCL; 60% [n = 9]),
transformed follicular lymphoma (TFL; 33.3% [n = 5]), and primary mediastinal lymphoma
(PMBCL; 6.67% [n = 1]). Around 50% (n = 2) of the low expansion subpopulation (n = 4)
had DLBCL, 25% (n = 1) had TFL, and 25% (n = 1) had PMBCL (Figure 4c). While 40%
(n = 6) of patients in the reference expansion population (n = 15) had received a previous
ASCT, only 25% (n = 1) of the patients in the low expansion subpopulation (n = 4) had
(Figure 4d).
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Figure 4. Patient characteristics in the reference expansion population and the low expansion subpopulation. Legend:
(a) Baseline metabolic tumor volume (mL) in the reference expansion population and the low expansion subpopulation.
(b) Patient age in the reference expansion population and the low expansion subpopulation. Boxes: interquartile range
(IQR) including median; whiskers: range from hinge to lowest/highest value within 1.5 IQR; points: data outside whisker.
(c) Frequency of patients in the reference expansion population and the low expansion subpopulation, stratified for disease
type. (d) Frequency of patients in the reference expansion population and the low expansion subpopulation, stratified
for a previous ASCT. Abbreviations—ASCT: autologous stem cell transplantation, DLBCL: diffuse large B cell lymphoma,
PMBCL: primary mediastinal B cell lymphoma, TFL: transformed follicular lymphoma, *: p ≤ 0.05, ns: p > 0.05.
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There was a high agreement between observations and model predictions for the CAR-
T cell kinetic parameters (Figure 5, Supplementary Table S2). Cmax and AUC0–28d were
similar in reference and low expansion (sub) populations, while Tmax were earlier in the
reference compared to the low expansion (sub) population. When observed Cmax values
were normalized to baseline metabolic tumor volumes, these ratios were significantly
higher in the reference compared to the low expansion subpopulation (p = 0.024).
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Figure 5. Observed (light blue boxes) and model predicted (dark blue boxes) CAR-T cell kinetic parameters for the sum
of all CAR-T cell populations. (a) Maximum cell concentration (Cmax). (b) Area under the concentration–time curve
from day 0–28 (AUC0–28d). (c) Time at maximum concentration (days); data points of differences sizes mark the number
of observations/predictions at different time points. (d) Cmax/Baseline metabolic tumor volume (cells µL−1 mL−1).
Legend—Boxes: interquartile range (IQR) including median; whiskers: range from hinge to lowest/highest value within 1.5
IQR; points: data outside whisker. Abbreviations—Tmax: time at maximum CAR-T cell concentration; AUC 0–28d: area
under the concentration–time curve from days 0–28, Cmax: maximum CAR-T cell concentration.

3.3. Clinical Endpoints in Different Model-Defined Patient Subpopulations

Compared to the reference population, the low expansion subpopulation had shorter
PFS (median: 2.5 months vs. 11 months, p = 0.31, Figure 6a) and overall survival (OS)
(median: four months vs. not reached, p = 0.13, Figure 6b).

Patients having undergone a previous ASCT (n = 7) had a significantly longer PFS
compared to patients who had not (n = 12) (median PFS: Not reached vs. three months,
p = 0.0066, Figure 7a) and this difference remained in OS (median OS: Not reached vs. six
months, p = 0.0042, Figure 7b).

We also observed differences in PFS and OS in patients with different combinations
of ASCT pre-treatment and T cell expansion capacity (Figure 8a,b): both median PFS and
OS in patients in the low expansion subpopulation with no previous ASCT (n = 3) were
two months.
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Figure 7. Kaplan–Meier plots for (a) progression-free survival and (b) overall survival in patients having undergone
(magenta) or having or not undergone (blue) a previous ASCT; log-rank tests. Abbreviations—ASCT: autologous stem
cell transplantation.

For patients in the reference expansion population with no previous ASCT (n = 9),
median PFS was five months, and median OS was 13 months. In patients with a previous
ASCT, both median PFS and OS were not reached in both the reference population (n = 6)
and the low expansion subpopulation (n = 1).

