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Simple Summary: The identification of germline copy number variants (CNVs) by targeted next-
generation sequencing frequently relies on in silico prediction tools with unknown sensitivities.
We investigated the performances of four in silico CNV prediction tools in 17 cancer predisposition
genes in a large series of 4208 female index patients with familial breast and/or ovarian cancer.
We identified 77 CNVs in 76 out of 4208 patients; six CNVs were missed by at least one of the
prediction tools. Experimental verification of in silico predicted CNVs is required due to high
frequencies of false positive predictions. For female index patients with familial breast and/or
ovarian cancer, CNV detection should not be restricted to BRCA1/2 due to the relevant proportion of
CNVs in further cancer predisposition genes.

Abstract: The identification of germline copy number variants (CNVs) by targeted next-generation
sequencing (NGS) frequently relies on in silico CNV prediction tools with unknown sensitivities.
We investigated the performances of four in silico CNV prediction tools, including one commercial
(Sophia Genetics DDM) and three non-commercial tools (ExomeDepth, GATK gCNV, panelcn.MOPS)
in 17 cancer predisposition genes in 4208 female index patients with familial breast and/or ovarian
cancer (BC/OC). CNV predictions were verified via multiplex ligation-dependent probe amplification.
We identified 77 CNVs in 76 out of 4208 patients (1.81%); 33 CNVs were identified in genes other than
BRCA1/2, mostly in ATM, CHEK2, and RAD51C and less frequently in BARD1, MLH1, MSH2, PALB2,
PMS2, RAD51D, and TP53. The Sophia Genetics DDM software showed the highest sensitivity; six
CNVs were missed by at least one of the non-commercial tools. The positive predictive values ranged
from 5.9% (74/1249) for panelcn.MOPS to 79.1% (72/91) for ExomeDepth. Verification of in silico
predicted CNVs is required due to high frequencies of false positive predictions, particularly affecting
target regions at the extremes of the GC content or target length distributions. CNV detection
should not be restricted to BRCA1/2 due to the relevant proportion of CNVs in further BC/OC
predisposition genes.
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1. Introduction

Targeted next-generation sequencing (NGS) is an established tool for the detection
of germline variants in cancer predisposition genes. While variants involving a few nu-
cleotides, i.e., single-nucleotide variants (SNVs) and short insertion/deletion events (in-
dels), can be detected with high accuracy, the identification of larger genomic rearrange-
ments (copy number variants (CNVs)) remains challenging. To avoid laborious wet lab
analyses for CNV detection such as array comparative genomic hybridization (aCGH) or
multiplex ligation-dependent probe amplification (MLPA) [1–5] for all genes of interest,
several publicly, as well as commercially available in silico tools have been developed
to predict CNVs using targeted NGS data, which are now commonly used for CNV pre-
screening. However, several studies suggested that existing tools for CNV detection using
targeted NGS data show limited accuracy and robustness [6–10]. In our study, we inves-
tigated the comparative performances of four in silico CNV prediction tools, including
one commercial tool incorporated in the CE-IVD-marked Sophia Genetics DDM pipeline
and three established publicly available tools, namely ExomeDepth [11], GATK gCNV [12],
and panelcn.MOPS [13] in a large study sample of 4208 female index patients with familial
breast and/or ovarian cancer (BC/OC). ExomeDepth uses a beta-binomial model to nor-
malize for technical noise during the preparation of a reference sample set and finally uses
a hidden Markov model for CNV calling [11]. Although originally developed for usage
with exome data, ExomeDepth is applicable also to gene panel data and has already been
employed in a variety of studies for that purpose [8,9,14,15]. GATK gCNV was released
in January 2018 as a utility within GATK v4 and combines a negative-binomial factor
analysis for read depth modeling and a hierarchical hidden Markov model for modeling of
copy number states in a simultaneous training phase and is applicable to whole genome
sequencing, exome sequencing, as well as gene panel data [12]. panelcn.MOPS was ex-
plicitly developed for usage with gene panel data. After the application of several quality
filters at the sample and target level, panelcn.MOPS chooses a set of input samples for the
construction of normalized reference read counts, based on read count correlations. Then, a
Poisson mixture model is applied to each target region separately prior to the final integer
copy number estimation [13].

