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Simple Summary: Radiomics has become a prominent component of medical imaging research
and many studies show its specific value as a support tool for clinical decision-making processes.
Radiomic data are typically analyzed with statistical and machine learning methods, which change
depending on the disease context and the imaging modality. We found a certain bias in the literature
towards the use of such methods and believe that this limitation may influence the capacity of
producing accurate and reliable decisions. Therefore, in view of the relevance of various types of
learning methods, we report their significance and discuss their unrevealed potential.

Abstract: Processing and modeling medical images have traditionally represented complex tasks
requiring multidisciplinary collaboration. The advent of radiomics has assigned a central role to
quantitative data analytics targeting medical image features algorithmically extracted from large
volumes of images. Apart from the ultimate goal of supporting diagnostic, prognostic, and therapeutic
decisions, radiomics is computationally attractive due to specific strengths: scalability, efficiency,
and precision. Optimization is achieved by highly sophisticated statistical and machine learning
algorithms, but it is especially deep learning that stands out as the leading inference approach.
Various types of hybrid learning can be considered when building complex integrative approaches
aimed to deliver gains in accuracy for both classification and prediction tasks. This perspective
reviews some selected learning methods by focusing on both their significance for radiomics and
their unveiled potential.
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1. Introduction

1.1. Radiomics

Driven by the recent advancement of precision medicine, both pathology and radiology have
undergone substantial transformation. Among the most noticeable factors inducing change, there is the
centrality assigned to data-driven integrative modeling approaches specifically designed to leverage
quantitative imaging. These aspects have characterized the field of radiomics, a discipline strongly
based on developing methods and algorithms able to reveal subtle disease marks by processing features
extracted from medical images.

A recent review presenting the current research hotspots in radiomics [1] showed a concentration
of applications in certain diseases areas and a prevalence of positive versus negative results, together
with another two emerging aspects: (a) The dominant presence of non-clinical researchers and (b) the
preferential choice of traditional statistical techniques (LASSO, logistic regression) in dealing with
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feature selection. This latter point is quite surprising and suggests that the spectrum of radiomic
approaches (from handcrafted to machine learning (ML) driven) may require further consideration.

Radiomics uses a variety of ML methods that support inference and that may work standalone
or be cast within integrative approaches, depending on the complexity of the context under study
(cancer, diabetes, etc.). The progresses that have been made are mostly referred to: (i) Extracting
computerized features from radiologic imaging, (ii) associating image features with molecular
phenotypes (radiogenomics), and (iii) determining the relevance of radiologic features associated with
pathologic phenotypes (radiopathomics).

In writing this perspective, our goal is twofold: To illustrate the relevance/significance of various
types of learning methods in some of the current directions covered by radiomic studies and to discuss
the potential that has not yet been revealed.

1.2. Directions in Radiomics

1.2.1. Pathology

There are several challenges in the analysis of histopathological digital images, starting from the
presence of biases, in relation to data quality, sampling strategy, and class labeling (see, for instance, [2]),
and continuing with the specific analysis (pixel-wise, patch-level, voxel-wise, etc. [3,4]) that is run to
detect and/or remove the biases and thus improve the generalization power. The advent of ML and
deep learning (DL) in the digital pathology field has complemented the activity of existing statistical
feature-driven methods, also simplifying massive image data classification tasks. Usual assessments
include computing prediction probabilities that explain the patch-level model. For deep classification
purposes, small-sized images (256 × 256 pixels) are often used as input such that large-sized images are
resized into smaller ones. Clearly enough, increasing the input image size corresponds to (a) increasing
the parameters to be estimated and (b) augmenting both computational power and memory burden.
However, resizing may lead to side effects, such as loss of information at the cellular level and reduced
identification accuracy, although for the detection of regions of interest (ROI) and with patches analyzed
independently, a suitable increase in patch size (e.g., 960 × 960) can contribute to better accuracy.
Additionally, averaging can occur at the regional level with regions classified as ROI and these then
expanded over multiple patches (at increased risk of false negatives from missing small ROI).

Another study [5] focused on metastasis detection in breast cancer patients, proposing to automate
the process of achieving accurate localization of tumors. By feeding DL with gigapixel images
(100,000 × 100,000 pixels) the study found small tumors (100 × 100 pixels) in 92.4% of the cases. For the
problem of differentiating cancer subtypes based on features observed at the image patch scale, it is
ideal to consider discriminative patches for optimizing classification results (see, for instance, [6] about
DL applications to glioma and lung cancer) that can match pathologists’ consensus. Finally, it is worth
mentioning a radiomic study [7] for appropriate treatment assignment hypothesizing an association
between local immune micro-environment features of non-small cell lung cancer (NSCLC) and patient
outcomes. Based on immunohistochemical measures of programmed death ligand 1 (PDL1) expression
and tumor-infiltrating lymphocytes, a quantitative assessment was made for two patient cohorts,
after treating by surgical resection and extracting data from pretreatment CT imaging, and an immune
pathology-informed model was built to cluster patients in relation to overall survival, which led to a
radiomic signature.