All patients who had undergone previous ASCT (n = 7) were still alive after a maxi-
mum of 24 months of follow-up. Among patients with no previous ASCT, OS was different
between patients in the reference or low expansion (sub)population: 44.4% of patients
were still alive in the reference population (n = 9), compared to 0% of patients in the low
expansion subpopulation (n = 3).
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which curves there was a significant difference (a): significant difference between Reference/Yes and Low/No, p = 0.019,
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Abbreviations—ASCT: autologous stem cell transplantation.

PFS and OS were significantly different between patients in the reference expansion
subpopulation who did (n = 6) or did not (n = 9) undergo ASCT (median PFS and OS: not
reached vs. five months (p = 0.039) and not reached vs. 13 months (p = 0.02), in patients
with or without previous ASCT, respectively).

The model-estimated maximum expansion capacity, Vmax1, allowed to identify a
patient’s expansion (sub-)population, which was associated with survival; thus, we aimed
to determine a cut-off value in this parameter, which would support survival prediction.
Furthermore, we aimed to translate Vmax1 into a predictor variable, which would be easily
derivable in a clinical setting and leverage, but not require the use of the model. As a
measurable clinical composite score (CCS) describing T cell expansion, inspired by a similar
concept in anti-PD1 checkpoint blockade [39] and supported by a previous correlative
analysis [50], the ratio of observed Cmax ((cells·µL−1))/baseline metabolic tumor volume
(mL), denoted in Equation (12), was positively correlated with Vmax1 for all CAR-T cell
phenotypes (TN: r = 0.98, TCM: r = 0.95, TEM: r = 0.94, TEFF: r = 0.86, Tall: r = 0.94). As the
highest correlation was observed for TN (Figure 9a), the CCS for TN (CCSTN) was taken
forward as a possible predictor for survival.

Clinical composite score (CCS) =
Maximum CAR − T cell concentration

Baseline metabolic tumour volume
(12)

A receiver operator characteristic curve (ROC) analysis determined a CCSTN of
0.00136 (cells·µL−1)·mL−1 as cut-off value with optimal predictive capability for patients
in the low expansion subpopulation (sensitivity: 75%, specificity: 100%; AUC: 91.7%)
(Figure 9b and Supplementary Figure S6). The survival analysis, stratified for the proposed
cut-off value, showed a clear superiority in survival in patients with a CCSTN ≥ 0.00136
(cells·µL−1)·mL−1 compared to patients with a CCS below this value (median PFS: 11
months vs. 2 months (p = 0.014) and median OS: not reached vs. two months (p = 0.003))
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(Figure 9c,d). Using a Cox-proportional hazard model, the estimated hazard ratios for
PFS and OS in patients with a CCSTN above the proposed threshold were 0.17 (95% CI:
0.037–0.79) (p = 0.024) and 0.12 (95% CI: 0.025–0.63) (p = 0.012), respectively, suggesting
that a CCSTN above the proposed threshold was associated with a 83% reduced risk of
progression and a 88% reduced risk of death.
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Log10-transformed CCS using Cmax values for all CAR-T cells derived from flow
cytometry were reasonably correlated with log-transformed CCS using Cmax values derived
from cfDNA qPCR (r = 0.48, p = 0.037) and the CCSqPCR values were significantly higher
in the reference expansion population compared to the low expansion subpopulation
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(median: 83.7 copies µg−1 DNA·mL−1 vs. median: 4.16 copies µg−1 DNA·mL−1, p = 0.014)
(Figure 10a,b). Furthermore, CCSqPCR values were significantly higher in patients with
complete response/partial response vs. patients with progressive disease/no response
in previously digitized data [41] of patients with multiple myeloma [43] (p = 0.017) and
chronic lymphocytic lymphoma [42] (p = 0.0051) (Figure 10c,d), further supporting our
clinical composite score framework.
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Figure 10. (a) Correlation for the clinical composite score for Tall using flow cytometry or qPCR and comparisons of the
CCS using qPCR between (b) reference expansion population and low expansion subpopulation in our clinical dataset,
(c) CR/PR and PD/NR in CLL patients (n = 12) and (d) CR/PR and PD/NR in MM patients (n = 19). Abbreviations—CLL:
chronic lymphocytic leukemia; CR: complete response; MM: multiple myeloma; NR: no response; PR: partial response;
qPCR: quantitative polymerase chain reaction; Tall: the sum of all measured CAR-T cell phenotypes. *: p ≤ 0.05, **: p ≤ 0.01.