In our study, we focused on 17 established cancer predisposition genes including
ATM (MIM 607585), BARD1 (MIM 601593), BRCA1 (MIM 113705), BRCA2 (MIM 600185),
BRIP1 (MIM 605882), CDH1 (MIM 192090), CHEK2 (MIM 604373), MLH1 (MIM 120436),
MSH2 (MIM 609309), MSH6 (MIM 600678), PALB2 (MIM 610355), PMS2 (MIM 600259),
PTEN (MIM 601628), RAD51C (MIM 602774), RAD51D (MIM 602954), STK11 (MIM 602216),
and TP53 (MIM 191170), for which MLPA assays were available for the verification of
in silico predicted CNVs. The prevalence of CNVs in established BC/OC predisposition
genes is poorly studied, and current data are either limited to BRCA1/2 [16–19] only or
based on small study samples for some non-BRCA1/2 cancer predisposition genes [2,20,21].

2. Results
2.1. CNV Predictions Using the Sophia Genetics DDM

The Sophia Genetics DDM software predicts CNVs with high confidence or medium
confidence and classifies the remaining target regions either as normal with high confidence
or medium confidence or undetermined. In the study sample of 4208 female patients with
familial BC/OC, the Sophia Genetics DDM software predicted 134 CNVs, of which 103
were classified as CNVs with high confidence and 31 were classified as CNVs with medium
confidence. Of the 134 predicted CNVs, seventy-seven (57.46%) could be verified by MLPA,
and the remaining 57 (42.54%) could not be verified (Table 1). All verified CNVs are
listed in Supplementary Table S2. False positive predictions predominantly affected target
region CHEK2_ex07 (n = 23). In addition, the Sophia Genetics DDM software classified
257 target regions as normal with medium confidence and another 152 target regions as
undetermined. Several target regions were prone to be classified as normal with medium
confidence or undetermined, predominantly CHEK2_ex07 (n = 94), BRCA2_ex13 (n = 33),
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CHEK2_ex05 (n = 29), MLH1_ex15 (n = 19), BRCA1_ex09 (n = 11), and BRCA2_ex12
(n = 11). MLPA analyses of all target regions that were classified as normal with medium
confidence or undetermined revealed no CNV, and the MLPA test result for one sample
was not evaluable.

Table 1. Results of the Sophia Genetics DDM CNV predictions according to the confidence level
provided by the Sophia Genetics DDM software, type of CNV, and the number of adjacent target
regions affected. CNV predictions were considered as predictions with high confidence if at least one
of the included target regions was predicted with high confidence. PPV = positive predictive value.

Predicted CNVs True Positive CNVs PPV (%)

Overall 134 77 57.46
High confidence 103 75 72.82

Medium confidence 31 2 6.45
Deletions 63 53 84.13

Duplications 71 24 33.80
1 target region 70 25 35.71
>1 target region 64 52 81.25

2.2. CNV Predictions Using ExomeDepth, GATK gCNV, and panelcn.MOPS

ExomeDepth predicted 91 CNVs in 90 samples. Of these 91 CNVs, seventy-two
were identical to true positive CNV predictions using the Sophia Genetics DDM software.
Another seven CNV predictions were identical to false positive CNV predictions by the
Sophia Genetics DDM software, most of which affect target region CHEK2_ex07 (n = 5).
The remaining 12 CNV predictions, again mostly affecting CHEK2_ex07 (n = 6), could
not be verified by MLPA. A total of five true positive CNVs were missed by ExomeDepth
(Table 2).

Table 2. True positive CNVs predicted by Sophia Genetics DDM, but missed by either ExomeDepth (ED), GATK gCNV
(GATK), or panelcn.MOPS (pcnMOPS). yes = CNV was predicted by the respective tool. no = CNV was missed by the
respective tool.

