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Abstract: Triple-negative breast cancer (TNBC), characterized by the absence or low expression of
estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor
(HER2), is the most aggressive subtype of breast cancer. TNBC accounts for about 15% of breast cancer
cases in the U.S., and is known for high relapse rates and poor overall survival (OS). Chemo-resistant
TNBC is a genetically diverse, highly heterogeneous, and rapidly evolving disease that challenges
our ability to individualize treatment for incomplete responders and relapsed patients. Currently,
the frontline standard chemotherapy, composed of anthracyclines, alkylating agents, and taxanes,
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is commonly used to treat high-risk and locally advanced TNBC. Several FDA-approved drugs that
target programmed cell death protein-1 (Keytruda) and programmed death ligand-1 (Tecentriq), poly
ADP-ribose polymerase (PARP), and/or antibody drug conjugates (Trodelvy) have shown promise in
improving clinical outcomes for a subset of TNBC. These inhibitors that target key genetic mutations
and specific molecular signaling pathways that drive malignant tumor growth have been used
as single agents and/or in combination with standard chemotherapy regimens. Here, we review
the current TNBC treatment options, unmet clinical needs, and actionable drug targets, including
epidermal growth factor (EGFR), vascular endothelial growth factor (VEGF), androgen receptor (AR),
estrogen receptor beta (ERβ), phosphoinositide-3 kinase (PI3K), mammalian target of rapamycin
(mTOR), and protein kinase B (PKB or AKT) activation in TNBC. Supported by strong evidence
in developmental, evolutionary, and cancer biology, we propose that the K-RAS/SIAH pathway
activation is a major tumor driver, and SIAH is a new drug target, a therapy-responsive prognostic
biomarker, and a major tumor vulnerability in TNBC. Since persistent K-RAS/SIAH/EGFR pathway
activation endows TNBC tumor cells with chemo-resistance, aggressive dissemination, and early
relapse, we hope to design an anti-SIAH-centered anti-K-RAS/EGFR targeted therapy as a novel
therapeutic strategy to control and eradicate incurable TNBC in the future.

Keywords: triple-negative breast cancer (TNBC); EGFR/K-RAS/SIAH signaling pathway; pathologic
incomplete responders (pIR); tumor-driving signaling pathways in TNBC; neoadjuvant chemotherapy
(NACT); residual cancer burden (RCB); concurrent ACT regimen (Adriamycin; Cytoxan; and Taxotere);
sequential ACT regimen (AC-T); chemo-resistance; tumor recurrence; clinical diagnostics; prognostics;
improved patient survival

1. Introduction

Breast cancer is the most commonly diagnosed cancer in women world-wide, and metastatic
breast cancer (MBC) is the second leading cause of cancer-related deaths in American women [1–3].
There are more than 3.5 million women who have been diagnosed with breast cancer in the United
States alone [4]. In 2020, an estimated 276,480 new cases of female breast cancer will be diagnosed,
and 42,170 MBC patients are expected to succumb to their disease [1]. Breast cancer is classified
into four distinct molecular subtypes based on the expression profile of ER, PR, and/or HER2
receptors [5–7]. Increased early screening, high-resolution imaging technology, and the design of
effective chemotherapy, radiation, targeted, and immunotherapy sequences have extended patients’
lives significantly [8–12]. Currently, more than 98% of patients with early-stage breast cancer survive
for 10–15 years or longer [13–15]. Although the death rate from female breast cancer dropped by 40%
from 1989 to 2017, the five-year survival rates for localized, regional, and distant diseases are at 99%,
86%, and 27% (https://www.cancer.org/cancer/breast-cancer/understanding-a-breast-cancer-diagnosis/
breast-cancer-survival-rates.html). Overall, the five-year survival rate for all stages combined together
in breast cancer remains at 90% in 2020. Thus, there remains a significant number (10%) of breast
cancer patients who continue to succumb to chemo-refractory metastatic and inoperable disease.
This subgroup of patients represents an unmet need that could be addressed with precision medicine,
multi-omics data profiling, multi-dimensional drug integration, and curative therapeutic innovations
in the clinic [16–19].

The prognosis for patients with locally advanced and metastatic disease remains poor [1,20]. MBC
displays dynamic, unpredictable, and rapidly evolving genetic diversity and biological heterogeneity
of the disease burden and tumor microenvironment (TME) [9,11]. MBC remains an incurable disease
despite many diagnostic and therapeutic advances in the past 30 years [16]. Developing effective
diagnostics and beneficial therapies to treat MBC and reduce MBC mortality remains an urgent priority.
Concentrated efforts to develop new targeted therapies based on major tumor vulnerabilities within
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key tumor-driving signaling pathways, multi-omics systems biology, and synergistic implementation
of immune checkpoint blockade therapies against MBC tumors have offered new avenues of improving
outcomes for chemo-resistant, relapsed, and metastatic breast cancer.

2. Triple Negative Breast Cancer (TNBC)

TNBC represents 15% of all breast cancers in the United States, and is characterized by the absence
of ER, PR, and HER2 receptor expression [10,12,14,21,22]. TNBC is the most aggressive phenotypic
subtype of breast cancer [22–27]. Pathologic features of TNBC include higher mean tumor size,
tumor grade, and proliferation index at diagnosis compared with non-TNBC tumors [28]. TNBC is
nearly twice as common in African American women than in Caucasian women, and more common
in premenopausal women and BRCA1/2 mutation carriers [18,23,24,29–37]. TNBC has the worst
outcomes of all breast cancer subtypes with a five-year overall survival (OS) of 78.5%, even when
adjusting for age, disease stage, race, tumor grade, and receipt of adjuvant chemotherapy [5,6,22,37,38].
Depending on their response to initial chemotherapy, one in three TNBC patients will develop tumor
recurrence, which typically occurs within the first three years of initial diagnosis, and persistently,
one in five TNBC patients will succumb to their metastatic disease in less than five years [21,22,26].
The five-year survival rates for localized, regional, and metastatic TNBC are 91%, 65%, and 11%,
respectively (https://www.cancer.org/cancer/breast-cancer/understanding-a-breast-cancer-diagnosis/
types-of-breast-cancer/triple-negative.html). The dismal prognosis of high-risk, locally advanced,
and metastatic TNBC highlights an unmet need for an improved survival in this subtype.

Another reason for the poor outcomes associated with TNBC is the lack of effective targeted
therapies which are commonly used to treat ER+/PR+ and HER2+ breast cancer subtypes [21–23,39].
Due to the low or absent expression of ER, PR, and HER2 receptors, endocrine therapies such as
selective estrogen receptor modulators (SERMs) and aromatase inhibitors, or anti-HER2 targeted
monoclonal antibody treatments like trastuzumab are ineffective in treating TNBC [5,40,41]. As a result,
standard cytotoxic chemotherapy remains the backbone of systemic therapy in TNBC [7,10,12,38,42].
TNBC tumors have shown a higher pathologic complete response (pCR) rate (approximately 30–40%)
to chemotherapies (doxorubicin, docetaxel, 5-fluorouracil, platinum drugs, and/or cyclophosphamide),
compared to non-TNBC tumors [21,23,43,44]. The pCR of TNBC post-neoadjuvant chemotherapy
(NACT) predicts long-term survival [45–49]. Patients whose tumors exhibit a pathologic incomplete
response (pIR) with residual disease post-NACT, are more likely to suffer early recurrence and reduced
survival [50–53]. Notably, by measuring residual disease after NACT, the risk of developing a future
life-threatening distant event can be accurately quantified [54,55] and TNBC patients with high-risk
residual disease are now commonly considered for additional adjuvant chemotherapies, including
capecitabine, post-operatively [7,56,57].