It is worth a further note to mention radiopathomics, i.e., the combination of radiographic and
digital pathology images. Recently proposed to better capture the hidden correlations between cancer
phenotypes and tumor responses with the support of artificial intelligence (AI), investigating this
direction might guide the clinicians into more individualized diagnosis, prognosis, and treatment for
cancer patients.
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1.2.2. Biobanking

Connected with both pathology and radiology, the field of biobanking is also changing quickly
(see [8] for a comprehensive review). Biobanking is especially expanding in parallel with the
high-throughput computing developments designed to extract a wealth of quantitative features from
bioimages derived from various acquisition technologies (CT, MR, PET, etc.). The expected result
is to generate, and later validate, possible imaging biomarkers as a final product of marks, signals,
and measurements that reflect novel disease phenotypes and quantifications that use novel types of
data and metadata. The latter, once integrated within signatures obtained from combining risk and
prognostic factors relevant at a clinical level and once joint with omics profiles, become useful for
assessing pathophysiological conditions and response to treatment but also for enhancing patient
management at a more personalized level.

1.2.3. Radiology

In radiology, predictive modeling involves three concatenated steps, here summarized as
(i) algorithmic treatment of tumor phenotypes translated into mineable features, (ii) detection
of patterns explaining clinical outcomes, and (iii) association with endpoints. This process is
computationally complex although efficiently solvable with ML algorithms. More importantly,
it requires the integration of multilevel information (clinical and non) provided by interdisciplinary
teams after suitable measurement standardization has occurred. Although necessary, validation
of possible integrative signatures performed through unseen (given separation with training and
testing sets) or external datasets can only mitigate the uncertainty linked to the inherent intratumor
heterogeneity. This execution requires accurate partitioning to a variable resolution map aimed at
maximal reproducibility, and calls for integration between the characterized imaging phenotypes and
specific molecular marks, as in the case of radiogenomics.

In a recent study [9], various classification methods were tested to evaluate their predictive
performance on a lung cancer dataset suitably split into training and validation subsets and were
then assessed in terms of stability of feature selection (via resampling). Even if a ranking of methods
appeared an important result of this work, the problem is that different imaging modalities and different
cancers would likely induce changes in the ranking and/or suggest a better/worse performance of
any specific method. Additionally, there might be a lack of balance in datasets as a typical example
of bias generation. Blind application of ML algorithms is thus not sufficiently informative even if
performed rigorously. Another approach was indicated in [10]. Here, a more dynamic perspective was
considered by the fact that NSCLC features may change during therapy, for instance. These so-called
delta-radiomics features were found to be particularly informative of tumor response, thus improving
prognostic models. The limitation in this type of study is exactly the validation phase: This would
require patient cohorts similarly screened by imaging during treatment, which can be solved necessarily
by cross-validation analysis. Overall, the validity of the approach in a clinical setting remains only
approximate because it is lacking the necessary calibration derived from matching predictions with
observed outcomes [11].

It is clear from the described scenarios that ML and statistical methods need to deal with multiple
and diverse data dimensions and parameters. To such objective difficulty, a main factor to be added is
the need of validating once appropriate endpoints are defined based on the assessment of prognostic
paths and therapy response. In such regards, prospective clinical trials are the ideal verification ground
for radiomics [12]. In this perspective, the focus is on computational radiomics. Following a recent
analysis [13] assessing the role of artificial intelligence targeted to precision oncology, among the
identified challenges there were data multimodality and insufficiency jointly with the interpretability
of ML predictive learning and its extensions. In an attempt to classify challenges specifically for
radiomics, we can generalize such concepts with reference to a series of methodological approaches
either currently in use or potentially usable.
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2. Multimodality and Integrative Radiomics

In this section, three main aspects are considered in detail:

(a) Imaging multimodality, which combines imaging modalities to overcome the limitations
of each single technique and augments the informative data volumes available to each
pre-clinical experiment;

(b) Joint omics association, with a focus on genomic and metabolic aspects currently showing great
promise for the discovery of new candidate imaging markers; and

(c) Role of features in radiomic models.

