Supplementary Materials: Anti-Retroviral Protease Inhibitors Regulate Human Papillomavirus 16 Infection of Primary Oral and Cervical Epithelium

Samina Alam, Sreejata Chatterjee, Sa Do Kang, Janice Milici, Jennifer Biryukov, Han Chen and Craig Meyers

E

Infected with 1.5×10^7 HPV16 Infected with 7.5×10^7 HPV16 Infected with 1.5×10^8 HPV16

F

Infected with 1.5×10^7 HPV16 Infected with 7.5×10^7 HPV16 Infected with 1.5×10^8 HPV16

Figure S1. Amprenavir (7.66 μ g/mL) Treatment Sensitizes Primary Gingiva Tissue to HPV16 Infection. (**A**,**B**) Comparative expression of HPV16 E1^E4 transcripts in Amprenavir treated tissues compared with virus infected tissues not drug treated. (**C**,**D**) Inhibition of virus infection of Amprenavir treated tissues using HPV16 pre-incubated with α -V5 and α -RG1. Data was analyzed as mean \pm SD. *p*-values were calculated using two-tailed Student's *t*-tests (Graph Pad Prism). Quantitative data are presented as mean \pm standard deviation. Significance was based on pairwise

Student's *t*-test. Comparisons are indicated as 0.01 by *; <math>0.001 by **; <math>0.0001 by ***; and <math>p < 0.0001 by ****. (**E**,**F**) *Progeny*-HPV16 virus stock titers isolated from raft tissues infected with three virus doses indicated in Light Grey bars: 1.5×10^7 HPV16 virions; Grey bars: 7.5×10^7 HPV16 virions; Black bars: 1.5×10^8 HPV16 virions. (**G**,**H**) Extended culturing of raft tissues (day 18–24) modulates *prog*-HPV16 titers in an Amprenavir concentration dependent manner.

Figure S2. Control staining for confocal imaging. (**A**) HaCaT cells alone do not bind non-specifically to α -BrdU and α -L1 antibodies. (**B**) "Bleed-through" crossover controls for confocal immunofluorescence of gingiva raft tissues treated with Amprenavir and infected with HPV16-BrdU.

Primary gingiva derived raft tissues treated with Amprenavir (7.66 µg/mL) and layered with *P*-HPV16-BrdU for 48h were harvested, sectioned and slides were stained individually for (top panel) BrdU-labeled genomes (detected with Alexa Fluor 488) and (bottom panel) HPV16 L1 (detected with Alexa Fluor 568). Crosstalk fluorescence in the red and green channels was not observed.

Figure S3. Kaletra (9.8 µg/mL) Treatment Sensitizes Primary Gingiva Tissue to HPV16 Infection. Note: Each panel indicates an individual experiment. (**A,B**) Comparative expression of HPV16 E1^E4 transcripts in Kaletra treated tissues compared with virus infected tissues not drug treated. (**C,D**) Inhibition of virus infection of Kaletra treated tissues using HPV16 pre-incubated with α -V5 and α -RG1. Data was analyzed as mean \pm SD. *p*-values were calculated using two-tailed Student's *t*-tests. Significance was based on pairwise Student's *t*-test. Comparisons are indicated as 0.01 < *p* < 0.05 by *; 0.001 < *p* < 0.001 by ***; and *p* < 0.0001 by ****. (**E,F**) Extended culturing of raft tissues (day 18–24) modulates *prog*-HPV16 titers in a Kaletra concentration dependent manner.

α-RG1 Ab (L2)

- +

_

+

_

+

_

+

- +

+

_

Figure S4. Amprenavir (7.66 µg/mL) Treatment Sensitizes Primary Cervical Tissue to HPV16 Infection. Note: Each panel indicates an individual experiment. (**A**,**B**) Comparative expression of HPV16 E1^E4 transcripts in Amprenavir treated tissues compared with virus infected tissues not drug treated. (**C**,**D**) Inhibition of virus infection of Amprenavir treated tissues using HPV16 pre-incubated

with α -V5 and α -RG1. Data was analyzed as mean ± SD. *p*-values were calculated using two-tailed Student's *t*-tests. Significance was based on pairwise Student's *t*-test. Comparisons are indicated as 0.01 by *; <math>0.001 by **; <math>0.0001 by ***; and <math>p < 0.0001 by ****. (**E**,**F**) Extended culturing of raft tissues (day 18–24) modulates *prog*-HPV16 titers in an Amprenavir concentration dependent manner.

Figure S5. Kaletra (9.8 µg/mL) Treatment Sensitizes Primary Cervical Tissue to HPV16 Infection. Note: Each panel indicates an individual experiment. (**A**,**B**) Comparative expression of HPV16 E1^E4 transcripts in Kaletra treated tissues compared with virus infected tissues not drug treated. (**C**,**D**) Inhibition of virus infection of Kaletra treated tissues using HPV16 pre-incubated with α -V5 and α -RG1. Data was analyzed as mean \pm SD. *p*-values were calculated using two-tailed Student's *t*-tests. Significance was based on pairwise Student's *t*-test. Comparisons are indicated as 0.01 by *; <math>0.001 by **; <math>0.001 by ***; and <math>p < 0.0001 by ****. (**E**,**F**) Extended culturing of raft tissues (day 18–24) modulates *prog*-HPV16 titers in a Kaletra concentration dependent manner.

Table S1. Primer and Probe Sequences.

HPV16 E2 5'	5'-CCA TAT AGA CTA TTG GAA ACA CAT GCG CC-3'
HPV16 E2 3'	5'-CGT TAG TTG CAG TTC AAT TGC TTG TAA TGC-3'
HPV16 E1^E4 5'	5'-GCT GAT CCT GCA AGC AAC GAA GTA TC-3'
HPV16 E1^E4 3'	5'-TTC TTC GGT GCC CAA GGC-3'
TBP 5'	5'-CAC GGC ACT GAT TTT CAG TTC T-3'
TBP 3'	5'-TTC TTG CTG CCA GTC TGG ACT-3'
Probe HPV16 E1^E4	5'-/56-FAM/CCC GCC GCG ACC CAT ACC AAA GCC/3BHQ-1/-3'
Probe TBP	5'-/5HEX/TGT GCA CAG GAG CCA AGA GTG AAG A/3BHQ-1/-3'

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).