Further attempts to classify TNBC into distinct subtypes based on unique tumor/TME cellular
signatures and mRNA expression profiles may provide relevant information about the molecular
drivers, actionable therapeutic targets, and effective therapy selection [58–64]. While there is
controversy about the number of TNBC subtypes, it is well accepted that there are at least two–three
major subtypes, including the basal and luminal androgen receptor (LAR) subtypes and likely the
mesenchymal subtype [61,62,65,66]. The proposed immunomodulatory subtype may simply represent
an effect of the tissue microenvironment, and not a specific TNBC subtype after adjusting for tumor
infiltrating lymphocyte (TIL) levels. Additional sub-classifications of the basal-like (BL1 and BL2), and
mesenchymal (M) subtypes are more controversial [62,65,67]. Notably the LAR subtype is enriched
with hormone signaling, steroid synthesis, androgen/estrogen metabolism, and overexpression of
androgen receptors (AR) [61,62,66,68].

Based on the PAM50 gene expression profile, 78.6% of TNBC have significant overlap with the
basal-like molecular subtype [5,66,69]. The remaining gene expression profiles of TNBC (21.4%) may
be further sub-classified as normal-like (7%), HER2-enriched (7.8%), luminal B (4.4%), and luminal A
(2.2%) [66]. The claudin-low subset of TNBC is a particularly aggressive subtype [70,71]. Even though
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the assessment and characterization of TNBC into molecular subtypes is not currently performed
clinically on a routine basis, these sub-classifications based on unique cellular signatures and global
RNA expression profiles may provide therapeutic insights for each specific subset of TNBC patients.
By targeting TNBC subtype-specific tumor drivers, additional targeted therapies may augment the
standard of care (SOC) for each unique subtype of TNBC patients [39,44]. Using the molecular-based
TNBC sub-classifications, new subtype-specific tumor vulnerabilities and actionable drug targets
may be identified to apply and re-purpose FDA-approved drugs to treat chemo-resistant, late-stage,
and metastatic TNBC tumors [72–74].

3. Current TNBC Treatment Paradigms

At the time of diagnosis, clinicopathological parameters such as patient age, TNM (tumor size,
lymph node status, metastasis), stage, tumor grade, histology, and molecular subtype of breast tumors
are commonly used to support medical decision-making in selecting and prescribing the effective
treatment regimens. In a move towards enhanced precision medicine, the eighth edition of the
American Joint Committee on Cancer (AJCC) added prognostic biomarkers to the traditional anatomic
staging classification in TNBC [75–77]. In designing the optimal treatment sequencing and therapy
combinations, there are many considerations with respect to balancing the risks and benefits in treating
early-stage and low-risk TNBC. Over-treatment may lead to chemo-toxicity without benefit and
under-treatment may lead to early relapse and poor outcomes. In contrast, high-risk and locally
advanced TNBC necessitate aggressive treatment with a variety of chemotherapy schedules and drug
combinations. Since cytotoxic chemotherapy is often the only available systemic option to treat TNBC
in order to reduce and prevent tumor relapse and systemic metastasis, a vast majority of TNBC patients
with high-risk and locally advanced disease have no choices but to endure standard chemotherapies
as prescribed [21,22,78–80]. Ineffective chemotherapy and chemo-toxicity increases the burden of
treatment, and often leads to undesirable side effects and long-term adverse health consequences,
adversely impacting the patient’s quality of life.

Early-stage TNBCs with tumor sizes≤ 0.5 cm (T1a) or between 0.6–1.0 cm (T1b) without lymph node
involvement (N0) generally have a good prognosis [81]. A retrospective study demonstrated five-year
relapse-free survival (RFS) of 75–88.6% and five-year distant recurrence-free survival (DRFS) greater
than 95.2% in 143 patients with T1a,bN0 TNBC treated without adjuvant chemotherapy [82]. Another
study involving 363 patients with T1a,bN0 TNBC compared the five-year distant recurrence-free
survival (DRFS) between patients who were treated with adjuvant chemotherapy to those who were not.
Untreated T1a and T1b TNBC had a five-year distant recurrence-free survival (DRFS) of 93% (n = 74)
and 90% (n = 94), as compared to treated T1a and T1b TNBC which had a distant recurrence-free
survival (DRFS) of 100% (n = 25) and 96% (n = 170), respectively. These authors concluded that
there was no significant benefit to the addition of chemotherapy for TNBC tumors that were less than
1 cm [81]. Additionally, a recent analysis of centrally confirmed and systemically untreated TNBC
with T1, N0 disease (n = 182), found the five-year invasive disease-free survival (IDFS) was as follows:
[T1a: 82.5% (95% confidence interval (CI), 62.8–100; T1b: 67.5% (95% CI, 51.9–87.8); and T1c: 67.3%
(95% CI, 54.9–82.6)] [83]. Due to the lack of prospective randomized data for managing T1, N0 TNBC,
the decision to use or withhold chemotherapy remains a clinical judgment for the individual oncologist
and patient preference.

Systemic chemotherapy is the backbone therapy recommended for TNBC patients with a tumor
size > 1 cm with or without lymph node (LN) metastases. Standard chemotherapy regimens for TNBC
are usually based on a combination of anthracyclines, alkylators, and taxanes [84]. Anthracycline
and taxane therapies have also been found to improve outcomes of TNBC patients [85,86]. The ABC
trial determined that the addition of anthracycline to docetaxel and cyclophosphamide therapy
resulted in a small, though significant improvement in the four-year invasion disease-free survival
(IDFS) for TNBC patients, raising it from 88.2% to 90.7% with a p value of 0.04 [85]. Additionally,
the adjuvant breast cancer trial GEICAM 9906 tested the benefits of adding weekly paclitaxel after the
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completion of adjuvant fluorouracil, epirubicin, and cyclophosphamide (FEC) in LN-positive breast
cancer. The addition of eight weekly paclitaxel doses to standard FEC chemotherapy (FEC-P) decreased
the likelihood of tumor relapse by 47% and improved the seven-year DFS by 18% compared to FEC
alone [86].

Chemotherapy can be given to treat high-risk and early-stage TNBC in the neoadjuvant and/or
adjuvant setting [22,87,88]. Given no differences in survival between the adjuvant and neoadjuvant
settings, neoadjuvant chemotherapy (NACT) is now considered the standard approach to treat high-risk
TNBC to reduce tumor burden and evaluate chemo-efficacy prior to surgical resection [71,88–95].
NACT provides a number of distinct advantages, including: (1) potential to reduce the scope of surgery
for the primary breast tumors (e.g., segmental instead of total mastectomy); (2) reduced scope of axillary
node resection (e.g., sentinel node biopsy versus complete axillary node dissection); (3) time to consult
plastic surgeons and genetic counselors prior to surgery; and (4) most significantly, an opportunity to
assess tumor response, prognosis, and the potential need for additional or adjuvant treatments.

While high-resolution imaging is commonly used to track tumor response and follow patients
receiving NACT [96–101], radiologic assessments are imperfect predictors of pathologic response at
surgery. pCR is the most important prognostic clinical parameter in TNBC [101,102]. The complete
disappearance of invasive cancer post-NACT has been strongly linked to favorable outcomes [46,88].
For example, patients who have achieved pCR at the primary tumor site and axillary lymph nodes
(defined as absence of invasive cancer in the breast and regional lymph nodes or ypT0/Tis, N0)
post-NACT have the longest disease-free survival and significantly improved OS [46,88,103–107].
In contrast, pIR forecasts an increased risk of early tumor relapse and a significantly shorter disease-free
survival (DFS) with chemo-resistant and progressive disease post-NACT [46,90,108,109]. The pIR in
partial responders with an increased amount of residual diseases, such as moderate and extensive
residual cancer burden (RCB II-III), is prognostic and predictive of poor outcome and reduced
survival [54,55,110–112]. To further reduce tumor recurrence and metastatic spread, a significant
portion of TNBC pIR patients with the RCB II-III classification will elect to undergo additional rounds of
adjuvant chemotherapies as their health and performance status permit. The CREATE-X trial showed
that addition of adjuvant capecitabine improved the rate of disease-free survival (DFS) by 13.7% and OS
by 8.5% after preoperative chemotherapy in TNBC [56]. The additional adjuvant chemotherapy is now
considered standard therapy by NCCN to treat TNBC pIR patients with residual diseases post-NACT.