2.1. Inter-Modality Feature Integration Strategies

From a modeling standpoint, the fact that multimodal imaging features generally display very
few similar associations with the underlying tumor characteristics offers concrete advantages. The least
redundant and more independent the features are, the more predictive power the model can have.
As each imaging modality performs at different spatial resolutions and voxel dimensions, a rationale for
integrating potentially diverse information is naturally present. However, such a potential advantage
comes with an important limitation, i.e., a large volume of samples would be needed to avoid false
positive associations. As a second consideration, depending on the tumor type, the imaging modalities
may complement each other across a variety of feature integration levels centered, for example,
on phases, such as diagnosis, treatment, and patient follow-up. Thus, at one end, the modalities
can scan and visualize the human body for diagnostic and treatment purposes or for understanding
biological, physiological, and functional processes related to disease states (onset, progression, relapse,
etc.), and at the other end, they may be useful for monitoring patients and assessing the effects
from undergoing a treatment plan. Clearly, the data modeling strategy must adapt to the imaging
developments while focusing on both the specific model parameterizations that the digital images
allow and on the quantitative representation and characterization that are possible with new types of
measurements. For cancer diagnostics, these steps tend to be highly influenced by the typical spatial
heterogeneity and the imaging-related regional changes that alter the coarse-to-fine detail grid usually
surrounding the anatomical structure.

2.2. Omics Associations

Radiogenomics [14–17] links radiomics with genomics by exploring their possible synergies,
for instance, studying genotype variation together with the variability of response to treatment,
or also the coupling between imaging phenotypes and gene expression patterns and signatures.
Radiogenomics deals with both pathological and radiological aspects and often includes associations
that bridge between the anatomic/histologic and genetic levels [8]. While radiogenomics is expected
to better characterize tumor biology and its inherent heterogeneity (examples from glioblastoma
multiforme [18,19], lung cancer [20,21], prostate cancer [22], and breast cancer [23–25]), a bottleneck
occurs at the biomarker level. Here, it is hard to obtain consistency from the combined evidence types
as this requires at the very minimum standardization operated at various levels. Biomarkers must
be reproducible in order to be objective criteria for response assessment, also knowing that changes
depend on spatiotemporal heterogeneity in part inherent to the tissue and in part occurring in the
course of treatment [26].

At a metabolic level, early findings on PET radiomics are also available. Metabolic intratumor
heterogeneity assessed thought images is based on the idea that it might inform on glucose metabolism,
necrosis, oxygenation, vascularization, and angiogenesis, but a clear consensus on how to interpret the
parameters has yet not been achieved. In a PET context, the characteristic trait is large voxel dimensions,
which deliver quite approximate measurements in statistical terms, and this complication runs in
parallel to a standardization phase that is particularly hard [27]. Overall, further motivation appears
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for integrating PET with other radiomic layers [28]. Interestingly, targeted studies have shown cancer
sub-type signatures (in breast cancer, for instance) correlated with transcription factor expression [29].

2.3. Feature-Driven Model Selection

The recognized relevance of radiomics for precision medicine is due to the fact that it combines the
tumor phenotype with individual variability. This multifaceted correlation requires ad hoc analysis and
verification before objectively showing the ability to measure and organize a blend of characteristics
that identify optimal medical intervention. The quantitative modeling aspects of radiomics address
such a challenge by making systematic use of image data that are translated into detected features to
be considered clinically useful when significant, i.e., prognostically or predictively reliable towards
outcome parameters and endpoints (see also [30]). With many possible image features, the role played
by DL is relevant, especially for image classification. In general, routine use in the clinical workflow
would require an evaluation of the algorithmic performance across a variety of conditions and including
all available annotations related to patient history and outcomes. Prognostic and predictive modeling
imply different design strategies, quite evidently, and these eventually determine the achievable level
of generalizability of biomarkers towards endpoints.

Generalizability and transferability of radiomic results are aspects of paramount importance that
depend also on the model selection phase. Intuitively, the traits in the radiomic results that would
deserve attention may depend on so many factors that both generalizability (different tumor type,
for instance) and transferability (context shift due to differentiated conditions) appear as hurdles to be
overcome. In guiding the effort of assimilating data from multiple streams, an integrative approach
should be particularly informative about aspects, such as early detection, tumor evolution, metastatic
patterns, acquired resistance, recurrence, etc. Finding their marks and descriptors lies at the core of
quantitative radiomics that operates over relevant (i.e., significant and reproducible) features.

3. Learning Approaches and Significance for Radiomics

This section discusses a few types of learning approaches by introducing them and analyzing
their principled role and utilization in radiomics. Significance is discussed through some selected
application examples. Although priority is assigned to ML and DL, also other learning techniques are
described in both current and expected impacts.

