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Abstract: Over the past decade, short non-coding microRNAs (miRNAs), including circulating and
fecal miRNAs have emerged as important modulators of various cellular processes by regulating
the expression of target genes. Recent studies revealed the role of miRNAs as powerful biomarkers
in disease diagnosis and for the development of innovative therapeutic applications in several human
conditions, including intestinal diseases. In this review, we explored the literature and summarized
the role of identified dysregulated fecal miRNAs in intestinal diseases, with particular focus on
colorectal cancer (CRC) and celiac disease (CD). The aim of this review is to highlight one fascinating
aspect of fecal miRNA function related to gut microbiota shaping and bacterial metabolism influencing.
The role of miRNAs as “messenger” molecules for inter kingdom communications will be analyzed to
highlight their role in the complex host-bacteria interactions. Moreover, whether fecal miRNAs could
open up new perspectives to develop novel suitable biomarkers for disease detection and innovative
therapeutic approaches to restore microbiota balance will be discussed.

Keywords: small non-coding RNAs; fecal microRNAs; bacterial small RNAs; extracellular vesicles;
colorectal cancer; celiac disease; biomarkers; host-microbiome interplay

1. Introduction

Communication molecules are necessary for “cohabitation” of bacterial and eukaryotic cells in the
human body. These molecules are synthesized, released and internalized by both cell types in order to
alter physiological cell function [1]. Communication occurs through small non-coding RNAs (sncRNAs),
regulator molecules that can modulate gene expression. The sncRNAs include rRNAs, microRNAs
(miRNA), tRNAs, small nucleolar RNAs (snoRNAs), small interfering RNAs (siRNAs) as well as
piwi-associated RNAs (piRNAs) [2]. Bacterial and eukaryotic cells produce sncRNAs that are released
by extracellular vehicles (EVs), a heterogeneous population of nano-sized cell-derived membranous
vesicles originated from eukaryotic endosomal system (exosomes), plasma membrane (microvesicles:
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MVs), apoptotic bodies and/or from prokaryotic outer membrane vesicles (OMVs) or membrane vesicles
(MVs) in Gram-negative and Gram-positive bacteria, respectively [3-8]. Biologically active components
of EVs (termed “cargo”) are proteins, lipids, DNA, metabolites and extremely various RNA species
(e.g., mRNAs, miRNAs, tRNAs) [9-12]. It is known that bacteria express a wide array of sncRNAs,
approximately 50400 nt in length, known as microRNA-size small RNAs (msRNAs) or generally
bacterial-derived small RNA (bsRNAs) that are principally involved in the regulation of several
physiological processes inside the bacterial cell [13,14]. Although poorly described so far, bsRNAs
could regulate the expression of their respective target human genes [15]. In contrast, eukaryotic
miRNAs are the most studied classes of sncRNA, regulating gene expression at the post-transcriptional
level by binding to complementary sequences in 3’-untranslated regions (3’-UTRs) of target messenger
RNAs (mRNA) [16-18]. It has been estimated that more than 60% of human protein-coding genes
harbor predicted targets of miRNAs [19], and more than 30% of human genes have conserved miRNA
binding sites in their 3’UTR [20]. Since such binding is not entirely homologous, miRNAs can act
upon mRNA targets with limited complementarity; subsequently, a single miRNA can target a wide
range of mRNAs as, in retrospect, multiple miRNAs can have similar mRNA targets as well [17,21-24].
Additionally, more than 90% of human Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
contain genes that are targeted by at least one miRNA [19,25]. The partial or full complementarity
of a miRNA with the mRNA target regulates the expression of target genes generally in a negative
manner causing their degradation or translational inhibition [26,27]. Therefore, an upregulation
of a specific miRNA generally leads to a lower expression of the protein encoded by its mRNA
target, whereas the downregulation of a specific miRNA could lead to higher protein levels [27-30].
Eukaryotic miRNAs are found in several body sites and fluids since they are secreted by most cells
under both physiological and pathological conditions. Circulating miRNAs can be found in the blood,
saliva, urine, breast milk as well as in feces [31-36]. Moreover, circulating miRNAs were found to be
differentially expressed in several human diseases. These findings began to make us understand how
cells use miRNAs as communication molecules in the sophisticated dialogue among them. Due to
their modulating function, circulating and particularly fecal miRNAs have emerged as a powerful
tool for disease diagnosis and the development of miRNA-based therapeutic strategies. Focusing on
colorectal cancer (CRC) and celiac disease (CD), herein we summarize the most important deregulated
miRNAs and fecal-derived miRNAs associated to these intestinal diseases with the contribution of
intestinal microbiota. The aim of this review is to report one fascinating aspect of miRNA function
related to gut microbiota shaping and bacterial metabolism influencing. The role of miRNAs as
“messenger” molecules for inter kingdom communications will also be analyzed to add novel elements
in deciphering the complex host-bacteria interactions.