4. Discussion

Leveraging our developed population quantitative systems pharmacology CAR-T cell
model, we identified patient characteristics explaining two-thirds of the large interindi-
vidual variability observed in the CAR-T cell expansion in our dataset, and these patient
characteristics were also partially predictive for survival. Previously reported prognostic
factors such as a high maximum CAR-T cell concentration [1,4,7,19,50], a high baseline
metabolic tumor volume [50–52], or a high area under the concentration–time curve (AUC)
in the first month [4,7,50] were not predictive for overall survival in our clinical cohort
(Supplementary Figure S7–S9). Other studies similarly did not find relationships between
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outcome and a high maximum CAR-T cell concentration [53], a high baseline tumor bur-
den [5,53], or a high area under the concentration–time curve (AUC) in the first month [53].
Possible reasons for the different findings could be different patient populations, different
disease characteristics, different study designs, and/or different CAR-T cell products used.
A pooled analysis of the clinical cohorts for which the proposed relationships were found
or not found could aid in identifying potential underlying factors of the observed discrep-
ancies. Interestingly, in a recent analysis, there was a stronger association between the
probability of durable response and maximum CAR-T cells/tumor burden (p = 0.0017) than
between the probability of durable response and maximum CAR-T cells (p = 0.0159) [50].
This supports our exploratory finding of the maximum CAR-T cell expansion normalized
to baseline tumor burden being a more reliable predictor for outcome than maximum
CAR-T cell expansion alone. Our exploratory findings and our modeling framework may
spark further research regarding the impact of a previous ASCT on CAR-T cell expansion
and treatment outcome.

Nonlinear mixed-effects modeling, as applied in the CAR-T cell quantitative systems
pharmacology model, allows simultaneously characterizing typical profiles and identifying
several layers of variability around the kinetic/dynamic parameters and observations
in CAR-T cell therapy. The implementation of covariates aids in explaining parts of the
interindividual variability and, thus, can increase the understanding of CAR-T cell therapy.
Furthermore, our CAR-T cell modeling framework is flexible and allows the analysis of
pooled datasets which offers the possibility to simultaneously leverage the information
generated in multiple independent clinical studies. Therefore, especially if applied to a
large and diverse clinical dataset, the developed CAR-T cell model is a valuable tool for
elucidating influential factors on the kinetics and dynamics of CAR-T cell therapy and
treatment outcome.

We based our structural CAR-T cell model on the T cell progressive differentiation
model, which describes T cell differentiation in the order of naïve T cells via T memory
stem cells (TSCM) over central memory cells, and over effector memory cells to short-lived
effector cells. Although other lineage relationship models like the linear differentiation
model [54] and the bifurcative differentiation model [55,56] have been proposed, the
progressive differentiation model is most supported by experimental data [20,57–61]. Of
note, our flow cytometry panel did not include the marker CD95 and thus did not support
the detection of TSCM in the presence of TN. Thus, using an extended staining panel,
future studies including cell concentration data of both TN and TSCM could extend our
model, considering previous reports of the positive features of TSCM regarding CAR-T cell
expansion and persistence. Additional flow cytometry markers such as TAM-3, LAG3,
PD-1, and CD57 could further elucidate the state of the T cell with respect to exhaustion
and senescence.

In previous immunotherapy models [29,62,63], T cell expansion upon tumor contact
was modeled using a Michaelis–Menten equation with the tumor cell concentration in the
denominator. In contrast to this, our data were described best when we used the respective
T cell concentration in the denominator. Thus, our model describes that at sufficiently high
T cell concentrations, T cell expansion is proportional to the tumor burden, which is in line
with another previously described immunotherapy model [28]. Furthermore, this form of
the equation correctly described the rapid initial CAR-T cell expansion phase followed by
the sharp drop in our observed CAR-T cell concentrations. When using metabolic tumor
volume in the denominator, the concentration–time profile in the expansion phase showed
a lag-time and a partly mono-exponential decline after the maximum expansion. A possible
reason for this could be the low initial imputed CAR-T cell doses of 0.1 cells/µL, which re-
sult in slow expansion if the expansion term postulates that expansion is proportional to the
concentration of CAR-T cells at high tumor burdens. Plots for the predicted concentration–
time profiles for the base models (i.e., not considering covariates or mixture model) using
either metabolic tumor volume or the respective CAR-T cell population in the denominator
are shown in Supplementary Figure S10. The expansion term should be revisited once a
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larger sample size is available to ensure that expansion can be well-described over a broad
range of initial tumor burdens and that no unphysiological expansion rates are postulated.
Furthermore, it is possible that using the tumor burden in the denominator as proposed
by several other researchers [29,62,63] would describe the trajectory equally well or even
better than our suggested term when using individual CAR-T cell concentrations in the
pre-distribution phase, and this should be explored upon availability of such data.