3.1. Machine Learning (ML)

3.1.1. Definition

ML is mostly aimed to learn data and image features and generate class labels that allow
segmentation or classification in either a supervised or unsupervised way. The focus is on modeling
probabilistically the input x-labels’ y transform, which in the radiomic context links the intensity
values characterizing the radiological images to the underlying tissue types. ML is instrumental to
extracting many quantitative features in a (semi-) automated way to allow complex detection tasks,
such as identifying patterns that are hard to interpret or discovering markers and signatures relevant
to the disease course and the prediction of the response to therapy [31]. ML algorithms characterize
data with features from various types of scan images referring to a certain region of interest (ROI) and
such features can inform of intra-tumor heterogeneity by describing voxel intensities, shapes, edges,
and textures [32].

3.1.2. Significance

In a study on lung cancer aimed at predicting survival [33], an analysis of variability was performed
indicating that the choice of the classifier is the most influential decision with regards to performance
variation, explaining about one third. In another study [34], the radiomic phenotypes extracted from
MRI classified five molecular glioma subtypes, achieving almost an 82–90% accuracy depending on
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the absence or presence of histology diagnostic information, respectively. An important point to stress
is that informative features in radiomic analysis can be of different types, semantic and non-semantic,
with a variable degree of quantitative descriptions together with those treated in an automated way
and more naturally and specifically linked to clinical outcomes [35]. In general, more traditional
ML methods are efficient but appear somehow limited regarding the scalability of the algorithms,
which partially explains the tendency of associating radiomic applications to DL approaches. Another
current gap impacting clinical radiotherapy points to the need of adapting to the typically complex
dynamics of decision-making processes characterized by underreported events or missing data that
might affect the predictive role of some model drivers.

3.2. Deep Learning (DL)

3.2.1. Definition

There is a quite diffuse consensus about the efficiency and reliability of DL as an inference tool in
medical imaging and radiomics. First, being dimensionless, it can work well with big data. Second,
differently from ML algorithms, DL performs more directly in both a generative way (adversarial
networks, variational autoencoders, etc.) and discriminative way (convolutional neural networks etc.).
For instance, it is possible to use DL algorithms, such as convolutional neural networks, to efficiently
replace the feature selection task operated in image segmentation. The advantage offered is preservation
of spatial information, and indeed once the image has been accurately segmented all the information
remains within the network. This allows the image features to be directly extracted with no extra
errors introduced into radiomic analyses because of feature calculations [36].

3.2.2. Significance

DL offers a major potential for a series of tasks, such as facilitating and/or improving lesion
detection, enabling accurate differential diagnoses, assessing treatment effects, and finally providing
better patient stratification and prognostic paths. Among many DL-driven publications covering
cancer classification tasks, we recall two very recent studies centered on lymph node metastasis as a
significant prognostic factor whose accurate prediction is key for optimizing treatment in patients with
head and neck and lung cancers, respectively. The former [37] presents a many-objective model with a
3-D convolutional network exploiting spatial information for the classification of normal and diseased
nodes together with suspicious ones, and it achieves predictive gains compared to using PET and CT.
The latter [38] evaluates lymph node status in >500 early lung cancer patients with preoperative CT
demonstrating significant performance gain in prediction accuracy of metastasis by using cross-modal
3-D-DL integrating CT scan and clinical information.

3.3. Reinforcement Learning (RL)

3.3.1. Definition

RL [39] leverages the idea that an optimal action facing unknown environmental states (assumed
to undergo Markov dynamics) is associated to a reward. Therefore, a learner acts by maximizing
the pay-off. RL is a goal-oriented strategy that essentially maximizes reward over multiple actions
contributing to it. Scale is the problem, with real-world domains involving many decisions and the
pay-off being better defined when only a small set of decisions can be selected in terms of relevance.
RL biomedical problems focus on finding optimal treatments for patients and often involve drugs. At a
computational level, a Markov decision process (MDP) is formulated and a cost function is associated
to the model to find an optimal trajectory of states and actions (e.g., optimal control) concerning
patient management.
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3.3.2. Significance

Deep RL is a possible model framework and was analyzed in [40], as an example, based on
historical treatment plans and with the scope of finding feasible strategies for automating the radiation
adaptation protocols of dose escalation in NSCLS patients. Specifically, the agent here interacts
with a radiotherapy artificial environment (RAE) reconstructed by a so-called transitional network.
Compared to clinician choices, automated dose adaptation by deep RL showed results similar to those
obtained by clinicians. There are also other applications with a focus on detection and treatment
response prediction [41], like CT detection of pulmonary nodules for lung cancer screening in 590
persons (see [42]). Here, in particular, the good performance measures were based on raw CT images
analyzed through states and classifying nodules as present or not, thus supporting decisions about the
opportunity of follow-up tests and related expenditures saving.