2. Biogenesis of miRNAs

Discovered in 1993, miRNAs are typically ~18-22 nucleotides in length, single-stranded sncRNAs
that are expressed by every cell type [37-39]. Unlike mRNAs, sncRNAs do not serve as templates
for protein synthesis, but instead play a major role in modulating physiological responses through
different mechanisms, such as RNA-RNA or RNA—-protein interactions [40]. The biogenesis of miRNAs
represents a series of sequential processes to generate mature miRNAs, as illustrated in Figure 1. In the
canonical biogenesis pathway most miRNA genes are initially transcribed by RNA Polymerase II
into a primary precursor (pri-miRNA, ~200 nucleotides in length), and then processed in two steps
catalyzed by members of the RNAse III family of enzymes, one nuclear and one cytoplasmic, named
DROSHA and DICER, respectively. These pri-miRNAs are subsequently excised by the Microprocessor
Multiprotein Complex (MMC), a dimer composed of RNAse IIl DROSHA enzyme and double-stranded
RNA binding protein Pasha/DGCRS, into 60-70 nucleotide hairpin precursor miRNAs (pre-miRNAs).
Hairpin precursors are exported from the nucleus to the cytoplasm by Exportin 5, where pre-miRNAs
are additionally processed by DICER (RNase III endonuclease) into ~22 nucleotide-long mature duplex
miRNA with a guide strand and a passenger strand. The guide strand associates with several RNA
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binding proteins, including argonaute 2 (Ago2), to form the microribonuclear protein (miRNP) complex
known as the RNA-induced silencing complex (RISC). The mature miRNA may silence target gene
expression via two mechanisms: binding to a target mRNA strand, thereby preventing its translation
and/or promoting target mRNA degradation [41,42].
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Figure 1. Biogenesis of miRNAs and their roles in translational repression.
3. Clinical Applications of miRNAs

Recently, miRNAs have emerged as a new class of cellular molecules with potential diagnostic,
prognostic and therapeutic implications. Up to now, the field of miRNA research has flourished
with over 17,000 miRNAs discovered in 142 species. As of October 2018, more than 1917 precursors
and 2654 human-derived miRNAs have been reported in miRBase 22.1 and it is estimated that these
miRNAs regulate up to 50% of the transcriptome [43,44]. The key word “miRNA” pulls more than
85,600 publications from PubMed, and the first miRNA-targeted drug, Miravirsen (Santaris Pharma,
Denmark), is currently in Phase II clinical trial. Miravirsen is an antisense oligonucleotide that inhibits
both DROSHA- and DICER -mediated processing of miR-122 precursors which enhance hepatitis
C virus (HCV) genome transcription [45-48]. The role of miRNAs in various cellular processes has
been established, including cell division and death, cellular development, proliferation, replicative
senescence, intracellular signaling and aging [16,23,49-53]. It is now clear that dysregulated expression
of miRNAs can exert profound effects on cells function and, as a result, leads to various pathological
and occasionally malignant outcomes [54-57]. The involvement of miRNAs was showed in more
than 70 different diseases such as cancer, viral infection, gastrointestinal malignancies, diabetes,
immune-related diseases, and neurodegenerative disorders [51,53,58-64]. In view of this, miRNAs are
considered an interesting target for therapeutic intervention; to date, approximately 20 miRNA- and
siRNA-based therapeutics are currently in the preclinical and/or in clinical trials [45,47].

3.1. Circulating miRNAs

An interesting class of miRNAs includes “circulating miRNAs” characterized by their active
release through EVs or passive release upon cell death [12,30,65-69]. Several studies have shown that
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miRNAs can be identified in a variety of body fluids, including plasma, saliva, urine, seminal fluids,
breast milk, cerebrospinal fluid and more recently also in feces, leading to the definition of circulating
miRNAs [70-74]. Every miRNA has a unique nucleotide sequence and expression pattern in a certain
cell type; however, although miRNAs show a high tissue specificity, body fluids can contain different or
unique circulating miRNAs, that can putatively have several hundred gene targets, thereby generating
an intricate picture [75]. Circulating miRNAs have been found associated with EVs, with high-density
lipoproteins or with proteins involved in their processing such as the argonaute protein. EVs form
includes microvesicles and exosomes that represent the common form of released extracellular
miRNAs [30,65,68,69]. Nevertheless, miRNAs show the features of an ideal biomarker being available
in body fluids, tissue- and disease-specificities, extremely stable and easily collected and detected using
quantitative reverse transcription-polymerase chain reaction (qQRT-PCR) [40,76-79]. The identification
of circulating miRNAs opened the possibility to use them as biomarkers to understand their role
in human health or diseases [80]. Although researchers are unveiling the miRNA functions, a lot of
work should be done in characterizing circulating miRNAs including fecal miRNAs. Fecal miRNAs
were first observed in 2008 [81], and several subsequent studies revealed that they are altered in many
intestinal diseases, mainly in CRC [82-84]. Although fecal miRNAs are known to play a functional role
in the intestine, their contribution in host-microbe communication is only beginning to be understood.
More recently the role of bsRNAs started to be investigated highlighting new regulatory functions of
intestinal bacteria on CRC [85].