Sample CNV Type Start Stop Target Regions ED GATK pcnMOPS

44–22 deletion BARD1_ex04 BARD1_ex01 4 yes no yes
14–15 duplication BRCA1_ex22 BRCA1 ex22 1 no no no
89–01 duplication BRCA2_ex04 BRCA2_ex04 1 no no no
9–25 duplication BRCA2_ex19 BRCA2_ex20 2 no yes yes
49–28 deletion BRCA2_ex02 BRCA2_ex14 12 yes yes no
29–19 duplication PALB2_ex11 PALB2_ex11 1 no no no
16–27 duplication TP53_ex08-09 TP53_ex02-04 5 no no yes

GATK gCNV predicted 370 CNVs in 305 samples. Of those, seventy-two were identical
to true positive CNVs, and another two were identical to false positive CNV predictions of
the Sophia Genetics DDM Software. The majority (98%) of the remaining 296 GATK gCNV
predictions corresponded to one of the following target regions: BRCA2_ex11 (n = 175),
PTEN_ex02 (n = 61), or BRCA1_ex10 (n = 55), suggesting false positive calls. Thus, we re-
frained from MLPA verification of CNV predictions affecting these three target regions
if GATK gCNV was the only predicting tool. The remaining six predicted CNVs could
not be verified by MLPA. A total of five true positive CNVs were missed by GATK gCNV
(Table 2).

For panelcn.MOPS, nine samples did not pass the sample quality filter and therefore
were excluded from further analyses. In the remaining 4199 samples, panelcn.MOPS
predicted the highest number of 1254 CNVs in 727 samples. Of those, seventy-four were
identical to true positive CNVs by the Sophia Genetics DDM software and another 39
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were identical to false positive Sophia Genetics DDM software predictions, predominantly
affecting CHEK2_ex07 (n = 20). Three quarters of the remaining 1141 predicted CNVs
accumulated in four target regions, i.e., CHEK2_ex07 (n = 429), BRCA2_ex13 (n = 179),
BRCA1_ex08 (n = 164), and CHEK2_ex05 (n = 80). For panelcn.MOPS, we restricted MLPA
verification to suspicious target regions that were affected in less than 10% of all samples
per sequencing run (data not shown). None of the resulting 228 MLPA analyses verified
a predicted CNV. A total of three true positive CNVs were missed by panelcn.MOPS
(Table 2).

2.3. CNV Landscape in the Study Sample

In total, seventy-seven true positive CNVs were identified in 76 patients, with one
individual carrying two deletions in different genes, namely in BRCA2 and PMS2 (Supple-
mentary Table S2). This leads to an overall CNV prevalence of 1.81% in the study patients
(76/4208). CNV prevalence was highest in index patients with both BC and OC (3.17%,
4/126), second-highest in patients with BC (1.81%, 66/3639), and lowest in OC patients
(1.35%, 6/443). Most CNVs were present in the BRCA1 (29 deletions, 9 duplications),
CHEK2 (12 deletions, 0 duplications), BRCA2 (3 deletions, 3 duplications), and ATM genes
(1 deletion, 5 duplications) (Figure 1). CNVs in the BARD1, MLH1, MSH2, PALB2, PMS2,
RAD51C, RAD51D, and TP53 genes, respectively, were less prevalent. No CNVs were
identified in the BRIP1, CDH1, MSH6, PTEN, and STK11 genes. Among the 77 true positive
CNVs, several were recurrent (11× CHEK2_ex09 to CHEK2_ex10; 7× BRCA1_ex01 to
BRCA1_ex02; 7× BRCA1_ex16 only; 4× ATM_ex62 to ATM_ex63; 3× RAD51C_ex05 to
RAD51C_ex09; 2× BRCA1_ex12; 2× BRCA1_ex21; 2× BRCA1_ex22, Figure 2). Deletion of
exon 9 to exon 10 in the CHEK2 gene has already been described as significantly associated
with an increased risk for the development of BC [20]. Deletions covering exon 5 in RAD51C
have also been repeatedly characterized and described as pathogenic [21,22]. However,
the clinical relevance of some CNVs in non-BRCA1/2 genes is still unclear, although they
may be observed relatively frequently, e.g., the duplication of exon 62 to exon 63 in ATM
is reported as a variant of uncertain significance in the ClinVar database [23] (ClinVar
Variation ID 429035.1) as of 14 December 2020.