Putting it into perspective, how to cast RL within a transfer learning (TL) framework, i.e., allowing
generalization to occur across tasks, is a very relevant problem. This was studied with rewards variable
between tasks but within a fixed environment’s dynamics [43]. The idea that rewards may be defined
to induce hierarchical task decomposition with a task generating either independent or temporally
dependent subtasks impacts radiomics for at least two reasons. First, building a predictive model from
the extracted features is functional to attaining a radiomic pattern or signature. The tasks defining
prediction can feed models enabling more or less independent relationships, say classification versus
survival analysis, and produce prediction scores involving suitably combined signatures. Second,
the interpretability of such predictive models involves macro- and micro-analysis of tasks ranging
from feature selection quality to relative importance of ROI voxels associated to predicted outcomes.

The two next related topics, value learning and Q-learning, are integrated with RL model strategies
and suggest considerations of potentially high impact for radiomics.

3.4. Value-Based RL (VL)

3.4.1. Definition

The problem of value estimation is RL refers to learning the long-term consequences of being in
a certain state. Naturally enough, there is uncertainty that makes it essential to estimate the value.
A strategy is based on identifying a value function and measuring the total rewards expected from
a particular state following a specific policy. Policy iteration occurs when the policy undergoes
repeatedly evaluation and refinement till improvement assessed via the value function reaches
optimality. This requires either an adaptive model to change the value function for the states or an
automatic learner (like DL) to reach an approximate solution. The data burden increases due to the
scoring of actions in each state, which requires computation of the value function to measure the
expected action-associated rewards. VL has been discussed in general and technical terms by [44–46],
among others.

3.4.2. Significance

Currently, and to the best of our knowledge, the role of VL in RL applications proposed in radiomics
has been not so central. We see a major potential role in supporting radiomic decision processes,
for instance, when a learner clinician wants to exploit a set of actions or utility functions in a probabilistic
way, i.e., ranging with certain probabilities assigned across values and preferences. As a practical
example, an important aspect refers to considering maximal utility corresponding to limited risk
inherent to some actions, for instance, those functional to goals fixed within radiotherapy workflows.
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3.5. Q-Learning (QL)

3.5.1. Definition

QL [47] solves the problem of learning a value function by a strategy that finds an optimal policy
given an MDP with a function defined as the average discounted sum of rewards expected in the
future steps and moving from the current state. Knowing the expected reward of each action at every
step corresponds to knowing the sequence of actions to be performed for eventually generating the
maximum total reward. The expectation involves computing all possible paths starting from current
states and covering all possible future benefits, given a discounting factor to trade-] off the importance
of immediate versus future rewards.

Finding the optimal function requires the agent to try repeatedly each action in every state, but QL
does not specify the actions that an agent should take at each state. Although this process may lead
to using DL, this is not considered computationally attractive and other solutions can be identified,
such as a policy gradient, which makes actions with better rewards more likely. QL simply aims to
preserve the best estimate of states’ values by constructing a value function on the state space and
updating it according to an optimal choice of action at the following state.

3.5.2. Significance

Of interest for applications are a couple of considerations about the role of temporality, which is
central to radiomics. Differently from RL that optimizes averages rewards (using equal weights),
QL optimizes discounted rewards by assigning superior weights to near-term ones. This potentially
impacts profiling and prognostication in hybrid radiomic approaches that try to exploit multiple data
sources and improve predictive scores from their fusion. This strategy involves a comprehensive
process and integrated framework in which sequences of decisions and recommendations must
adapt to the evolving health trajectory of treated patients. Such dynamic treatment regimens define
treatment processes as sequences of decision rules and guide clinicians to treat patients over time more
interactively according to personalized solutions rather than aiming at the most favorable clinical
outcome on average, and still be considered near-optimal, i.e., achieving maximal expected outcomes
when applied to stratified patient populations.

3.6. Active Learning (AL)

3.6.1. Definition

The task of AL [48] is primarily iterative selection, i.e., finding what data allow learning of the
model once this becomes annotated (labeling action). Collecting labels in medical imaging can be an
expensive process requiring special expertise. AL allows the training of classifiers with associated
low-annotation costs as it predicts which unlabeled instances should be labeled. This learning strategy
can be combined with RL to learn an active learner [49], or can be made data-driven by setting a
regression for the prediction of the error reduction for a sample in a certain state [50], and finally can
also be made transferable across datasets to improve AL via regularization [51]. When the focus is on
fixing criteria that generalize across datasets, an interesting solution is to define a policy parameterized
by a dataset embedding [52,53]. This means that an auxiliary network predicts weights for a target
network whose input dimensionality is handled by a reduced number of parameters [53]. As an
important note, by interpreting the AL criterion as a deep RL problem, one can get the optimal AL
policy (i.e., a network parameterized by weights).