The sophisticated miRNAs- and bsRNAs-mediated crosstalk between intestinal cells and
microbiota is revealing new mechanisms by which eukaryotic and prokaryotic cells interact. In the
following paragraphs we present a current overview about the state of art of fecal sncRNAs, principally
human-derived, and their implication in intestinal homeostasis and diseases with a particular focus on
miRNA interacting with bacterial cells.

3.2. Fecal miRNAs Contribute to Gut Microbiota Shaping

The intestinal microbiota has established itself in the scientific and clinic landscape as one of
the most important components of the human body regulating its homeostasis. Moreover, a huge
number of human diseases have been linked to changes in microbiota profiles underling the role of
bacteria and their metabolites on host physiology [85-89]. Only recently, the interest has shifted to
specific host components that are able to influence gut microbiota including host genetic factors and
miRNAs [90-93].

The susceptibility of bacterial cells to eukaryotic miRNAs has been demonstrated by observing that
some miRNAs such as miR-1, miR-130a, and miR-2392 can efficiently enter mitochondria and regulate
the translation of specific mitochondrial genome-encoded transcripts [94-96]. These findings settled the
bases for studying the impact of miRNAs on gut microbiota composition and dynamics [51,81,90,97-99].
Liu et al. for the first time demonstrated that host-fecal miRNAs can modulate gut microbiota
composition by modifying the relative abundance of bacteria, considered at a family-level taxonomy.
Indeed, mice defective in intestinal epithelial cell (IEC)-specific miRNA showed an increase of the
diversity of bacterial genera compared to wild type mice. His pioneer study showed that fecal miRNAs
are mostly secreted by IEC and by the homeodomain-only protein homeobox (HOPX)-positive cells,
such as goblet and Paneth cells [100]. Moreover, most detectable fecal miRNAs are present in EVs form
possibly because they are more stable. Using this knock-out mouse model, they observed a marked
exacerbation of dextran sulfate sodium (DSS)-induced colitis in IEC-specific miRNA-deficient mice
compared to wild type that was ameliorated by transplanting wild type fecal miRNAs. This observation
suggests that bacterial growth may be controlled by extracellular fecal miRNAs and may prove the
clinical relevance for their development for therapeutic applications in humans, as the efficacy and
safeness of fecal microbiota transplant [101-104]. Interestingly, it was demonstrated that specific
fecal miRNAs were able to enter Fusobacterium nucleatum and Escherichia coli cells, promoting their
growth. In particular, human miR-515-5p increased the ratio of F. nucleatum 16S rRNA/23S rRNA
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transcripts as miR-1226-5p and miR-4747-3p increased the mRNA levels of E. coli yegH and RNaseP,
respectively. Vice versa, miR-1224-5p and miR-663 reduced the mRNA levels of E. coli rutA and fucO,
respectively [100]. YegH belongs to the flavin adenine dinucleotide binding proteins associated to
the membranes and probably acts as a flavoprotein oxidoreductase enzyme; together with enhanced
expression of RNaseP, YegH contributes to the increase of bacterial metabolism and growth. RutA is
a pyrimidine monooxygenase involved in pyrimidine metabolism (degradation and biosynthesis) and
FucO is a lactaldehyde reductase involved in carbohydrate metabolism. Although predicted, these
functions can be profoundly altered by miRNA contributing to bacterial metabolism shift. Ji Y et al.
demonstrated that differentially expressed miRNA, associated to intestinal bowel diseases (IBD),
target the intestinal bacteria F. nucleatum, E. coli and the segmental filamentous bacteria (SFB) [105].
In particular, miR-199a-5p inhibited the proliferation of SFB but did not affect the in vitro multiplication
of F. nucleatum and E. coli. On the contrary, miR-1226 and miR-515-5p inhibited the growth of
F. nucleatum or E. coli and promoted SFB replication. Finally, miR-548ab inhibited the growth of
F. nucleatum and E. coli having no effect on the growth of SFB [105]. These data indicate that the
differential expression of fecal miRNAs affect the growth of intestinal bacteria. Moreover, miRNAs can
fine tune the relative abundance of the different bacterial species. Hence, miRNAs became an important
“influencer” of microbiota composition and dynamic. Taking into account that changes in microbiota
composition are associated to several human diseases, acting on miRNAs could contribute to manipulate
microbiota balance. Furthermore, the idea that microbes might actively and selectively take up different
miRNAs and that these miRNAs in turn affect microbial growth supports the hypothesis of an inter
kingdom communication via miRNAs. F. nucleatum and E. coli have been previously reported to drive
CRC [100,106]. Nucleic acids from both bacteria were found to co-localize with host miRNAs, possibly
leading to changes in bacterial replication rates. Identifying host-derived miRNAs targeting bacterial
gene expression would be of paramount importance to study the relationship at the bacterial-host
interface. Recently, Teng et al. demonstrated that miRNAs encapsulated in plant-derived exosome-like
nanoparticles (ELNs) can enter bacteria specifically modifying their growth rate [99]. Indeed, mice
fed with Ginger-derived ELNs (GELNs) showed a different microbiota profile compared to mice
treated with Phosphate Buffered Saline (PBS), with an increase of Lactobacillaceae and Bacteroidales and
a decrease of Clostridiales. A deeper analysis demonstrated that GELNs induce the growth of several
species belonging to Lactobacillus and that GELN lipid composition mediates their specific uptake by
Lactobacillus rhamnosus (LGG). RNA sequencing and proteomic data analyses indicated that 398 mRNAs
and 149 proteins were increased in GELN-treated LGG; vice versa, 249 LGG mRNAs and 133 proteins
were downregulated [99]. The alignment of miRNA nucleotide sequences with bacterial mRNAs
revealed that the GELN gma-miR396e targets the LexA mRNA, and its downregulation was directly
linked to the LGG faster growth. Moreover, GELN mdo-miR7267-3p downregulates the expression
of the monooxygenase ycnE gene resulting in a bacterial metabolic change demonstrated by the
accumulation of tryptophan and the reduction of its derivative metabolite indol-3-acetamide. Finally,
GELN miR167a-5p downregulates the LGG pilus-specific spaC gene [99]. Altogether, these results
definitively demonstrate that eukaryotic-derived miRNAs manipulate bacterial gene expression
impacting on bacterial metabolism and phenotypes such as the motility. We are just at the beginning to
identify miRNAs targeting bacteria and to understand their biological function, including microbiota
modulation. Vice versa, a more detailed scenario is available about the impact of microbiota on
intestinal-derived miRNAs. The most important discoveries are extensively reviewed elsewhere and
briefly summarized below [26,92,107].