Not in our study, but if lymphodepleting chemotherapy was administered in higher
doses and for longer than three days, it may exert some decreasing effect on the metabolic
tumor volume. A prerequisite for the identification of separate, rapid killing effect param-
eters to comprehensively characterize this process is data from multiple tumor volume
assessments, i.e., prior to and after lymphodepleting chemotherapy.

Based on T cell physiology, we aimed to determine different values for the baseline
maximum expansion rate upon tumor contact Vmax,base for each phenotype by estimating
Vmax,base for TN and fractional changes in Vmax,base for the remaining three phenotypes.
Point estimates of the fractional changes in Vmax,base for each phenotype were plausible
(TCM: +24%; TEM: +14%, TEff: −79%), however, with relative standard errors of 130–583%,
the estimates were imprecise. We thus simplified the model by assuming the same Vmax,base
for TN, TCM, and TEM and removing the respective expansion term for TEff. Additional
in vivo and in vitro data need to become available for precise estimation of Vmax,base
parameter values for each CAR-T cell phenotype and for identification of the best CAR-T
cell phenotype(s) for the strongest expansion.

We identified two covariates that significantly influenced the baseline maximum
expansion rate Vmax1,base, namely the CD4+/CD8+ CAR-T cell ratio at day seven and a
previous ASCT. By additionally considering if patients showed a reference or low baseline
expansion, we could substantially reduce the estimated interindividual variability on
Vmax1,base,ref by two-thirds from 446% to 150% CV. We identified Vmax1,base,ref to moderately
decrease with a higher ratio of CD4+ to CD8+ T cells at day seven. This means that we
estimated CD8+ T cells to have a higher expansion rate than CD4+ T cells, as reported
previously [64]. In contrast, we did not identify covariates that could explain parts of
the large interindividual variability on CAR-T cells’ maximum tumor killing rate (Vmax5).
While we did find a significant positive relationship between cytokine release syndrome
grade ≥2 and maximum tumor killing rate by TCM (Vmax5,2), we think that this relationship
is rather due to correlation than causation. A higher immune activation, leading to a higher
grade of cytokine release syndrome, might be the reason for the increased killing rate.
However, as we aimed for our model to be mechanistic and our data did not include the
link (i.e., a biomarker) between cytokine release syndrome and Vmax5,2, we decided not to
include cytokine release syndrome as a covariate on Vmax5. In general, the units of model
parameters Vmax1, Vmax5,2, and the CCS could be further transformed by resolving the
units, e.g., the different volume units (µL) and (mL). However, to ease interpretability
and retain awareness for the different origins of the units ((µL) represents the distribution
volume of the CAR-T cells and (mL) represents the metabolic tumor volume), the units of
the parameters were kept in their original form.

Even though our model described the observed clinical data very well and allowed
elucidating sources of interindividual variability, rather high residual unexplained variabil-
ity of 59–120% CV remained. Data of additional patients and a higher number of samples
per patients will allow optimizing parameter estimates and further investigating potential
covariates to reduce the residual unexplained variability.