3.6.2. Significance

An obvious criterion for using AL in radiomics or not relies on the evaluation of the capacity that
the features have to be mutually informative or adding separate value as this can lead to increased
prediction power. Therefore, given suitably selected patients and available imaging modalities,



Cancers 2020, 12, 2453 9 of 19

discovery requires a sequence of steps leveraging initially standardization of image acquisition
protocols, pre-processing, and segmentation, and then feature extraction and selection. However,
Sharma et al. [54] noticed how DL requires large annotated data for training well and thus enabled
accurate segmentation with reduced labelled data by combining DL with AL in order to find points
from the unlabeled samples and select the most uncertain. Zhou et al. [55] presented a method with
active and incremental fine-tuning attributes designed to integrate AL and TL into a model that first
pre-trains CNN for selecting unannotated samples for annotation, and then performs iterative tuning
via newly annotated samples in order to improve the overall performance incrementally.

To conclude this section, we emphasize a major impact area where the above methodologies are
expected to exert influence in the future, i.e., data-driven decision support systems. In the general
healthcare field, these may allow clinicians to deliver better personalized treatments. In such a regard,
both DL and deep RL have been only marginally exploited (see [56] and an application on bone
transplant registry data). A first survey on the topic was recently published [57], with challenges
mainly identified in (a) data deficiency and intervention variations, which can both make the learned
policies sub-optimal; (b) lack of strategies to find appropriate states, actions, and reward functions,
in particular those able to balance the trade-off between short- and long-term success; and (c) an
absence of performance benchmarks due to the limited availability of applications.

To such current bottlenecks we also add another one: Human interactions within complex
environments occur non-synchronously. A recent study [58] proposed deep RL of marked temporal
point processes to characterize actions from agents and feedback from the environment seen as
asynchronous stochastic discrete events. This has potential utility in radiotherapy where operations
run continuously and induce periodic progress reports, incremental results, or state changes, but also
for applications in distributed radiomics (see the multi-center study in [59] centered on a radiomic
signature developed at one site and validated in its performance at another site).

Figure 1 summarizes all of the above-listed learning techniques and covers the salient
methodological aspects that characterize them (top panel), together with scope and focus (bottom
panel). Figure 2 emphasizes general and distinct properties of these learning techniques (including TL)
with reference to their significance for radiomics.
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4. Application Contexts for Radiomics

Some of the salient applications with reference to specific impact areas and disciplines are
summarized below in Table 1, with special emphasis assigned to the learning modalities involved.
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Table 1. Applications in clinical domains: significance for medical imaging and radiomics.

Clinical Domains Modalities Computational
Approaches and Methods

Top Performance
Achieved Ref.

Dermatology Skin lesion images DL—CNN AUC 0.94–0.96 [60]

Ophthalmology

Fundus photography DL—CNN Sensitivity 0.97
Specificity 0.93 [61]

Optical coherence
tomography DL—CNN AUC 0.97 Sensitivity 0.90 [62]

Pathology Histopathologic images Random Forest,
SVM, CNN

PPV 0.94, NPV 0.92,
F1 0.91 [63–65]

Radiation Oncology

CT/CBCT CNN, Distributed DNN DSC 0.81 [66]

MRI CNN, ANN AUC 0.86 [67]

PET SVM, KNN AUC 0.95 Sensitivity 0.95
Specificity 0.95 [68]

Brain Imaging

CT CNN AUC 0.90–0.96 [69]

MRI/fMRI
Stacked auto-encoders,

deep Boltzmann machines,
DNN, CNN

Sensitivity 0.93
Specificity 0.82 [70]

PET Autoencoder, CNN AUC 0.74–0.90 [71]

Thoracic Imaging
CT CNN AUC 0.94 [72]

MRI CNN, RNN Dice coefficient 0.80 [73]

Breast Imaging Mammography CNN AUC 0.98 Sensitivity 0.86
Specificity 0.96 [74]

Abdominal Imaging Colonoscopy CNN AUC 0.99 Accuracy 0.96 [75]

Notes: acronyms used for the methods appear according to standard literature.

Radiomics spans various clinical domains in terms of modeling treatment risk [76,77], improving
diagnosis [78,79], predicting treatment outcomes [80,81], and toxicity [82,83].