Although pCR is associated with the best outcomes, this is not an “all or none” relationship
because some TNBC pCR patients still develop tumor relapse years later [101,102,113,114]. The
RCB was developed by the MD Anderson Cancer Center using a formula based on tumor size,
invasive cancer cellularity, and nodal status post-NACT [54,55]. Tumors assessed by the RCB are
numerically classified as RCB 0-III, with the higher the RCB score or classification indicating a
higher likelihood of subsequent recurrence, metastatic spread, and increased mortality from breast
cancer. As a result, the high-risk RCB classification provides a continuous projection of the risk for
recurrence for pIR patients post-NACT [54,55,110–112]. Furthermore, TNBC outcomes have also
been correlated with quantitative assessment of immune response, such as enumerating TIL within
the residual tumors post-NACT [83,115–122]. The addition of carboplatin to anthracycline plus
taxane-based regimens has been tested in several trials in the neoadjuvant setting, demonstrating
increased pCR rates but also greater hematologic toxicity [123–125]. Only the Geparsixto trial, which
used a non-standard chemotherapy approach, showed early improvement in DFS [123,126]. The other
two trials, CALGB 40603 and BrighTNess, did not demonstrate improved outcomes despite the
increased pCR rates [124,125]. Extended analysis of the German trial found significantly better DFS
[Hazard Ratio (HR) 0.56; p = 0.022] with the addition of carboplatin and a modest (6%) though not
statistically significant improvement in OS [125]. Interestingly, high TIL infiltration in the pre-treatment
tumors was associated with the greatest benefit from the addition of carboplatin to NACT [122,126,127].
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4. Prognosis and Treatment Heterogeneity in TNBC

Despite the strong correlations between pathologic responses, pCR and pIR, and RCB with clinical
outcomes, the outcomes of TNBC patients with pIR tumors may vary widely. One unmet need is
distinguishing which pIR patients will remain disease-free and which of them will relapse following
SOC chemotherapy. Many TNBC patients with similar clinical and pathological presentations often
respond very differently to standard chemotherapies [31,88,128]. Therefore, accurately predicting
and anticipating which partial responders will relapse and which ones will stay in remission
post-NACT remains an unresolved problem in clinical oncology. Advanced imaging technology
and RCB classifications are unable to predict tumor recurrence and metastatic potential with
certainty for individual pIR patients. Although the identification and classification of high-risk
RCB tumors post-NACT is important, it remains insufficient, since we still cannot differentiate
between chemo-resistant residual tumor clones, particularly those at distant sites, that are still growing,
from chemo-sensitive residual tumor remnants that have stopped growing post-NACT. As a result,
developing new, precise, and high-resolution prognostic molecular biomarker(s) is needed to stratify
and differentiate high-risk from low-risk residual TNBC tumors post-NACT. Recently, it was found
that the detection of circulating tumor DNA and circulating tumor cells in liquid biopsy post-NACT is
associated with tumor recurrence in TNBC [129]. New prognostic and predictive biomarkers are needed
to provide real-time quantitative and interactive tumor information, thereby assisting oncologists
to select and guide second-line treatments in hopes of eradicating chemo-resistant TNBC [129,130].
Such biomarkers may also have the potential to serve as new drug targets for subsequent alternate
therapies [131]. Chemo-radiation, and targeted therapies are known to select for resistant tumor
clones if complete eradication is not achieved with first-line and second-line therapies [39,71,92].
It is of paramount importance that a majority of pIR patients with residual diseases should receive
precision-driven, tailored, and curative adjuvant therapy in a timely fashion at frontline settings to
control and eradicate chemo-resistant metastases, independent of RCB classification post-NACT [22,40].

The survival benefit of treating high-risk TNBC patients with concurrent or sequential
chemotherapies is comparable whether patients are treated with either neoadjuvant or adjuvant
chemotherapy [87]. However, there are multiple advantages in using NACT. NACT is interactive,
quantitative, evidence-driven, and a preferred option compared to adjuvant chemotherapies, which are
largely blind without the primary tumor as a surrogate marker post-surgery. Adjuvant-treated TNBC
patients can have heightened anxiety and chronic stress due to the uncertainty of not knowing whether
the prescribed post-operative chemotherapy has been effective in achieving a complete eradication of
all the invisible disseminated tumor cells. TNBC recurrence both loco-regional or distant metastases
generally may not be curable despite all the available second-line and/or third-line therapeutic regimens
and advanced treatment arsenals. In contrast, NACT offers distinct clinicopathological benefits by
directly measuring the tumor response of each individual TNBC tumor in a paired fashion pre-
and post-NACT. Finally, adjuvant-treated TNBC patients miss an opportunity to receive additional
evidence-based treatments known to prolong survival (e.g., capecitabine) based on initial response to
standard chemotherapy. Such a quantitative, interactive, comparative, and precision-driven platform
would be invaluable for risk-stratifying TNBC patients, quantifying chemo-efficacy, forecasting early
relapse, and predicting patient survival. There is a distinct advantage in the early identification and
close interrogation of the disseminated and residual chemo-resistant tumor cells responsible for early
tumor relapse and systemic metastases post-NACT. As such, NACT offers a valuable window of
opportunity for a data-driven molecular monitoring and quantification platform of real-time TNBC
tumor responses as a prelude to accurate molecular prediction of tumor relapse, outcome, and survival
in the clinic [13,95,131,132]. Based on dynamic tumor responses and major tumor vulnerabilities
revealed in real time, it opens the possibility to develop new actionable targets and novel therapies that
can be added in tandem to eradicate chemo-resistant and invasive residual tumor cells post-NACT.

Lastly, the survival rates for chemo-resistant, relapsed, and metastatic TNBC patients have not
improved significantly over the past 30 years [92]. High-risk and locally advanced TNBC tumors
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have high inter- and intra-tumor heterogeneity, which becomes more pronounced in chemo-resistant,
relapsed, and metastatic settings. Chemo-resistant TNBC has consistently challenged our ability to
design better targeted therapies to save more patients with progressive and metastatic disease [133–139].
Ultimately, there is a pressing need to identify the major TNBC vulnerability, target the conserved and
key TNBC-driving signaling pathways, and develop new innovative strategies to identify and control
multidrug-resistant, relapsed, and late-stage TNBC, preferably before metastatic deposits become
clinically detectable and/or often incurable in the clinic [19,140–142].

5. Newly FDA-Approved Targeted Therapies for TNBC

5.1. Immune Checkpoint Blockade Therapies

Immune checkpoint inhibitors targeting programmed death receptor-1 (PD-1) and programmed
death ligand-1 (PD-L1) have shown some promise in treating advanced and metastatic TNBC in
combination with standard chemotherapy [79,143–149]. PD-L1 is predominantly expressed on
infiltrating immune cells while only 5% of TNBC express PD-L1. PD-1 is often expressed on TILs,
especially T cells. When PD-L1 binds to PD-1, it produces an inhibitory signal that results in
T-cell suppression [79,150–152]. PD-L1 expression in TNBC occurs predominantly on infiltrating
immune cells, and some tumor cells [143,153–156]. The presence of increased or densely clustered
TIL or expression of PD-L1/PD-1 immune checkpoint molecules is usually associated with a better
prognosis, increased tumor immunity, and identifies potential candidates for immune checkpoint
blockade therapy [151,153,157–159]. PD-L1 is expressed in approximately 40% of TNBC tumors and
TNBC-associated tumor stromal and infiltrating immune cells in the TME, which is more frequent than
for non-TNBC tumors [79,83,160]. For example, ER+-luminal mammary tumors are rarely associated
with high levels of TILs or PD-L1 expression [161]. As a result, PD-L1 has become a promising
new therapeutic target because of its high prevalence and increased expression in metastatic TNBC
(mTNBC) [145,146].