Dalmasso and colleagues demonstrated for the first time that microbiota, by regulating miRNAs,
alters host gene expression [51]. The authors showed that miRNA expression profiles of germ-free
(GF) mice were markedly different from GF mice colonized with the microbiota from pathogen-free
(SPF) mice both in ileum and colon. Furthermore, they observed that differentially expressed miRNA
such as miR-665, which was found downregulated in colonized GF mice, targeted the Abcc3 gene
(an ATP-binding cassette transporter) in the colon [51]. Using the same approach, Singh et al. showed
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that different levels of miRNA expression impact on the regulation of the intestinal barrier function
and homeostasis [80]. It was also shown that commensal bacteria induce the expression of miR-21-5p
in IECs upregulating the ADP ribosylation factor 4 (ARF4) which, in turn, alters tight junction
expression [108]. Viennois et al. showed that fecal miRNA profiles are strictly dependent on the
gut microbiota. Indeed, colitogenic mice are characterized by a fecal miRNA’s profile that became
a reliable inflammatory “signature” [84]. Interestingly, the foodborne pathogen Listeria monocytogenes
modifies microbiota-regulated miRNA profiles upon infection [109]. Furthermore, putative targets of
the differentially expressed miRNAs are associated to the immune response. Hence, gut microbiota
by modulating host miRNAs contributes to reprogramming host transcriptional landscape during
infections [109]. IECs are the major source of intestinal miRNAs but, at the same time, they are the
target of miRNA regulatory function. It was recently showed that miRNA profiles are very different
across the IEC subtypes (e.g., goblet, enteroendocrine, tuft and Paneth cells). Moreover, miRNA
sensitivity to microbial status is highly cell type-specific, suggesting a new mechanism by which
microbiota can interfere with a specific cell type behavior [110]. The gut ecosystem is an extreme
complicated environment in which eukaryotic and prokaryotic cells cohabit and interact by using
several “informative” molecules such as sncRNAs. Deciphering this communicative strategy will
extend the knowledge on miRNAs biologic role and will help in defining lines of intervention for
human health (Figure 2).

Healthy gut

Figure 2. Molecules as messenger in bacteria-host communication. Fecal miRNAs from eukaryotic
cells and bsRNAs from bacteria can be taken up by bacteria or by host cells, respectively, and critically
mediate bacterial-host communication. Host-derived miRNAs can regulate bacterial gene transcripts
and affect bacterial growth which might promote intestinal dysbiosis.