Dermatology: It is very challenging for trained dermatologists to interpret and diagnose skin
lesions due to their large variability in sizes, shades, and textures. Yet, trained with massive annotated
images, the CNN has achieved dermatologist-level accuracy in classifying the various types of skin
lesions [60]. The integration of advanced DL algorithms with mobile technology will offer radically
new solutions for early cancer detection by providing highly accurate diagnostic capabilities in a
cost-effective manner, benefiting millions of people around the world. Recent radiomics applications
have also appeared [84,85].

Ophthalmology: As the diabetic retinopathy is quite prevalent (18–28.5%) among individuals with
diabetes, most guidelines recommend annual screening for those with no or mild diabetic retinopathy,
repeat examination in 6 months for moderate diabetic retinopathy, and an ophthalmologist evaluation
for severe diabetic retinopathy. While manual interpretation of retinal photography is a widely
accepted screening tool for diabetic retinopathy, automated grading of diabetic retinopathy can help to
increase the efficiency and reproducibility and improve patient outcomes by providing early detection
and treatment. Based on an Inception-v3 architecture [86], researchers from Google developed a
CNN that can detect diabetic retinopathy in retinal fundus photographs with high sensitivity (>87%)
and specificity (>98%) [61]. Another commonly used imaging modality in ophthalmology is optical
coherence tomography (OCT), which is often used in diagnosing age-related macular degeneration
(AMD), a common eye condition and a leading cause of vision loss among people aged 50 and older.
Similar to fundus photography, a CNN ensemble has been developed to automatically segment and
quantify the OCT images, improving prognosis and management of macular diseases [62]. Radiomic
applications have recently appeared too [87,88].

Pathology: Accurate and efficient interpretation of the hematoxylin and eosin (H&E) slide has
remained the core function of pathologists for many years. Yet, the large variation in imaging hardware,
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slide preparation, magnification, and staining techniques has made the quantification of slide images
quite challenging [63]. DL technologies represent new instruments to help pathologists extract
unprecedented and colossal amounts of objective and multiparametric morphologic information,
which is important in the accurate diagnosis of many types of cancers [64]. The coupling of AI-assisted
interpretation and pathologists’ oversee and approval will be vital for successful implementation of
precision oncology in the near future [65].

Radiation Oncology: This clinical field is uniquely positioned to harness the power of big data as
vast amounts of data are generated at an unprecedented pace for individual patients in imaging studies
and radiation treatments worldwide [89]. A large portion of patient big data include the anatomical
and functional information from diagnostic and therapeutic imaging modalities, such as CT, PET, MRI,
and cone-beam CT (CBCT). Radiomics is now increasingly integrated within clinical decision processes
and consistently used in automatic segmentation of the tumor and organ volumes, assessment of
treatment response, prediction of patient outcomes, and evaluation of post-treatment toxicity [66–68].
In parallel, it is expected that learning approaches will be increasingly adopted and augmented in their
ability to merge qualitative and quantitative components beyond standard ML and DL.

Brain Imaging: CT, PET, MRI, and functional MRI (fMRI) images yield radiomic data that characterize
the brain tissues and tumors in terms of structures, textures, malignancy, and metastasis and contribute to
diagnostic and prognostic predictions for individual patients [69–71]. Here, the complement offered to
ML and DL approaches by mechanistic models is relevant and will most likely consolidate into integrated
learning solutions.

Thoracic Imaging: Lung cancer is one of the most common and deadly tumors, and while the
targeted screening with low-dose CT or MRI helps identify pulmonary nodules whose early detection
can save many patient lives, radiomics of these images can automatically identify the nodules and
categorize them as either benign or malignant [72,73]. RDL and variants often applied as preferred
inference approaches are destined to be increasingly refined.

Breast Imaging: Mammography has been widely used for breast cancer screening. However, it is
technically challenging to interpret the mammography images, due to the large variations in breast
tissue texture, density, and presence of small deposits of calcium in the breast. DL-driven radiomics
of mammography images can continue to assist in interpreting, identifying, and characterizing the
cancerous breast tissues for early detection and intervention [74].

Abdominal Imaging: Radiomics based on colonoscopy images has been found to be very effective
in detecting and classifying malignant polyps [75]. The American Cancer Society (ACS) recommends
that people at average risk of colorectal cancer start regular screening with colonoscopy at age of 45.
This is because colonic polyps that are undetected or misclassified pose a potential risk of colorectal
cancer. Although most polyps are initially benign, they can become malignant over time. Hence, early
detection and consistent monitoring with robust AI-based tools are critical and their implementation
will consequently feed predictive ML approaches.