The phase 3 IMpassion130 trial (NCT02425891) tested the benefits of adding atezolizumab, an
anti-PD-L1 monoclonal antibody, to nab-paclitaxel chemotherapy as compared to nab-paclitaxel
alone as a first-line therapy for 902 mTNBC patients who were partitioned in a 1:1 ratio of 451
patients in each treatment arm [143,144,154]. In an unselected mTNBC cohort, the addition of
atezolizumab to nab-paclitaxel improved progression-free survival (PFS) modestly (7.2 months vs.
5.5 months, respectively), but did not significantly improve OS (21.3 months vs. 17.6 months) in
the atezolizumab/nab-paclitaxel arm when compared to the chemotherapy (nab-paclitaxel)-alone
arm. However, in a pre-specified analysis of a PD-L1-positive TNBC cohort (PD-L1 positivity is
defined by PD-L1 expression on tumor-infiltrating immune cells that cover ≥ 1% of the tumor area),
the addition of atezolizumab to nab-paclitaxel significantly improved median PFS of 7.4 months versus
4.8 months, respectively (HR 0.60; 95% CI, 0.48–0.77; p < 0.0001), and a larger benefit on OS of 25 months
versus 15.5 months, respectively (HR, 0.62; 95% CI, 0.45–0.86) when compared to the chemotherapy
(nab-paclitaxel)-alone arm. Therefore, approximately 40% of TNBC patients with PD-L1 expression on
infiltrating immune cells in the tumors are likely to benefit from the addition of an anti-PD-L1 antibody
like atezolizumab. Of note, there were increased treatment-related adverse effects due to the addition
of atezolizumab, as 15.9% of patients discontinued either the atezolizumab or nab-paclitaxel compared
to 8.2% of patients receiving nab-paclitaxel and the placebo [143,144]. Based on the IMpassion130
trial results, the FDA granted accelerated approval of atezolizumab (Tecentriq) to treat PD-L1-positive
unresectable locally advanced and metastatic TNBC in combination with nab-paclitaxel (Abraxane) on
March 8, 2019 [143,144].

In the neoadjuvant setting, the phase III KEYNOTE-522 trial (NCT03036488) studied the addition
of pembrolizumab (Keytruda), an anti-PD-1 monoclonal antibody, to neoadjuvant chemotherapy
and continued adjuvant chemotherapy in 1174 untreated stage II or III TNBC patients who
were partitioned in a 2:1 ratio of 784 patients in the pembrolizumab–chemotherapy group and
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390 patients in the placebo–chemotherapy group. The pCR rate was 64.8% (95% CI, 59.9–69.5) in the
pembrolizumab–chemotherapy group versus 51.2% (95% CI, 44.1–58.3) in the placebo–chemotherapy
group (estimated treatment difference, 13.6%; 95% CI, 5.4–21.8; p < 0.001) [162,163]. After a
median follow-up of 15.5 months, the disease progression rate was recorded as 7.4% in the
pembrolizumab–chemotherapy group, and 11.8% in the placebo–chemotherapy group (HR 0.63;
95% CI, 0.43–0.93) [162,163]. In contrast to the IMpassion130 trial, the addition of pembrolizumab to
standard chemotherapy in the KEYNOTE-522 trial demonstrated improvements in pCR, independent
of PD-L1 expression status [162]. Additional prospective studies on pembrolizumab have yielded
promising results. Preliminary data from the KEYNOTE-355 (NCT02819518) study on patients with
untreated locally recurrent inoperable or metastatic TNBC that expressed PD-L1 with a combined
positive score (CPS) ≥ 10 tumors showed that the addition of pembrolizumab to chemotherapy
significantly improved PFS compared to chemotherapy alone (9.7 vs. 5.6 months, respectively).
OS and the significance of the addition of pembrolizumab in TNBC patients with low CPS >1
tumor are still being investigated (KEYNOTE-355 Abstract—Cortes et al., (2020) Randomized,
double-blind, phase III study of pembrolizumab + chemotherapy versus placebo + chemotherapy
for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer.
https://ascopubs.org/doi/abs/10.1200/JCO.2020.38.15_suppl.1000).

Despite these exciting developments, promising efficacy, and rapid FDA approval of incorporating
immuno-chemotherapy to treat unresectable, locally advanced, relapsed, and metastatic TNBC,
the success of atezolizumab/pembrolizumab is still modest measured by an improved five-year
survival. Chemo-, radiation, and targeted therapy may be used to prime, synergize, and invigorate
PD-1 inhibition in TNBC [146]. The successes of multidrug combination and correct treatment
sequencing are often incremental and anecdotal in eliciting a robust antitumor immune response to
kill off the immunologically “cold” mTNBC consistently and reliably. Treatment strategies to convert
immunologically “cold” tumors into immunologically “hot” ones remain a clinical challenge and an
unmet need in TNBC, since we aim to recapitulate and reproduce the remarkable successes reported in
15–45% of late-stage melanoma and non-small cell lung cancer patients whose previously incurable
tumors were able to achieve durable response to immune checkpoint blockade therapy in combination
with chemo-, radiation, and targeted therapies to induce and maximize immune cell-mediated tumor
cell killing in vivo and significantly extend the long-term survival [164–174].

5.2. PARP Inhibitors

BRCA1/2 are well-known tumor suppressor genes whose loss of function mutations are associated
with early-onset, increased familial inheritance, sporadic incidence, tumor aggression, and poor
outcomes in breast cancer [175–178]. Recently, poly-ADP-ribose polymerase (PARP) inhibitors
identified via synthetic lethal screens were clinically tested, and received FDA approval—all in record
time [179–183]. Currently, BRCA1/2-mutant mammary tumors are being treated with anti-PARP
targeted therapies, including approximately 19.5% of TNBC [184]. Normal BRCA1/2 proteins are
responsible for homologous double-stranded dsDNA repair with the help of additional protein
partners, including PARP enzymes. The inhibition of PARP1 or PARP2—the most abundant PARP
enzymes—leads to the accumulation of irreparable breaks of both single-stranded and double-stranded
DNA and cytotoxic PARP-DNA complexes [180,185–187]. As a result, TNBC tumors carrying BRCA
mutations and/or other similar DNA repair pathway mutations are sensitive to PARP inhibitor
therapy [179,188,189]. The OlympiAD trial (NCT02000622) is a phase 3 randomized study to examine
the efficacy of olaparib, a PARP1 inhibitor, for patients with metastatic, germline BRCA mutated,
HER2-negative breast cancer, and who had received no more than two previous lines of chemotherapy
or treatments of physician’s choice [190]. The trial results showed that olaparib monotherapy
provided a significant benefit over standard chemotherapy, i.e., median progression-free survival
(PFS) was 2.8 months longer and the risk of disease progression or death was 42% lower in patients
who received olaparib, compared to those who received standard therapy of capecitabine, eribulin,

https://ascopubs.org/doi/abs/10.1200/JCO.2020.38.15_suppl.1000
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or vinorelbine [190–192]. Olaparib was generally well-tolerated with minimal side effects and
acceptable toxicity. However, an important finding was that there was no statistically significant
improvement in OS with olaparib compared to standard chemotherapy in this cohort. In this cohort of
HER2-negative metastatic breast cancer patients with a germline BRCA mutation, a subset of TNBC
and ER+/PR+ MBC patients were studied and an improved PFS was reported in this OlympiAD
trial [190–192]. The EMBRACA trial studied the efficacy of talazoparib, another PARP inhibitor,
on advanced breast cancer patients with germline BRCA1/2 mutations and who had been previously
treated with chemotherapy. This study similarly showed that patients who took talazoparib had
improved PFS compared to patients who received single-agent chemotherapy. The positive responses
were consistently documented in a subset of TNBC patients’ germline BRCA1/2 mutations. Of note,
PARP inhibitors are typically well-tolerated drugs and can be added to standard chemotherapy to
synergistically treat mammary tumors with germline mutations with either high, intermediate, or low
penetrance in the homologous recombination pathway, and in the single-strand and double-strand
DNA break repair machinery in hopes of improving the clinical outcome and quality of life of TNBC
patients with germline mutations in BRCA1, BRCA2, PALB2, RAD51, p53, and CHEK2 [188,193–201].