3.3. Fecal miRNAs as Potential Biomarkers to Link Colorectal Cancer (CRC) and Gut Microbiome

CRC is still one of the three most aggressive cancers which leads to one million new cases every
year with an increasing incidence globally [111,112]. CRC is commonly regarded as a multistep process,
initially from aberrant crypt foci, through benign precancerous lesions (adenomas), followed by
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malignant tumors (adenocarcinomas) over an extended period [113]. Screening and early diagnosis of
cancer are the main approaches for CRC prevention; at present, the common used tests for CRC are
colonoscopy, computed tomography (CT) colonography (virtual colonoscopy), multitargeted stool
DNA test, detection of serum carcinoembryonic antigens (CEA), detection of carbohydrate antigen 19-9
(CA19-9) and a fecal immunochemical test (FIT) [114,115]. Indeed, fecal specimens contain exfoliated
tumor cells and several tumor markers that are already used for CRC screening as well as stable
miRNAs [81,116-121]. Among these available tests, colonoscopy screening is the most common method
for detection of CRC [122]. However, colonoscopy is an invasive operation, expensive and it has been
estimated that 25% of polyps are not detectable during the screening [122-124]. Moreover, the other
available tests have several limitations such as low specificity and sensitivity [125]. In recent years,
the identification of novel CRC biomarkers has become one of the main challenges of cancer research
which highlights the importance of developing effective, cost-efficient, non-invasive tests for CRC
screening. The possibility to explore intestinal-derived miRNAs as putative indicators of CRC opened
new research lines focused on miRNA profiling in CRC patients versus healthy controls. Michael et al.
in 2003 provided the first evidence of differentially regulated miRNAs from CRC and normal mucosa
specimens resected from the same patient [126]. As outlined before, the diagnostic value of circulating
miRNAs for CRC detection was suggested in several studies [81,127-133], and a growing body of
evidence is highlighting fecal miRNAs as powerful clinical tools [81,82]. Ahmed etal. demonstrated the
feasibility of fecal RNAs isolation and miRNAs quantification in stool samples by detecting specifically
downregulated miRNAs in CRC patients compared to healthy individuals [81]. After the establishment
of isolation and quantification protocols, Ahmed et al. carried out a global microarray expression
studies on stool samples to evaluate the expression of miRNAs in patients exhibiting various stages of
CRC progression (tumor-lymph node-metastasis (TNM) stages 0-IV). Among 212 differently expressed
miRNAs, they identified 20 miRNAs (12 downregulated and 8 upregulated) discriminating not only
CRC patients from healthy controls but also different TNM stages with high sensitivity and specificity
(Table 1) [134]. Based on this, Wu et al. observed the upregulation of miR-21 and miR-92a in CRC
bioptic specimens compared to adjacent normal tissues and confirmed this trend analyzing stool
samples from CRC patients and healthy controls (Table 1). In addition, stool-derived miR-92a, but not
miR-21, was significantly higher in patients with polyps than in controls suggesting a stage-specific
miRNA pattern. To test the potential diagnostic application, these authors assayed the sensitivity of
miR-92a in detecting CRC patients. Results showed that miR-92a had a sensitivity of 71.6% and 56.1%
for CRC and polyp, respectively, and a specificity of 73.3%. Finally, they showed that removal of tumor
resulted in reduced stool miR-21 and miR-92a levels, and removal of advanced adenoma resulted
in the decrease of the stool miR-92a level [135].

Downregulation of overexpressed tumoral miRNAs after curative surgery was also observed
by Rotelli et al., suggesting that a possible modulation of these miRNAs can represent a therapeutic
approach [83]. More recently, Yau et al., in a systematic analysis of fecal-based miRNAs, showed that
fecal miR-21, miR-92a and their combination are promising non-invasive biomarkers for fecal-based
CRC screening [121]. Importantly, a meta-analysis of over 500 CRC patients reported that the
levels of miR-92a in the blood can be detected with a sensitivity and specificity of 76% and 64%,
respectively. This result highlights the important role of this circulating miRNA for CRC diagnosis [136].
Among those fecal miRNAs suggested as biomarkers for CRC screening, the miR-17-92 cluster (miR-17,
miR-18a, miR-19a, miR-19b, miR-20a, miR-92a) and miR-135 were reported to have a good sensitivity
and specificity (74.1% and 79.0%, respectively) [137]. Likewise, the expressions of miR-21, miR-146a,
miR-221 and miR-18a were found to be upregulated in CRC tissue compared to adjacent normal
tissue [138,139]. Accordingly, these miRNAs were found to be overexpressed also in fecal samples,
corroborating their CRC-predictor function (Table 1) [138]. Furthermore, specific fecal miRNAs,
such as miRNA-29, were found to be upregulated in rectum cancer and downregulated in colon cancer,
suggesting the feasibility of using differential miRNA expression patterns as cancer fingerprints [140].
Importantly, dysregulated miRNAs are abundantly present in stools that contain exfoliated colonocytes
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and blood as a consequence of the disease [81,134,135,141-143]. Analyses on stool-based miRNAs were
shown to be reproducible due to their high stability in feces. Recently, a systematic analysis conducted
on 51 dysregulated fecal miRNAs showed the potentiality of individual or multiple stool-based-miRNAs
as non-invasive CRC biomarkers [144]. Despite their valuable role as biomarkers, further investigations
on larger study populations of CRC patients are required to enhance the sensitivity and specificity for
cancer diagnosis.