2.4. Determinants of Sophia Genetics DDM Predictions with Reduced Confidence

All in silico CNV prediction tools employed in this study use read depth-based ap-
proaches, i.e., CNV calling is based on the hypothesis that a CNV determines the relative
read depth per target region. Thus, low or highly fluctuating read depths of a target region
likely complicate accurate CNV prediction. We suggest that target region sequencing
coverage along with target region characteristics, such as GC content, length, and map-
pability, determined the accumulation of false positive CNV predictions (n = 57) and of
classifications of target regions as either normal with medium confidence (n = 274) or
undetermined (n = 131) by the Sophia Genetics DDM software. Indeed, the 462 undeter-
mined, normal with medium confidence, or false positive predictions were associated with
low sequencing coverage of corresponding target regions (Spearman’s rank correlation
coefficient ρ = −0.33, p = 4.35 × 10−8, Figure 3). Target-specific values of GC content,
length, and mappability were ascertained using CODEX2 [24] (see Section 4.6). The highest
absolute Spearman’s rank correlation coefficients were observed for the deviation of the
GC content from 0.5, suggesting that extreme GC values complicate reliable CNV pre-
diction (Figure 3). Furthermore, significant correlations were observed for target region
lengths (p values < 10−3), i.e., CNV prediction was complicated by short target region
lengths (Figure 3). A significant impact of reduced mappability on the reliability of CNV
predictions could not be observed (Figure 3). Several target regions, such as CHEK2_ex07,
BRCA2_ex13, or CHEK2_ex05, appear to be especially challenging for Sophia Genetics
DDM and also ExomeDepth or panelcn.MOPS. Concordant with our findings, all three
target regions were characterized by a low GC content below 30%, with a mean GC content
of 40% (range 24–73%) observed for all target regions (Supplementary Table S1). In ad-



Cancers 2021, 13, 118 5 of 12

dition, all three target regions were shorter than 0.25 kbp (Figure 3), with a mean target
region length of 0.32 kbp (range 0.18–5.04 kbp) observed for all target regions. Frequent
and thus likely false positive calls of BRCA2_ex11 and BRCA1_ex10 were unique to GATK
gCNV. These target regions were the two largest among all target regions with 5.04 kbp
and 3.48 kbp, respectively.
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Figure 1. Counts of observed and MLPA-verified CNVs in 17 cancer predispositions genes. Deletions are shown in blue,
and duplications are shown in red. Seventy-seven CNVs could be confirmed affecting 76 patients. (Upper left) Overall
study sample of 4208 individuals. (Upper right) For the subgroup of 3639 individuals affected by BC. (Lower left) For the
subgroup of 443 individuals affected by OC. (Lower right) For the subgroup of 126 individuals affected by BC/OC.
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Figure 2. Verified CNVs in the four most frequently affected BC/OC predisposition genes in 4208 individuals according
to phenotype. Each line represents a CNV spanning the corresponding sequencing targets in BRCA1, BRCA2, CHEK2,
and ATM. Deletions are shown in blue, and duplications are shown in red.
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3. Discussion