5.3. Anti-Trop2 Antibody Drug Conjugate Therapy in TNBC

Trophoblast cell-surface antigen (Trop-2) is a glycoprotein overexpressed in many epithelial
cancers as a pro-growth signal [202]. Sacituzumab govitecan-hziy is an anti-Trop-2 antibody
conjugated to an active metabolite of irinotecan (SN-38) [203,204]. This antibody drug conjugate
inhibits topoisomerase activity and its DNA binding, prevents ligation of cleaved DNA strands,
results in double-strand DNA breaks, triggers cell death, and blocks DNA replication in tumor
cells [202,203]. The effects of sacituzumab govitecan-hziy have been studied on heavily pretreated
mTNBC patients [204–206]. Sacituzumab govitecan-hziy is well tolerated and induced an improved
response rate and median PFS (33.3% and 5.5 months, respectively) compared to standard chemotherapy
treatment (10–15% and 2–3 months, respectively) [206]. The phase 3 ASCENT trial (NCT02574455) was
a confirmatory randomized study designed to validate the safety and efficacy data of sacituzumab
govitecan previously reported in a Phase 2 study of heavily pretreated patients with metastatic
TNBC [206]. Recently, the phase 3 ASCENT study of metastatic TNBC was halted due to compelling
and convincing evidence of impressive drug efficacy after this antibody drug conjugate significantly
improved progression-free survival (PFS), overall survival (OS), objective response rate (ORR),
and durable objective responses in heavily pretreated mTNBC patients without brain metastasis.
In this advanced mTNBC cohort, Sacituzumab govitecan demonstrated a statistically significant
improvement in PFS compared to standard chemotherapy (HR, 0.41; 95% CI, 0.32–0.52). The mTNBC
patients that received sacituzumab govitecan-hziy had a PFS of 5.6 months (95% CI, 4.3–6.3),
compared to that of 1.7 months (95% CI, 1.5–2.6) for patients who received chemotherapies of
physician’s choice (p < 0.0001) [206]. In April 2020, Sacituzumab govitecan-hziy (Trodelvy) received
accelerated FDA approval for heavily pretreated and advanced mTNBC based on these promising
and exciting results [205,206]. Since then, Trodelvy® has become the very first antibody drug
conjugate to be approved for patients with relapsed or refractory mTNBC who have failed two prior
chemotherapies (https://www.immunomedics.com/our-company/news-and-events/immunomedics-
announces-positive-results-from-phase-3-ascent-study-of-trodelvytm/).

Due to the clinical success of PD-L1/PD-1 inhibitors, PARP inhibitors, and anti-Trop-2 antibody drug
conjugates, these targeted drugs have received FDA approval and now warrant clinical consideration
in the treatment of selected subsets of TNBC patients with the aforementioned clinical indications.
Importantly, Trodelvy has demonstrated a clear clinical benefit in a heavily pretreated and advanced
mTNBC population. Furthermore, mTNBC patients are being tested for the expression of PD-L1 in
TILs and/or germline BRCA1/2 mutations to determine if they qualify for one of the new targeted
therapies. PD-1 inhibitors (pembrolizumab) and PD-L1 inhibitors like atezolizumab in combination
with chemotherapies are being considered for administration at the frontline settings to treat locally

https://www.immunomedics.com/our-company/news-and-events/immunomedics-announces-positive-results-from-phase-3-ascent-study-of-trodelvytm/
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advanced, recurrent, and metastatic TNBC as early as possible, given the promising results of the
IMpassion130 and KEYNOTE-355 trials [143,144]. Despite these amazing promises and tangible
successes, approximately half of mTNBC patients’ tumors that express PD-L1 in infiltrating immune
cells and even a smaller minority of TNBC patients carry germline BRCA1/2 mutations. Therefore,
many TNBC patients would not benefit from these recently FDA-approved targeted therapies.

6. Emerging Targeted Therapies in TNBC

There are several emerging therapies and repurposed drugs targeting tumor-driving signaling
pathways in TNBC, including epidermal growth factor (EGFR/HER1) antibodies, PI3K/AKT/mTOR,
and angiogenesis inhibitors, androgen receptor (AR) antagonists, and estrogen receptor beta (ERβ)
agonists [39,207–209]. These drugs are currently still under clinical investigation with limited or mixed
results, and therefore they are not a part of standard of care (SOC) therapy.

6.1. EGFR Targeted Therapy in TNBC

EGFR activation/amplification is detected in approximately 25–50% of TNBC [210–213]. In theory,
EGFR inhibition by anti-EGFR monoclonal antibodies like cetuximab and/or EGFR small molecule
inhibitors should be effective in the treatment of EGFR-driven TNBC. Unfortunately, multi-centered
clinical trials have not shown cetuximab to be an effective therapy for TNBC. For instance, the TBCRC
001 trial tested the effects of cetuximab alone and cetuximab plus carboplatin therapy on stage IV
TNBC patients whose heavily pretreated tumors progressed and metastasized despite multiple rounds
of chemotherapy. The study found that cetuximab alone and cetuximab plus carboplatin produced
responses in only 6% and 16% of patients, respectively [39,214]. In a subset of the TNBC patient
population that underwent serial biopsy, only a minority of patients demonstrated minimal EGFR
pathway inhibition after receiving cetuximab alone or cetuximab plus carboplatin. This result suggested
that cetuximab was largely ineffective in inhibiting EGFR pathway activation in TNBC, likely as a
result of compensatory signaling pathway activation downstream of the EGFR receptor. Instead of
being diminished, the EGFR activation signal was sustained by signaling bifurcation, cancer network
crosstalk, and compensatory pathway activation, as there are several intertwined major cellular
signaling pathways that are tightly regulated by active EGFR signals [214]. Given these negative results,
cetuximab is not currently recommended for the treatment of TNBC with EGFR overexpression.

6.2. VEGF Targeted Therapy in TNBC

Vascular endothelial growth factor (VEGF) is the most important angiogenic factor in breast cancer
since it stimulates tumor cell proliferation and growth as well as new vessel formation in growing
tumors. VEGF expression is often higher in TNBC compared to non-TNBC, and increased VEGF
expression is associated with poor outcomes independent of tumor size, nodal status, and histological
grade [215]. Clinical studies of bevacizumab, an anti-VEGF antibody, have shown improvements in
PFS but insignificant improvements in OS in TNBC. The BEATRICE trial evaluated the outcomes of
TNBC patients treated with adjuvant bevacizumab and chemotherapy as compared to chemotherapy
alone [216,217]. No significant improvement in the three-year IDFS and/or OS for patients treated with
bevacizumab compared to chemotherapy alone was found (83.7% vs. 82.7%, respectively) [217,218].
Another study tested the benefits of adding bevacizumab to chemotherapy as first-line treatment of
HER2-negative metastatic breast cancer in a large cohort of 2447 patients [219]. The authors reported
that patients treated with bevacizumab and chemotherapy had improved median PFS compared to
chemotherapy alone (8.1 months vs. 5.4 months, respectively) and marginally improved median OS
(18.9 months vs. 17.5 months, respectively) [219]. In the neoadjuvant setting, one study found that
bevacizumab added to chemotherapy increased the pCR rate for TNBC, but another study found
that the increase in pCR achieved with the addition of bevacizumab was confined to non-TNBC
tumors [220–222]. However, neither study showed any significant improvement in five-year survival
for TNBC, consistent with several other neoadjuvant trials [103,124,223,224]. In the end, due to the
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modest antitumor effect and limited effect on patient survival, bevacizumab is not recommended to be
used in the first-line setting to treat metastatic TNBC.