One of the most studied topics related to CRC is the contribution of gut microbiota on cancer
development and progression. Bacterial relative abundance and composition have an impact on
carcinogenesis. Dysbiosis is characterized by the expansion and depletion of bacterial species; in CRC,
ithas been demonstrated the expansion of specific bacterial pro-tumorigenic species, such as F. nucleatum,
E. coli and Bacteroides fragilis, and the reduction of species that could have protective and beneficial
roles against the overgrowth of tumor-associated bacteria [145]. Moreover, through the recent use of
fecal shotgun metagenomics and machine learning models, it was shown that CRC is characterized
by different levels of microbiota variability ranging from species profiles to gene variants in one
single bacterial strain [146,147]. Indeed, these datasets or classifiers include CRC-associated bacterial
species and functional genes possibly involved in eukaryotic cell toxicity and tumorigenesis [146,147].
The building of these datasets allows a more reliable comparison among data from different studies to
detect valid microbiota-derived CRC biomarkers. The first investigation on the association between
miRNA expression and microbiota composition in human CRC was performed by Yuan and colleagues
in 2018 [148]. The miRNA and microbiome profiles in CRC specimens were compared to adjacent normal
tissues collected from CRC patients. They identified 76 differentially expressed miRNAs, including
the known oncogenic miRNAs miR-182, miR-503 and mir-17~92 cluster. By analyzing the microbiota
profiles, they showed that the relative abundances of specific bacterial taxa and genera correlated to
differentially expressed miRNAs [148]. For example, the genus Blautia is abundant in normal tissues,
whereas it is poorly represented in tumor samples; interestingly, Blautia is positively correlated with the
expression level of miR-139, highly expressed in normal tissue, and negatively correlated with miR-20a,
miR-21, miR-96, miR-182, miR-183 and miR-7974, all overexpressed in tumor tissues. Searching for
putative targets of deregulated miRNAs in KEGG bacterial database revealed a positive correlation with
bacterial pathways including transporters, peptidoglycan, and terpenoid backbone biosynthesis [148].
Altogether, these results suggested a possible way by which miRNAs modify the microbiota composition
and bacterial metabolic function, as previously described. On the other hand, microbiota is able to
influence host miRNA profiles indicating a bidirectional miRNA-mediated interaction between host
and bacteria. Very recently Tomkovich and colleagues were able to unveil a complex interaction
among tumorigenic bacterial community, deregulated host-derived miRNAs and CRC development.
Germ-free ApcMinA80/+ 11107 mice, representing a model for CRC, were transplanted with tumorigenic
bacterial community isolated from biofilm-positive and —negative tissues from human CRC tumor
and healthy mucosa, respectively, being biofilms a condition associated with adenomatous lesions
and CRC progression [88,149,150]. By miRNA sequencing on stools, they found deregulated fecal
miRNAs in ApcMin8850/+; 11107 mice associated with tumorigenic bacterial community compared
to mice associated with non-tumorigenic bacteria, as expected. Moreover, the human homologous
miRNAs (hsa-miR-21-5p, hsa-miR-142-5p, and hsa-miR- 146a-5p) were shown to be increased in CRC
patients highlighting the impact of tumorigenic bacteria on host-derived miRNAs [150]. Interestingly,
differentially regulated miRNAs (miR-2137, miR-5126, miR-6239, miR-6240 and miR-6538) were
predicted to target bacterial genes, including genes regulating motility, secretion, outer membrane
proteins, stress response, iron acquisition and carbohydrate utilization/transport. Furthermore, they
observed that several genes belonging to these functional categories were upregulated in ApcMinA850/+;
11107 mice associated with tumorigenic bacterial community [150].

Host-bacterial communication is also mediated by bsRNAs. The study of bsRNAs associated to
human diseases is an extremely recent breakthrough in the field of sncRNAs. An interesting point of
view was presented by Tarallo and colleagues who highlighted a CRC signature composed of profiles
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of miRNAs, bsRNAs, and microbiota. By combining transcriptomic and metagenomic data from
stool samples, they showed that bsRNA profiles reflect the differences in microbial profiles of healthy
subjects vs. patients with adenomas and CRC [85]. For example, the bsRNA 6S RNA was found to be
overexpressed in CRC patients; this bsRNA correlated with the regulation of bacterial stationary phase
promoting E. coli survival under nutritional limitation. Furthermore, the overexpression of ryfD, ffs,
and FnrS bsRNAs regulate E. coli biofilm, swarming ability, signal recognition particle system and cell
metabolism in anaerobic growth conditions. Overall, a differential regulation of specific E. coli bsRNAs
could reflect the selection of E. coli strains more adapted to colonize the tumor microenvironment
which share phenotypic traits [85,88]. Although being interesting, the contribution of bsRNAs on
human diseases is poorly investigated; vice versa, a lot of attention is focused on human-derived
miRNAs and how they can alter bacterial species profiling and their metabolism.

Overall, the combination between miRNA and bsRNAs sequencing and 165 rDNA profiling
represents a powerful approach to deepen the knowledge about sncRNAs regulating bacterial behavior
within tumor environment. In addition, it could reveal novel sncRNAs suitable for CRC diagnosis but
also for microbial modulation in view of therapeutic applications. Overall, fecal sncRNAs represent
undoubtedly a promising CRC biomarker; however, studies available on patients are exploratory,
include a low number of subjects and employ different and not-standardized methodologies. Moreover,
extended analyses on fecal sncRNAs modulation and their impact on gene expression are mostly
predictive and performed using animal or in vitro models. Hence, the diagnostic power of this
biomarker has not been fully demonstrated yet. To this end, the most relevant fecal human-derived
miRNAs proposed as CRC biomarkers are listed in Table 1 in order to depict the hypothetical miRNA
panel to be considered for clinical researches.