Leveraging our model, we identified a subpopulation with low maximum T cell
expansion upon tumor contact. This subpopulation consisted of 20% patients (n = 4 of
19) in our dataset, which is comparable to a previous clinical study in which 12% (n = 5
of 43 patients) of patients showed low T cell expansion and had a poor prognosis [10].
T cells of these patients showed an increased frequency of LAG3+/TNFαlo T cells in
the manufacturing product and rapid expression of exhaustion markers after infusion.
We hypothesize that the same pattern could have been observed in patients of our low
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expansion subpopulation. Unfortunately, no exhaustion markers were measured in our
dataset, so we were not able to investigate this further, but the generated hypothesis should
be tested in future. Furthermore, while we observed strong trends for differences in survival
between the model-defined reference expansion and the low expansion (sub)population
(PFS: 11 months vs. 2.5 months, OS: not reached vs. four months), the differences were
not significant. Among the low expansion subpopulation, there was one individual with a
previous ASCT, very high baseline metabolic tumor volume, and ~40-fold higher CAR-T
cell Cmax compared to the mean Cmax in the other 18 patients. Interestingly, this individual’s
survival was also much longer than the rest of the low expansion subpopulation (ongoing
response at 16 months vs. median PFS and OS of 2 months). Had this patient been excluded
from the analysis, the differences in PFS and OS between both (sub)populations would
have been highly significant (p = 0.021 and 0.0049, respectively). Thus, future studies with
a larger sample size to investigate the cell kinetic-independent impact of ASCT and other
factors on survival and the model’s potential for response prediction are highly warranted.
We subsequently translated our predictive model parameter Vmax1 into clinical composite
scores (CCS) of maximum CAR-T cell concentrations/baseline metabolic tumor burden,
measurable in the clinic. The excellent correlations between Vmax1 and the CCS for all
CAR-T cell subpopulations (r ≥ 0.86) support our model. The highest concordance between
the CCS for TN (r = 0.98) was supported by a previous correlative analysis [50] and allowed
us to determine a CCSTN cut-off value for early response prediction.

We are aware of our small sample size, resulting from CAR-T cell therapy being a very
new (and expensive) therapy in its infancy of a per se very small patient population; thus,
only limited data are available worldwide overall. Furthermore, no exhaustion markers
were measured. Yet, the exploratory findings of our QSP model allowed the generation
of various hypotheses which should be tested with further data to arise in future. In
addition, the model might support the design of those experiments/studies well, i.e.,
which data to sample at which timepoints, to gain maximal information from the data.
Importantly, we achieved precise estimation of model parameters in our cohort and our
clinical composite score framework was supported by a recent correlative analysis [50].
Nevertheless, future studies with a larger sample size and measuring exhaustion markers
will have to be performed to test our hypotheses, revise, and refine our model parameters
and determine a robust CCS cut-off value. The improved outcome observed in our dataset
in patients with ASCT also needs to be investigated further in a larger study focusing on
whether prior ASCT increases T cell expansion and survival. Possible reasons are beneficial
disease characteristics in patients eligible for ASCT, the removal of an immunosuppressive
microenvironment [12], and the availability of ‘fitter’ T cells that have not been damaged
by previous cycles of chemotherapy. Concerning the latter point and since not every
patient can undergo ASCT, a possible strategy could be to collect T cells before the start
of chemotherapy and, depending on treatment response, utilize them for CAR-T cell
manufacturing as needed. Furthermore, we hypothesize that a minimal time difference
between the last cycle of chemotherapy and T cell collection has to be maintained, allowing
T cells to recover and increasing the chance for high T cell fitness in the manufacturing
product. Thus, future studies will focus on determining the optimal time differences
between the last cycle of chemotherapy and T cell collection and between ASCT and T
cell collection. With more data on these aspects to be collected, our QSP model can be
expanded to consider the fitness of T cells prior to manufacturing and thus the potential
for a robust expansion upon infusion.

Finally, it would be advantageous to predict outcomes before CAR-T cell infusion, or
even before CAR-T cell manufacturing. Thus, future studies applying our QSP model on
data including (i) patient baseline characteristics, (ii) CAR-T cell fitness in the leukapheresis
product, (iii) CAR-T cell fitness in the infusion product, (iv) metabolic tumor volume
over time, (v) CAR-T cell concentrations in vivo over time, and (vi) clinical endpoints
could identify and quantify further predictors for long-term response and in the best-case
scenario allow response prediction before CAR-T cell manufacturing.
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5. Conclusions

In conclusion, our innovative quantitative systems pharmacology CAR-T cell model
allowed us to describe the concentration–time profiles of different CAR-T cell phenotypes
and metabolic tumor volume in a clinical dataset in a coherent framework. Using the
model, we identified factors explaining two-thirds of the high interindividual variability
in CAR-T cell expansion and survival in our clinical dataset. Once validated in a larger
clinical cohort, the developed quantitative systems pharmacology CAR-T cell model can
be used to further identify yet unknown factors resulting in the highly variable kinetics
and dynamics of CAR-T cell therapy.
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