6.3. PI3K/AKT/mTOR Targeted Therapy in TNBC

The phosphoinositide-3 kinase (PI3K) and AKT signaling pathways are potentially actionable
targets in TNBC. Activating mutations in these signaling pathways, such as PIK3CA and AKT1, occur
in about 25% of primary TNBC [225–227]. Additionally, PI3K inhibitors have shown some promising
efficacy in stage II-III TNBC patients whose tumors have PIK3CA mutations [68,207,225]. Following
on the efficacy of alpelisib to improve PFS for HR-positive breast cancer [228–230], alpelisib plus
nab-paclitaxel is being assessed in anthracycline-refractory TNBC with PIK3CA or PTEN mutations in
a phase II trial [225]. The addition of everolimus, an mTOR inhibitor, was found to be synergistic with
cisplatin and paclitaxel in the treatment of stage II/III TNBC patients. However, significant side effects
and adverse events were also observed in the everolimus arm, without any improvement in pCR or
clinical response in this randomized phase II neoadjuvant study [68]. Since the mesenchymal subtype of
TNBC is often associated with aberrant PI3K/mTOR pathway activation, increased invasion, and poor
outcomes, the addition of temsirolimus or everolimus has been tested in combination with liposomal
doxorubicin and bevacizumab. The addition of the mTOR inhibitor to treat metaplastic TNBC resulted
in a significant improvement in objective response rate (31% vs. 0%; p = 0.04) but not in clinical
benefit rate (44% vs. 45%; p > 0.99) in these patients whose TNBC tumors showed increased PI3K
pathway activation [231]. The AKT inhibitors, like ipatasertib and capivasertib, have shown promise in
improving outcomes for patients with high-risk TNBC [207,232,233]. The LOTUS trial (NCT02162719)
was a randomized, double-blind, phase II study on 124 treatment-naïve patients with inoperable,
locally advanced, or metastatic TNBC. Patients enrolled in the study were randomly assigned (1:1) to
be treated with paclitaxel plus either ipatasertib or a placebo. The study reported that mTNBC patients
who were treated with ipatasertib had an improved median PFS compared to the placebo (6.2 months
vs. 4.9 months, respectively, p = 0.037). In the subset of mTNBC patients with PIK3CA/AK1/PTEN
mutations, patients treated with ipatasertib had a median PFS of 5.3 months compared to 3.7 months in
patients treated with the placebo (p = 0.36) [234]. The PAKT trial (NCT02423603), a phase 2 randomized
and double-blind study, tested the efficacy of capivasertib with paclitaxel compared to a placebo
and paclitaxel in 140 patients with untreated mTNBC [235]. The addition of capivasertib improved
median PFS slightly (5.9 months vs. 4.2 months) and OS (19.1 months vs. 12.6 months) compared to
the paclitaxel arm alone. The benefits of capivasertib were more pronounced in the subset of TNBC
patients with PIK3CA/AK1/PTEN mutations (n = 28), and these specific TNBC patients treated with
capivasertib and paclitaxel had a median PFS of 9.3 months compared to a median PFS of 3.7 months
for patients treated with a placebo and paclitaxel [235].

6.4. AR Targeted Therapy in TNBC

AR is a nuclear steroid hormone receptor that is expressed at a variety of levels in 10–43% of
TNBC [68,227,236]. The relationship between AR expression and prognosis for TNBC patients remains
unclear and controversial. For some patient populations in the United States and Nigeria, AR expression
is associated with a favorable outcome. However, for patients in other countries, such as Norway and
India, AR expression is associated with a poor outcome [237]. Several phase 2 clinical trials have been
conducted to test the clinical efficacy of multiple FDA-approved AR inhibitors for AR-positive prostate
cancer as a possible treatment for AR-positive TNBC. In the first phase 2 study of metastatic AR-positive
TNBC breast cancer patients, bicalutamide, an AR antagonist, showed a six-month clinical benefit rate
of 19% [95% CI, 7–39%] and a median PFS of 12 weeks (95% CI, 11–22 weeks) [238]. In another phase 2
single-arm trial (UCBG 12-1), a different AR inhibitor, abiraterone acetate plus prednisone, was used
to treat a cohort of 146 AR-positive TNBC patients with inoperable locally advanced or metastatic
diseases whose tumors had ≥ 10% AR expression. This study showed a six-month clinical benefit rate
of 20% [95% CI, 7.7–38.6%] and a median PFS of 2.8 months (95% CI, 1.7–5.4%) for abiraterone, which
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was comparable to bicalutamide [239]. In a third phase 2 single-arm and two-stage trial (MDV3100-11),
another potent AR inhibitor, enzalutamide, was used to treat a cohort of 118 AR-positive TNBC patients:
78 of these TNBC tumors had ≥ 10% AR expression (AR-High) and 40 of these TNBC tumors had ≥ 0%
AR expression (AR-Low). The AR-High TNBC patients who received enzalutamide had a 16-week
clinical benefit rate of 33% (95% CI, 23–45), a median PFS of 3.3 months (95% CI, 1.9–4.1), and a median
OS of 16.5 months (95% CI, 12.7–20.0). Patients with AR-Low TNBC tumors who received enzalutamide
had a 16-week clinical benefit rate of 25% (95% CI, 17–33), a median PFS of 2.9 months (95% CI,
1.9–3.7), and a median OS of 12.7 months (95% CI, 8.5–16.5) [240,241]. However, given the unclear
relationship between AR expression and prognosis for the AR-positive TNBC cohort, it is uncertain
whether the clinical benefits from AR inhibitors like bicalutamide, abiraterone, and enzalutamide
should be attributed to the anti-AR treatments or to the overall favorable outcomes for the AR-positive
TNBC subset. Therefore, additional studies are required to demonstrate whether AR expression is a
useful prognostic biomarker and an actionable drug target in mTNBC prior to the incorporation of
AR inhibitors in the treatment of AR-positive mTNBC [39,242]. One such study is the START trial
(NCT03383679), an ongoing randomized phase 2 study testing the efficacy of darolutamide, a new AR
antagonist, compared to capecitabine for AR-positive, locally recurrent (unresectable), or metastatic
TNBC (https://clinicaltrials.gov/ct2/show/study/NCT03383679).

6.5. ERβ Targeted Therapy in TNBC

Estrogen receptor beta (ERβ) is highly expressed in normal mammary tissue [243–245].
ERβ expression level is gradually decreased or completely lost during mammary tumorigenesis
in a variety of highly aggressive and malignant breast cancers [244,246–248]. As a known tumor
suppressor, persistent ERβ expression is associated with a less aggressive and non-invasive phenotype,
and prolonged patient survival [249]. ERβ expression is retained in 30% of TNBCs, whereas its
expression is lost in 70% of TNBC [250,251]. For ERβ-positive TNBC cells, adding estrogen (E2) or
other ERβ-selective agonists to activate ERβ receptor can elicit potent anticancer effects by inducing
cystatin gene expression, decreasing cell proliferation, inhibiting canonical TGFβ pathway activation,
blocking epithelial-to-mesenchymal transition, and preventing malignant cell invasion and metastatic
spread [252–257]. These results suggest that ERβ-augmentation therapies can elicit tangible clinical
benefits for a subset of ERβ-positive TNBC tumors with a good prognosis [258,259]. One limitation is
that anti-ERβ therapy will not benefit ERβ-negative TNBC patients with an aggressive phenotype and
poor prognosis.