Table 1. Fecal miRNAs as diagnostic biomarkers for colorectal cancer (CRC).

Fecal miRNAs Expression Level CRC VS. HC Ref
miR-17-92 cluster * Up [137]
miR-20a Up [151]
miR-21 Up [82,135,139,152-155]
miR-135 Up [118,137]
miR-144 Up [155,156]
miRNA-146a Down, although not significant [139]
miR-29a Down [140]
miR-223 Up [156]
miR-223 Down [140]
miR-34a methylation [157]
miR-34b/c methylation [157]
miR-221 Up [138]
miR-92a Up [135,139,153-155,158]
miR-224 Down [140]
miR-106a Up [81,82,153]
miR-106b Up [82]
miR-143 Down [159]
miR-145 Down [159]
miR-4478 Down [160]
miR-135b Up [118]
miR-1295b-3p Down [160]
3 types miRNAs Up-regulated miR421, miR130b-3p, and miR27a-3p [161]

Up-regulated miR-21, -106a, -96, -203, -20a, -326 -92 Down-regulated

14 types miRNAs miR-320, -126, -143, -484-5p, -16, 145 -125b [81]
Up-regulated miR-7, miR-17, miR-20a, miR-21, miR-92a, miR-96,
20 types miRNAs miR-106a, miR-134, miR-183, miR-196a, miR-199a-3p, [134]

miR-214Down-regulated miR-9, miR-29b, miR-127-5p, miR-138,
miR-143, miR-146a, miR-222, miR-938

Up and Down indicate Up-regulated and Down-regulated miRNA expression in a population with CRC compared
with healthy volunteers, respectively. CRC: Colorectal Cancer; miRNA: microRNA; HC: Healthy Control.
* The miR-17-92 cluster includes miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1 and miR-92a.

3.4. Can Fecal miRNAs Be Celiac Disease Biomarkers Interacting with Gut Microbiota?

CD is a genetic autoimmune disorder mainly affecting the small intestine, elicited by an aberrant
inflammatory response to dietary gluten proteins found in wheat, rye and barley [27,162-164].
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The complex interaction between genetic and environmental factors characterizing CD has not been
completely elucidated yet. There is a growing body of evidence that exposure to gliadin induces
an increased zonulin release which determines the opening of the tight junctions, thereby affecting
intestinal barrier integrity. This, in turn, enhances the inflammatory response that contributes to CD
pathogenesis and disease progression [165,166].

Substantial efforts have been made to identify novel molecular biomarkers for the diagnosis
of CD or for the follow up of intestinal damage progression [167-172]. Among them, miRNAs
have recently been studied. Indeed, the comparison between miRNA profile extracted from bioptic
tissues of CD and control children revealed that the 20% of the tested miRNAs were differently
expressed [167]. The NOTCH signaling pathway regulates the development of the intestine and its
homeostasis. This pathway includes the NOTCH1 receptor and the Kriippel-like transcription factor
4 (KLF4). Interestingly, it was reported that the upregulation of miR-449a reduced NOTCH1 and
KLF4 in HEK293 cell culture model. Accordingly, NOTCH1 and KLF4 were decreased in the small
intestine of children with active CD and on a gluten-free diet (GFD) compared to controls, suggesting
that deregulated miRNAs characterize CD disease [167]. The biological consequence of deregulated
NOTCH signaling pathway consists into changes in the composition of intestinal tissue by increasing
proliferative undifferentiated cells and reducing mature goblet cells, altering the homeostasis of the
intestinal mucosal environment [167]. Another study evaluated differentially expressed miRNAs
isolated from duodenal mucosa from adult CD patients and non-CD subjects. What was observed
was the deregulation of several miRNAs, including miR-31-5p, miR-192-3p, miR-194-5p, miR-551a,
miR-551b-5p, miR-638 and miR-1290 [169]. Noteworthily, miR-192-3p levels were subjected to a specific
modulation by gliadin peptides and the miRNA cluster miR-192/194 was shown to be involved
in matrix remodeling, possibly leading to cell apoptosis which, in turn, promotes the proliferative
state of intestinal crypts. Magni et al. achieved similar results by analyzing differentially expressed
miRNAs in the duodenum of adult CD patients compared to controls. In particular, seven miRNAs
were significantly downregulated in CD and the in-silico analysis revealed possible gene targets
involved in innate and adaptive immunity [168]. Due to their downregulation, the expression levels
of inflammatory genes could increase, worsening clinical conditions. Moreover, miR-192-5p and
miR-31-5p expressions were triggered by gliadin exposure in CD patients, as shown also by Vaira and
colleagues [168,169].