5. Discussion

The final notes are dedicated to some of the lessons learned and some of the current bottlenecks.
First, unlike other omics disciplines, radiomics directly deals with spatiotemporal heterogeneity.

The various combinations of multimodal imaging and the possible omics associations offer great
opportunities to add value to the analyses that radiomics typically targets to the possible discovery of
biomarkers and the design of highly integrated clinical decision support systems [90]. Second, an important
limitation refers to clinical trials and concerns the risk incurred by newly generated biomarkers
regarding both experimental and imaging inconsistency. Therefore, suitable standardization criteria,
analytical approaches, and trial design are required [11,27]. In particular, prospective clinical trials
may be expected to take advantage from learning improvements in terms of treatment adaptation
and refined patient stratification [12]. Third, the classification of tumors in subtypes based on imaging
phenotypes [91] (jointly with molecular features) is gaining importance together with the role that a superior
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quality tumor partitioning may play to allow sophisticated image phenotyping (intratumor subregion
characterization) [4,92].

At a methodological level, a fourth aspect concerns DL and the need of opening the black box to
allow better interpretation, reproducibility, and generalizability, something now gaining extensive
attention by mathematicians moving from fragmented to consensus model solutions. This implies that
while contexts remain critical for the quality and informativeness of specific features, the goal is to
control that redundancies and complexities coming from both technical and biological artifacts do not
interfere or prevail [93]. At one end, this change will reflect further relaxation of the one-model-fits-all
strategy and stimulate recourse to TL toward improved predictive performance [94]. At another end,
new methods will emerge to provide better representations for the encoded inputs via concepts like
networks deconvolution, inversion, and dissection, among others (see [95]). Fifth and last, in order to
face the challenge of intratumor heterogeneity, the quantification of tumor abundance at the voxel
level is becoming an important direction in response assessment and recurrence risk studies [4,95–97].
This might help the identification of subregions, for instance, those metabolically active and defined as
high risk [92], and may also inspire strategy to mitigate the effects of unbalanced data (for instance,
when an outcome is over-represented) and thus decisional bias [12].

Finally, it is worth mentioning that recent studies reported ML-driven radiopathomics applications
(e.g., SVM, logistic regression) for prognosis of glioblastoma [98] and grading of glioma [99], prediction
of pathologic response in the locally advanced rectal cancer (LARC) [100], diagnosis of lung nodule
subtypes [101], and detection of high-grade prostate cancer tumors missed by radiologists [102].
Model performance ranged from 0.8 to 0.9 in the accuracy, sensitivity, specificity, and AUC. Due to
higher discrimination power compared to radiographic images or pathology images alone, it may be
reasonably expected that radiopathomics will be playing a relevant role in the diagnosis, prognosis,
and treatment assessment for individual cancer patients, thus justifying its contributions in coordinated
efforts on the clinical trial [103] and public sharing of research resources [104].

6. Concluding Remarks

The learning techniques that were presented in this perspective include only part of the methods
and approaches that are available but share the main challenges usually faced in applications.
The current focus is on the need of reconciling radiomic features retrieved from multiple imaging
modalities and on integrating a variety of feature types aimed at providing improved predictive
learning for specific targets. A radiomic analysis is valuable depending on the information carried by
the imaging datasets and becomes medically significant when enhanced information can be obtained
by correlations with clinical outcome data. Then, the modeling component plays a central role to
guarantee the most effective amalgamation of evidence types and context variables toward optimal
feature selection.

Clinical decisions that account for radiomic information are determined, among other factors,
by volumes of heterogeneous data for which the centrality of learning algorithmically is destined to
grow. For instance, the adoption of DRL techniques finds clear utility in problems, such as optimization
of patients’ medication choice and dosage. Temporality is a driver of learning therefore and radiomic
modeling ultimately depends on the ability to acquire imaging data and extract features at different
times and patient-specific contexts to assess longitudinally the value of health records. Only the
flexibility allowed by model solutions regularly updated and accurately validated will ensure that
results and scores can be used for predictions impacting disease biomarkers, therapy assessments,
and patients’ stratifications.

The advent of EHR offers an opportunity to build data resources connecting patient data and
histories with genetics, digitized medical images, and treatment outcomes, thus triggering the use
of learning techniques in full integrated modality (see, for instance, [105]). In turn, challenging
problems related to data heterogeneity, scale, and feature types will appear and induce a revision
of statistical and ML paradigms, such as dimension reduction and data fusion. Finally, causality,
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interpretability, and generalizability will also need to be newly prioritized in view of next-generation
learning techniques.
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