7. K-RAS/SIAH is a Major Tumor-Driving Signaling Pathway in TNBC

7.1. SIAH’s Gatekeeper Role is Indispensable for Proper K-RAS/EGFR Signal Transduction

Normal K-RAS/SIAH/EGFR signaling pathway activation is indispensable for proper cellular
communication, cell proliferation, and tissue homeostasis in multicellular organisms. However,
abnormal K-RAS/SIAH/EGFR pathway activation is highly prevalent in chemo-resistant, recurrent,
and metastatic TNBC [141,142,260–265]. Seven in absentia homologue (SIAH) RING-domain E3
ligase is the most downstream signaling gatekeeper and the most evolutionarily conserved signaling
molecule in the EGFR/HER2/K-RAS signaling pathway (Figure 1A) [19,141,142,266,267]. Based on
its extraordinary evolutionary conservation and high significance as the most downstream signaling
“gatekeeper” required for proper K-RAS/EGFR signal transduction, SIAHON/OFF is a binary code whose
expression is a reliable readout of EGFR/RAS/RAF/MEK/MARK pathway activation/inactivation in
human cancer. Supported by strong evidence in developmental, evolutionary and cancer biology,
we hypothesize that K-RAS/SIAH pathway activation is a major tumor driver, and SIAH represents a
strategically well-positioned tumor vulnerability and a new therapeutic target against chemo-resistant,
relapsed, and metastatic TNBC in the future (Figure 1A).

https://clinicaltrials.gov/ct2/show/study/NCT03383679
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pathway in TNBC. (B,C) Loss of SIAH expression is correlated with K-RAS pathway inactivation and 
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relapse in breast cancer of mixed molecular subtypes. The box-and-whisker plots were used to 
graphically illustrate the population distribution of median SIAH expression levels in both node-
positive (as marked by purple color bar graphs) and node-negative (as marked by teal color bar 
graphs) in breast cancer of the four molecular subtypes: Luminal A (LumA), Luminal B (LumB), 
HER2, and TNBC. (B) The median SIAH expression levels in the untreated node-negative and node-
positive primary tumors of the 4 molecular subtypes pre-NST are shown: Luminal A (LN-negative 
LumA at 20% and LN-positive LumA at 20%), Luminal B (LN-negative LumB at 20% and LN-positive 
LumB at 30%), HER2-positive breast cancer (LN-negative HER2-positive breast cancer at 30% and 
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chemo-sensitive TNBC tumor cells that have stopped growing post-NACT, predicting increased 
patient survival (Alive). (E) The partial responders with high SIAH expression in residual tumors 
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reduction post-NACT, it is evident that persistent high SIAH expression in residual tumors will 
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Figure 1. SIAHON/OFF binary expression in residual tumors post-neoadjuvant systemic therapy (NST)
can be used to risk-stratify pIR patients and predict patient survival in high-risk TNBC at 5 years.
(A) Schematic illustration of the K-RAS–SIAH–EGFR pathway activation in TNBC. SIAH is the most
downstream “gatekeeper” signaling module in the canonical K-RAS/EGFR signal transduction pathway
in TNBC. (B,C) Loss of SIAH expression is correlated with K-RAS pathway inactivation and tumor
regression, whereas persistent SIAH expression is correlated with K-RAS activation and tumor relapse
in breast cancer of mixed molecular subtypes. The box-and-whisker plots were used to graphically
illustrate the population distribution of median SIAH expression levels in both node-positive (as
marked by purple color bar graphs) and node-negative (as marked by teal color bar graphs) in breast
cancer of the four molecular subtypes: Luminal A (LumA), Luminal B (LumB), HER2, and TNBC.
(B) The median SIAH expression levels in the untreated node-negative and node-positive primary
tumors of the 4 molecular subtypes pre-NST are shown: Luminal A (LN-negative LumA at 20%
and LN-positive LumA at 20%), Luminal B (LN-negative LumB at 20% and LN-positive LumB at
30%), HER2-positive breast cancer (LN-negative HER2-positive breast cancer at 30% and LN-negative
HER2-positive breast cancer at 50%), and TNBC (LN-negative TNBC at 70% and LN-positive TNBC at
70%). The data showed that TNBC has the highest proliferative index in a peerwise comparison. (C) The
median SIAH expression levels in the treated node-negative and node-positive residual tumors of the
4 molecular subtypes post-NST are shown: Luminal A (LN-negative LumA at 2% and LN-positive
LumA at 3%), Luminal B (LN-negative LumB at 0.5% and LN-positive LumB at 1%), HER2-positive
breast cancer (LN-negative HER2-positive breast cancer at 3% and LN-negative HER2-positive breast
cancer at 0.5%), and TNBC (LN-negative TNBC at 8% and LN-positive TNBC at 15%). The data
showed that TNBC is a high-risk cohort with intrinsic chemo-resistance, independent of the LN
status, in a group comparison. The error bars or whiskers in the histogram and bar charts represent
the 95% CI, and in the box plots, they represent the upper (top) and lower quartiles (bottom) data
distribution—with points beyond 95% CI representing the outliers. Importantly, SIAHON expression
can be used to accurately identify the individual pIR outliers with high SIAH expression and poor
survival in breast cancer. (D,E) Representative IHC images of SIAH, EGFR, phospho-ERK, and Ki67
staining in TNBC pIR residual tumors are shown. (D) The pIR patients with no or low SIAH expression
in residual tumors post-NACT stayed in remission. SIAHOFF marked chemo-sensitive TNBC tumor
cells that have stopped growing post-NACT, predicting increased patient survival (Alive). (E) The
partial responders with high SIAH expression in residual tumors (despite 90% tumor shrinkage)
post-NACT developed tumor relapse and succumbed to their metastatic diseases. SIAHON identified
chemo-resistant TNBC tumor cells that are still growing post-NACT, thus predicting poor survival
(Dead). Conclusion: For TNBC pIR patients with 70–90% tumor reduction post-NACT, it is evident
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that persistent high SIAH expression in residual tumors will predict early tumor relapse, poor prognosis,
and reduced survival, whereas no or low SIAH expression in residual tumors will predict tumor
remission, good prognosis, and increased survival in both the node-negative and node-positive
TNBC post-NACT.

7.2. K-RAS/SIAH/EGFR Pathway is Commonly Activated in TNBC, and SIAH is a Therapy-Responsive and
Prognostic Biomarker in TNBC

Genomic landscape studies have indicated that activation of the tumor-driving K-RAS/EGFR
pathway is highly prevalent in high-grade, locally advanced, relapsed, and chemo-refractory
TNBC [208,268–274]. Furthermore, we and others have shown that K-RAS/SIAH pathway activation
is associated with progression of DCIS to invasive ductal cancer, and reduced survival of
luminal-type breast cancer [262,275]. Hence, studying activation/inactivation of the tumor-driving
K-RAS/SIAH/EGFR pathway represents an opportunity to define therapy-responsive and prognostic
K-RAS/SIAH-centered biomarkers in TNBC. This SIAH-centered anti-TNBC strategy may provide
a solid foundation on which to stratify TNBC partial responders, identify chemo-refractory tumors,
predict survival, and decide whether to add adjuvant therapies to control chemo-resistant residual
TNBC post-NACT.

SIAHON expression indicates persistent EGFR/RAS/RAF/MEK/MAPK pathway activation
and cancer cell proliferation and predicts for tumor progression, whereas SIAHOFF expression
indicates EGFR/RAS/RAF/MEK/MARK pathway inactivation, diminished cell proliferation, and
tumor regression [142,276]. As a binary code (SIAHON/OFF) to predict tumor progression/regression
post-NACT, SIAH is a useful prognostic biomarker in TNBC [142,266,267] (Figure 1). We found
that persistent high expression of SIAH in residual tumors reflects activation of the “tumor-driving”
K-RAS/SIAH/EGFR pathway that fuels tumor growth and metastatic spread of disseminated and
residual chemo-resistant tumor clones remaining after NACT (Figure 1B–E) [276]. Currently, there
are no reliable prognostic molecular biomarkers that can be used to risk-stratify pIR patients, identify
chemo-resistant tumor clones, quantify tumor response, forecast early tumor relapse, and predict
patient survival after surgical tumor resection post-NACT in TNBC. We hypothesize that SIAH is
well positioned to serve as a new biomarker whose ON/OFF expression can be used to predict TNBC
recurrence/remission post-NACT. By comparing the percentage reduction (%) of SIAH expression
in primary mammary tumors pre- and post-NACT, SIAH could potentially be used to quantify the
efficacy of chemotherapy, identify chemo-resistant residual tumors, and forecast early tumor relapse
post first-line chemotherapy. Conversely, the SIAHON/OFF binary code classification in the residual
tumor at a single tumor cell resolution could potentially augment prognosis and permit accurate
risk stratification of low-risk pIR patients who are likely to stay in remission and thus may not need
additional adjuvant therapy from high-risk pIR patients who are destined to relapse post-NACT and
could benefit from additional adjuvant therapies (Figure 1).