These studies opened the possibility to explore miRNAs as markers of CD. Accordingly, several
papers described circulating miRNA as a powerful tool to detect and to follow up celiac patients,
as already shown for CRC. Indeed, detailed knowledge on the expression levels and possible roles of
circulating miRNA in CD are available and extensively reviewed elsewhere [170-173].

As outlined for CRC, gut microbiota alteration is also associated to CD; bacterial composition shift
can be the cause or can contribute to the onset and clinical manifestations of CD [173-188]. An overall
unbalance between Gram-positive and Gram-negative bacteria is frequently observed in CD patients
resulting in intestinal dysbiosis [163,174-176]. In particular, an increase in members belonging to Bacteroides,
Firmicutes, Enterobacteriaceae and Staphylococcus, and a decrease in Bifidobacterium, Streptococcus, Prevotella
and Lactobacillus spp. were observed in duodenal specimens from CD patients compared to normal
controls. Accordingly, analyses of fecal samples showed an increase in Bacteroides, Clostridium leptum,
Histolitycum, Eubacterium and Atopobium and a decrease in Bifidobacterium spp., B. longum, Lactobacillus
spp. and Leuconostoc compared to the normal population [163,175,177-185]. The overall composition and
dynamic of gut microbiota in CD patients were reviewed elsewhere [165,173-176,185,186]. Although there
are ecological differences in the upper and lower part of the intestinal tract that influence the microbiota
composition, the bacterial signatures detected in biopsies and feces of CD patients were found to be
correlated [179,188]. This is indicative that the fecal microbiota partly reflects the ones associated
to the small intestine, thereby implying that fecal samples might have a diagnostic value suitable
for pathogenesis evaluation. Differently from CRC, scarce information is available on miRNAs
deregulated by microbiota in CD patients and even less is known about miRNAs targeting bacteria.
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This miRNA-mediated crosstalk is a totally uninvestigated research field in the context of CD. To fill
this gap, the study of Mohan et al. combined the microbiota dysbiosis with the expression levels
of selected miRNAs. Firstly, they showed that in a model of gluten-sensitive (GS) macaques under
gluten-containing diet (GD) the diversity of gut microbiota was significantly lower with respect to the
healthy, age-matched peers. This phenotype was restored by the GFD indicating a direct relationship
between microbiota composition and tissue damages mediated by inflammatory response to gluten.
The analysis of miRNAs revealed several upregulated miRNAs, such as miR-203, miR-204, miR-23b and
miR-29b. Interestingly, the analysis of putative miRNA targets highlighted their complementarity on
16S ribosomal RNA of bacterial species such as Lactobacillus reuteri, Prevotella stercorea and Streptococcus
luteciae that were found to be overrepresented in the fecal sample of GS macaques under GD [173].
To the best of our knowledge, this is the only study highlighting the role of miRNAs potentially
targeting bacteria and then contributing to dysbiosis in CD. In this context, fecal miRNAs represent
ideal candidates to study intestinal diseases and gut microbiota shaping. However, very few data are
available on fecal miRNAs up to date, revealing a hole in the scientific literature. Fecal samples are
highly informative for intestinal related diseases and extremely easy to collect without any invasive
procedures. These characteristics make fecal miRNAs ideal biomarkers for several gut disorders and,
therefore, should be deeply investigated.

4. Conclusions and Future Perspectives

Cumulative evidence has outlined the aberrant expressions of miRNAs and their roles in intestinal
diseases such as CRC and CD. Eukaryotic-derived miRNAs for disease diagnosis, monitoring and
treating are highly promising tools as demonstrated by several ongoing clinical miRNA-based trials.
On the other hand, we have extended our knowledge on microbiota structure and modification
associated to human health and diseases. Recently, the impact of microbiota in eukaryotic miRNA
synthesis and regulation has emerged showing another mechanism through which bacteria affect
human homeostasis. In the context of “omic” studies, the combined identification of bacterial species,
functional genes as well as sncRNA profiling unveils a possible way to define a microbiota “signature”.
Indeed, host-derived miRNAs are specifically taken up by bacteria resulting in bacterial metabolic and
proliferation rate changes. Hence, miRNNAs influence microbiota composition dynamic and expression,
possibly regulating the eu- and dys-biosis. The existence of miRNA-based communication at the
host-microbiota interface could provide new insights for the diagnosis, staging and monitoring of
intestinal diseases. Based on this, fecal miRNAs offer the possibility to have a promising biomarker for
disease diagnosis and treating. However, several gaps should be filled on this new opened research
field. Fecal miRNAs associated to CD are poorly characterized, and detailed studies are required to
identify and verify this class of miRNAs as biomarkers for clinical use, as for circulating miRNAs.
Indeed, the few studies available addressing fecal miRNAs demonstrated their role in affecting
bacterial behavior and their impact, but only in in vitro models. Thus, we ought to collect much more
data from basic researches to unravel the link(s) between miRNA expression levels and microbiota
profiling. By exploring the most innovative technologies such as high-throughput omic approaches,
human-derived organoids to unravel microbiota-host interaction network, we will reach fundamental
knowledge about miRNAs’ regulatory functions for their validation in clinical practice.
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