The Sophia Genetics DDM software showed the highest sensitivity in our analyses
and outperformed ExomeDepth, GATK gCNV, and panelcn.MOPS at default parameter
settings. A total of six true positive CNVs were missed by at least one of the latter three
tools (Table 1). Combining all three publicly available CNV prediction tools used in this
investigation only marginally increased the overall sensitivity, as three CNVs were missed
by all tools (Table 2). However, the performance of the three publicly available CNV
prediction tools may improve when using settings other than the default. Under default
parameter settings, none of the publicly available CNV prediction tools detected a true
positive CNV missed by the Sophia Genetics DDM software. For the Sophia Genetics
DDM software, the probability of a CNV prediction to represent a true positive CNV, i.e.,
its positive predictive value (PPV), was 57.46% (77/134). For ExomeDepth, the PPV was
79.12% (72/91), though with reduced sensitivity in comparison to Sophia Genetics DDM.
For GATK gCNV and panelcn.MOPS, the obtained values of PPV were only 19.46% (72/370)
and 5.90% (74/1254), respectively, and also associated with reduced sensitivity compared
with Sophia Genetics DDM. In a research setting in which a reduced sensitivity may be
tolerable, we suggest that ExomeDepth is superior to GATK gCNV and panelcn.MOPS
under the default parameter settings due to the lower proportion of false positive CNV
predictions. In addition, our investigation may be useful for the optimization of diagnostic
gene panel design, which is still the most prevalent NGS method used for the identification
of likely pathogenic germline mutations in BC/OC predisposition genes. Target region
characteristics at the extremes of the target length or GC content distributions were likely
affected by false positive CNV predictions and predictions with low confidence. We suggest
that target region definitions may be optimized towards average target region length and
average GC content in the overall gene panel. Regarding the CNV landscape observed
in our study sample, forty-four of the 4208 patients carry BRCA1/2 CNVs (1.05%). This
CNV prevalence is somewhat lower than described by Myriad Genetics for a high-risk
study sample with BC diagnosed under age 50 years, or ovarian cancer, or male breast
cancer, in conjunction with two or more relatives similarly affected [16]. In that study,
three-hundred five BRCA1/2 CNVs were identified in 13,945 patients of European descent
(2.19%). In 16,615 patients of European descent who did not meet these high-risk criteria,
however, the BRCA1/2 CNV prevalence was 0.39% (64/16,615) [16]. Thus, the BRCA1/2
CNV prevalence observed in our study lies within the expected range and may reflect
the stringency of our inclusion criteria used. Besides BRCA1/2, a significant proportion
of CNVs was identified in non-BRCA1/2 genes, affecting 33 of the 4208 patients (0.76%),
mostly in the ATM, CHEK2, and RAD51C cancer predisposition genes and less frequently
in BARD1, MLH1, MSH2, PALB2, PMS2, RAD51D, and TP53.

This study has limitations. The absolute sensitivity of Sophia Genetics DDM remains
unknown. For assessing this quality parameter in our study, MLPA analyses of 17 genes in
4208 samples would have been required, which is beyond the scope of this investigation.
We also refrained from characterizing verified CNVs in more detail by identification of
break point positions, such as by aCGH analysis. Furthermore, we have to point out
that our results refer to blood-derived DNA samples and are not transferable to analyses
of tumor DNA and DNA samples derived from formalin-fixed and paraffin-embedded
(FFPE) tissues.

4. Materials and Methods
4.1. Study Sample

A total of 4208 consecutive female index patients with familial BC/OC were included.
Of those, three-thousand six-hundred thirty-nine patients were affected by BC, 443 patients
by OC, and 126 patients by BC and OC. All index patients met the inclusion criteria of the
German Consortium for Hereditary Breast and Ovarian Cancer (GC-HBOC) for germline
testing [25]. Written informed consent was obtained from all patients, and ethical approval
was granted by the ethics committee of the University of Cologne (07-048).
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4.2. Targeted Next-Generation Sequencing

Genomic DNA was isolated from venous blood samples using standard methods.
Targeted NGS was performed using a customized hybrid capture gene panel (TruRisk®v1
gene panel, Agilent SureSelect, QXT protocol) on an Illumina NextSeq500 sequencing
device (San Diego, IL, USA). The TruRisk®v1 gene panel covers 34 (candidate) cancer
predisposition genes. NGS analyses were performed in a routine diagnostic setting at the
Center for Familial Breast and Ovarian Cancer, Cologne, Germany, between November
2015 and October 2017. Targeted NGS analyses of DNA samples derived from 4208 female
patients included in this investigation were distributed over 111 sequencing runs, with run
sizes varying from 30 to 96 samples (mean = 44.72, median = 46).