7.3. SIAH as an Actionable Target Against EGFR-Driven TNBC.

The EGFR pathway activation remains a major drug target in TNBC. EGFR is upregulated
and overexpressed in approximately 50% of TNBC patients [213,260,276]. Although the anti-EGFR
monoclonal antibody, cetuximab, was ineffective in shutting down EGFR activation in TNBC, this does
not mean that inhibiting the EGFR pathway activation in some other ways might not impede
EGFR-driven TNBC tumorigenesis and metastasis. The lack of efficacy of anti-EGFR therapy in TNBC
may be attributed to the compensatory co-activation and extensive network crosstalk of multiple effector
pathways downstream of EGFR, that drive aggressive tumorigenesis and metastatic dissemination of
TNBC. EGFR activation signals through the K-RAS/SIAH signaling pathway [263,277–282]. Based on
the aggressive TNBC tumor biology and high proliferation indices of most TNBC, we hypothesize that
EGFR-driven TNBC tumors are uniquely suited for a SIAH-centered biomarker discovery program as
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well as development of anti-SIAH-based targeted therapy by targeting this conserved and essential
signaling bottle neck, SIAH, to shut down this highly adaptive EGFR/RAS/RAF/MEK/MARK signaling
network that drives chemo-resistant, relapsed, and metastatic TNBC in the clinic (Figure 1).

In the future, we hope to develop a companion computer algorithm by incorporating the
SIAHON/OFF binary code to augment RCB risk stratification, and triage and differentiate high-risk pIR
TNBC patients who are likely to develop early tumor relapse from lower-risk pIR patients who are likely
to stay in remission post-NACT. Ultimately, developing a new SIAH pathway-centered prognostic
biomarker panel and a novel anti-SIAH-based targeted therapy for the highest-risk TNBC patients
could be very important. Additionally, future research should focus on SIAH and SIAH-interacting
proteins as additional actionable targets in TNBC by conducting global signaling pathway analysis
through reverse phase protein microarrays (RPPA) and phosphoproteomic profiling of cancer kinomic
signaling pathways in multidrug-resistant, relapsed, and late-stage TNBC.

8. Concluding Remarks

Chemo-refractory and metastatic TNBC is a major health challenge, resulting in high relapse rates
and poor survival [16]. NACT is standard treatment for women with high-risk TNBC. A completed
course of NACT results in two possible outcomes: pCR or pIR with residual disease. In general,
pCR patients do well, whereas pIR patients exhibit dramatically different clinical outcomes which
can be predicted, albeit based on statistical modeling, by use of the RCB classification. However,
given that NACT regimens may take up to four–six months to complete, new biomarkers are needed
to identify TNBC patients that are unlikely to respond to standard approaches, given the dismal
prognosis for chemo-resistant TNBC. Thus, developing new, interactive, therapy-responsive, and
prognostic biomarkers to further risk-stratify pIR patients with residual disease in real time during
or after NACT are needed in order to identify patients at the highest risk for tumor recurrence, and
to develop actionable therapeutic targets to prevent emergence of metastatic disease and eradicate
multidrug-resistant, relapsed, and inoperable mTNBC.

The treatment disparity in TNBC stems from its genetic diversity, tumor/TME heterogeneity, and the
lack of curative therapies in resistant, recurrent, and metastatic settings. The lack of expression of ER,
PR, and HER2-neu limits standard TNBC treatment to multiple regimens of cytotoxic chemotherapies.
Alongside currently FDA-approved new approaches targeting the host immune tumor surveillance
system (anti-PD-1/anti-PD-L1), the already compromised DNA repair machinery with BRCA1/2
mutations (PARP inhibitors), and topoisomerase I inhibitors (sacituzuamb), a logical next opportunity
is to target SIAH in the K-RAS/EGFR pathway in malignant TNBC. SIAH is essential for proper
K-RAS/EGFR signaling pathway activation. SIAHON expression indicates EGFR/RAS/RAF/MEK/MAPK
pathway activation and tumor progression, whereas a lack of SIAH expression, SIAHOFF, indicates
EGFR/RAS/RAF/MEK/MAPK pathway inactivation and tumor regression post-NACT. As such, SIAH is
well positioned to become a new tumor-specific, therapy-responsive, and prognostic biomarker, and a
major tumor vulnerability, and a new therapeutic target in TNBC (Figure 1). Targeted SIAH therapies
in conjunction with surgery, chemo-, radiation, targeted, and immune checkpoint blockade therapy
may improve the outcomes of TNBC patients in the future. Further detailed studies are required
to delineate the biological function, substrate selection, target degradation, molecular regulation,
signaling rewiring, and crosstalk of the SIAH/K-RAS/EGFR pathway in the context of a dynamic and
heterogeneous TNBC signaling network in vitro and in vivo.

Focusing on the K-RAS/SIAH pathway should bring much-needed attention to this important
and evolutionarily conserved tumor-driving pathway that fuels chemo-resistant TNBC. Although
the role of oncogenic K-RAS pathway activation has been well established in several of the deadliest
cancer types, its mechanism of activation in chemo-resistant, relapsed, and metastatic TNBC remains
elusive. This lack of mechanistic understanding along with the low mutation rate of K-RAS in
breast cancer may contribute to it being understudied in this high-risk population. The K-RAS/SIAH
pathway is nonetheless an important area of investigation, with the potential to reveal biomarkers
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that would permit better assessment for real-time clinical decision-making during and after NACT
of TNBC. SIAH has shown a good clinical promise to stratify TNBC pIR patients and augment RCB
classification post-NACT (Figure 1). The discovery and validation of therapy-responsive and prognostic
K-RAS/SIAH/EGFR pathway biomarkers is an important development in TNBC. Ultimately, the hope
is to translate SIAH into clinical practice to detect ineffective chemotherapy, identify chemo-resistant
tumor clones, forecast early tumor relapse, and predict outcome and survival as early as possible.
New targeted therapy that blocks SIAH function, possibly combined with chemo-, radiation, and
targeted therapy and/or immune checkpoint blockade treatment, may improve the outcomes of a
subset of TNBC patients whose invasive residual tumors retain a high-proliferation index post-NACT.
We strongly encourage the development of new anti-SIAH-centered anti-EGFR/RAS/RAF/MEK/MARK
targeted therapy to treat chemo-resistant, locally advanced, and metastatic TNBC in the hopes of
saving more lives in the future.
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Abbreviations

ACT Adriamycin: Cytoxan, and Taxotere
AR Androgen receptor
CI confidence interval
DFS disease-free survival
DRFS distant recurrence-free survival
EGFR epidermal growth factor receptor
ER estrogen receptor
HER2 human epidermal growth factor receptor 2
H&E hematoxylin and eosin staining
HR Hazard Ratio
IDFS invasive disease-free survival
IHC immunohistochemistry
LN lymph node
MBC metastatic breast cancer
mTNBC metastatic TNBC
mTOR the mammalian target of rapamycin
NACT neoadjuvant chemotherapy
OS overall survival
PARP poly-ADP-ribose polymerase
pCR pathological complete response
PD-1 programmed cell death receptor-1
PD-L1 programmed death ligand-1
PFS progression-free survival
PI3K phosphoinositide-3 kinase
pIR pathological incomplete response
PKB protein kinase B (AKT)
PR progesterone receptor
RCB Residual Cancer Burden
SEER Surveillance, Epidemiology and End Results Program
SIAH human homologues of Drosophila Seven-In-Absentia
SOC standard of care
TIL tumor infiltrating lymphocytes
TME tumor microenvironment
TNBC triple-negative breast cancer
TNM tumor size, lymph node status, metastasis
Trop-2 Trophoblast cell-surface antigen
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