4.3. Selection of Target Regions

We considered protein-coding exons of 17 cancer predisposition genes according to
the canonical hg19 RefSeq transcripts of ATM (NM_000051.3), BARD1 (NM_000465.3),
BRCA1 (NM_007294.3), BRCA2 (NM_000059.3), BRIP1 (NM_032043.2), CDH1 (NM_004360.4),
CHEK2 (NM_007194.3), MLH1 (NM_000249.3), MSH2 (NM_000251.2), MSH6 (NM_000179.2),
PALB2 (NM_024675.3), PMS2 (NM_000535.6), PTEN (NM_000314.6), RAD51C (NM_058216.2),
RAD51D (NM_002878.3), STK11 (NM_000455.4), and TP53 (NM_ 000546.5). For BRCA1, we
additionally included the non-coding exon 1. We excluded the exons 12 to 15 of the PMS2
gene and the exon 3 of the PTEN gene due to highly homologous regions in pseudogenes.
CNVs are generally defined as gains or losses of at least 50 bp of genomic DNA [26]. In this
investigation, we focused on CNVs that span at least one target region. Most predefined
target regions span one exon, while several predefined target regions span two or three
exons when located in very close proximity (ATM exons 2 and 3, exons 19 and 20, exons 21
and 22, and exons 41 and 42; BRCA2 exons 5 and 6; MSH6 exons 9 and 10; PALB2 exons
2 and 3; RAD51D exons 7 and 8; STK11 exons 4 and 5; TP53 exons 2 to 4 and exons 8
and 9). This resulted in a total of 274 selected target regions in 17 genes. The TruRisk®v1
34 gene panel overall contains 571 target regions. Following NGS, the average target region
coverage for all 571 target regions ranged from 623 to 4643, with a mean of 2471.

4.4. In silico Prediction of Germline Copy Number Variations in Cancer Predisposition Genes

For CNV prediction, we employed the commercial Sophia Genetics DDM pipeline
v3.4.0–4.6.2 (Sophia Genetics, Saint-Sulpice, Switzerland) and three publicly available
in silico CNV prediction tools, namely ExomeDepth [11], GATK gCNV [12], and pan-
elcn.MOPS [13]. Samples rejected for quality reasons by the Sophia Genetics DDM software
were not included in this investigation. All analyses were performed using all samples per
run and all 571 TruRisk®v1 target regions, starting from unmapped sequencing reads in
the FASTQ format.

For CNV prediction with ExomeDepth, GATK gCNV [12], and panelcn.MOPS, se-
quence reads were mapped to the human reference genome assembly GRCh37 including
decoy sequences (hs37d5) using BWA-MEM of Burrows-Wheeler Aligner v0.7.15 [27,28]
and processed according to the GATK BestPractices, including duplicate marking, realign-
ment of insertions and deletions, and quality recalibration using GATK v3.8 [29,30].

Input data for ExomeDepth [11], i.e., read counts per sample and target region, were re-
ceived via the built-in method getBamCounts(), and reference samples were selected using
select.reference.set() under the specification of individual target lengths (argument
bin.length). Calling function CallCNVs() was run with default arguments, and in-house
scripts were employed to extract CNV calls from the resulting CSV files. CNV calls from all
samples under consideration were reported, irrespective of correlations between reference
and test counts below 0.97, which point towards low quality samples due to the publishers.
All analyses were run with ExomeDepth v1.1.10 under R v3.6.2.

Input HDF5 files for GATK gCNV were generated using GATK’s CollectReadCounts
utility with the interval merging rule set to OVERLAPPING_ONLY. DetermineGermlineContig
Ploidy and GermlineCNVCaller were run in COHORT mode under the specification of
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0.97 for the prior probability of ploidy state 2 and 0.01 of ploidy states 0, 1, and 3 for all
chromosomes. All analysis steps including the generation of the output VCF files via
PostprocessGermline CNVCalls were run with GATK v4.1.0.0.

Input data for panelcn.MOPS, i.e., read counts per sample and target region, were
received by employing the multicov utility of bedtools v2.26 [31]. For CNV detection, func-
tions panelcn.mops() and integerCopyNumber() of panelcn.MOPS v1.6.0 were run with
default parameters under R v3.6.2. Samples that were classified as Bad test samplewere
treated as sample outliers and not considered for final CNV output.

4.5. Multiplex Ligation-Dependent Probe Amplification Analyses

Verification of predicted CNVs in selected cancer predisposition genes was per-
formed by MLPA analyses using SALSA® MLPA® Probemixes (MRC-Holland, Amsterdam,
The Netherlands) according to the manufacturer’s protocol: P041 (ATM), P042 (ATM),
P002 (BRCA1), P087 (BRCA1), P045 (BRCA2/CHEK2), P077 (BRCA2), P240 (BRIP1), P083
(CDH1), P190 (CHEK2), P003 (MLH1/MSH2), P248 (MLH1/MSH2), P072 (MSH6), P260
(PALB2/RAD50/RAD51C/RAD51D), P008 (PMS2), P105 (PTEN), P101 (STK11), and P056
(TP53). Data were analyzed using the Coffalyzer.Net software v140429.1058 (MRC-Holland).
For the verification of CNVs in the BARD1 gene, we used a non-commercial MLPA assay
previously developed for scientific purposes [32]. The first coding exons of the MSH2 and
RAD51D genes, as well as exon 16 of the CHEK2 gene were not covered by any of the
MLPA kits. Thus, these three exons were excluded from further analysis, resulting in a
final set of 271 selected target regions (Supplementary Table S1). A summarizing overview
of our MLPA testing strategy and the MLPA analyses performed is given in Supplementary
Figure S1.

4.6. Extraction of Sequencing Target Characteristics

Estimates of averaged read abundance per target regions RC were obtained by extract-
ing counts of mapped reads per sample and target using the multicov utility of bedtools
v2.26 [31], averaging the resulting values run-wise and subsequently over all runs and final
normalization by target length in base pairs to account for an expected linear relationship
between target length and read counts.

Mappability is a measure of a reference sequence’s capability to produce reads that
map uniquely to a corresponding reference genome. Therefore, mappability depends on
genomic sequence characteristics, read lengths, the reference genome, and the amount
of allowed mismatches. Mappability takes values between 0 and 1, whereby 1 refers to
genomic regions that are expected to produce uniquely mapping reads exclusively, and
a region with a mappability of 0 is expected to produce no uniquely mapping reads at
all. Several approaches for the computation of mappability exist, ranging from simple
investigation of sequence motifs to sophisticated simulation approaches, resulting in
ambiguous formal definitions. Here, the getmapp() utility of CODEX2 v1.3 [24] was
employed for the determination of mappability values, using pre-computed results, which
are based on the construction of consecutive 90 bp reads and under permission of 2
mismatches [33]. GC content per target region were received employing the getgc() utility
of CODEX2 [24].

5. Conclusions

All four in silico CNV prediction tools show notable amounts of false positive pre-
dictions, and therefore, verification of predicted CNVs by either aCGH [2,3], MLPA [1,5],
long-read sequencing [10,34], or other methods is required. False positive predictions
and predictions with low confidence accumulate for target regions with extreme target
lengths and/or GC contents. Therefore, our findings should be taken into account for the
optimization of diagnostic gene panel design. We suggest that target region definitions
may be optimized towards average target region length and average GC content in the
overall gene panel. In the framework of genetic counseling for persons at risk for familial
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BC/OC, CNV detection should be included in routine germline diagnostics for all BC/OC
predisposition genes and may not be restricted to BRCA1/2, as a relevant proportion of
women in our study sample (0.76%) were affected by CNVs in non-BRCA1/2 genes.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1: Figure S1:
Overview of the MLPA verification strategy for in silico CNV prediction results of Sophia Genetics
DDM (SG), panelcn.MOPS, ExomeDepth, and GATK gCNV, Table S1: Sequencing target regions
considered for CNV detection in 17 BC/OC predisposition genes, including GC contents, target
lengths, and mappability, Table S2: Verified CNVs in 4208 patients.
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