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Abstract: Tumor hypoxia is associated with resistance to treatment, aggressive growth,
metastatic dissemination, and poor clinical outcome in many cancer types. The potential of dynamic
contrast-enhanced magnetic resonance imaging (DCE-MRI) to assess the extent of hypoxia in
tumors has been investigated in several studies in our laboratory. Cervical carcinoma, melanoma,
and pancreatic ductal adenocarcinoma (PDAC) xenografts have been used as models of human cancer,
and the transfer rate constant (Ktrans) and the extravascular extracellular volume fraction (ve) have been
derived from DCE-MRI data by using Tofts standard pharmacokinetic model and a population-based
arterial input function. Ktrans was found to reflect naturally occurring and treatment-induced hypoxia
when hypoxia was caused by low blood perfusion, radiation responsiveness when radiation resistance
was due to hypoxia, and metastatic potential when metastasis was hypoxia-induced. Ktrans was
also associated with outcome for patients with locally-advanced cervical carcinoma treated with
cisplatin-based chemoradiotherapy. Together, the studies imply that DCE-MRI can provide valuable
information on the hypoxic status of cervical carcinoma, melanoma, and PDAC. In this communication,
we review and discuss the studies and provide some recommendations as to how DCE-MRI data can
be analyzed and interpreted to assess tumor hypoxia.

Keywords: tumor hypoxia; hypoxia-associated treatment response; hypoxia-induced metastasis;
DCE-MRI; cervical carcinoma; melanoma; pancreatic ductal adenocarcinoma

1. Introduction

Regions with hypoxic tissue (pO2 < 10 mmHg) are a characteristic feature of most experimental
and human tumors [1]. Preclinical studies have demonstrated that tumors with extensive hypoxia
are resistant to several types of therapy and that tumor hypoxia can promote malignant progression
and metastatic spread [1–3]. Clinical studies have shown that patients with highly hypoxic tumors
have increased risk of treatment failure, increased frequency of metastases, and poor survival rates
following radiation therapy, alone or in combination with surgery and chemotherapy [1]. If the hypoxic
status of tumors could be assessed prior to treatment, patients with highly hypoxic tumors could
be offered more aggressive or additional treatment to increase survival rates, whereas patients with
well-oxygenated tumors could be offered reduced treatment doses to reduce side effects. Biomarkers
reflecting the hypoxic status of tumors are thus highly warranted to individualize cancer treatment.

Positron emission tomography (PET) imaging using oxygen-sensitive radiotracers allows direct
assessment of hypoxic tumor fractions [4]. Several oxygen-sensitive radiotracers have been used in
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clinical trials, including 18F-labeled fluoromisionidazole (FMISO), 18F-fluoroazomycin-arabinoside
(FAZA), and 60Cu-diacetyl-bis(N4-methylthiosemicarbazone) (60Cu-ATSM), and the reports have been
promising [5,6]. However, the spatial resolution associated with PET imaging is low compared to the
size of the hypoxic regions that can be found in tumor tissue [5]. Magnetic resonance imaging (MRI)
techniques, including blood oxygen level dependent MRI (BOLD-MRI), tissue oxygen level dependent
MRI (TOLD-MRI), oxygen-enhanced MRI (OE-MRI), and dynamic contrast-enhanced MRI (DCE-MRI),
have also been applied to study tumor hypoxia [4,5,7,8]. MRI can be performed with substantially
higher spatial resolution than PET imaging, and DCE-MRI is highly attractive because the technique is
associated with a high signal to noise ratio and is routinely used to detect and characterize various
types of cancer in the clinic.

In DCE-MRI, a paramagnetic contrast agent (CA) is injected intravenously, and the CA uptake
in organs or tumors is studied by recording multiple images within a few minutes. The uptake of
CA in tumor tissue depends on several microenvironmental parameters, including blood perfusion,
vessel wall permeability, cell density, extracellular volume fraction, and extracellular matrix density [9].
Tumor hypoxia is a result of an imbalance between oxygen supply and oxygen consumption [10].
The oxygen supply is primarily governed by the blood perfusion, whereas the oxygen consumption
is mainly determined by the respiratory activity of the tissue and, hence, the cell density [11,12].
Tumor hypoxia is thus expected to be found in regions with low blood perfusion and/or high cell
density, and DCE-MRI can potentially be used to identify these regions. Indeed, correlations have
been found between DCE-MRI derived parameters and oxygen tension or the outcome of radiation
therapy in some cancer types [13–17]. However, the correlations are generally weak, possibly because
the DCE-MRI derived parameters used in these studies were inadequate measures of tumor hypoxia.

In our laboratory, we investigated whether DCE-MRI can be used to detect naturally occurring
and treatment-induced tumor hypoxia, as well as to predict hypoxia-associated radiation response
and hypoxia-induced metastasis, by using preclinical models of cervical carcinoma, melanoma and
pancreatic ductal adenocarcinoma (PDAC). We also investigated whether DCE-MRI derived parameters
can be used to predict outcome for patients with locally-advanced cervical carcinoma. In this
communication, we review and discuss this work and provide recommendations as to how DCE-MRI
can be used to detect tumor hypoxia.

2. Analysis of DCE-MRI Data

Calculation of CA concentration is recommended rather than using absolute or relative signal
intensities in DCE-MRI data analysis [18]. This recommendation is made because signal intensities
heavily depend on scanner settings and protocols, thus complicating comparison between different
imaging facilities. In our laboratory, CA concentration has been calculated by using T1-maps [19] or
proton density images [20] recorded before CA injection. Calculation of CA concentration by using
T1-maps is relatively straight forward and is the preferred method for most instances, but the recording
of accurate T1-maps typically requires 5–10 min scan time [18]. Proton density images can be recorded
in 1–2 min, but phantoms with known CA concentration must be placed within the image frame,
as described in detail by Hittmair et al. [21]. Placing phantoms within the image frame can easily be
done for superficial tumors but can be impractical or impossible for tumors growing in deep organs.

Several pharmacokinetic models have been developed to analyze DCE-MRI data, including the
Tofts standard pharmacokinetic model, the Brix model, and the shutter-speed model [9,22].
Among these, Tofts standard pharmacokinetic model has been reported to be preferable in analysis of
human DCE-MRI data [22]. According to Tofts standard pharmacokinetic model, the CA concentration
in tissue at time T is given by:

Ct(T) =
Ktrans

(1−Hct)
·

∫ T

0
Ca(t)·e

−
Ktrans

·(T−t)
ve dt,
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where Ca(t) is the CA concentration in arterial blood, Ktrans is the transfer rate constant, ve is
the extravascular extracellular volume fraction, and Hct is the hematocrit. We demonstrated that
highly reproducible Ktrans and ve images can be produced by using Tofts standard pharmacokinetic
model [23,24]. This is illustrated in Figure 1, which shows Ktrans and ve images of a tumor and normal
muscle tissue subjected to DCE-MRI twice. Figure 2 shows Ktrans and ve images of cervical carcinoma
xenografts, and CA concentration versus time plots and the corresponding pharmacokinetic model fits
for individual voxels. The figure illustrates that good model fits can be obtained for voxels with both
high and low uptake of CA. Similar time curves and model fits have been obtained for viable tissue in
multiple cervical carcinoma, melanoma, and PDAC xenograft models [19,24–26]. We recommend that
investigators document reproducibility and report CA concentration versus time plots and model fits
for individual voxels to illustrate the quality of the DCE-MRI acquisition and analysis.

Tofts standard pharmacokinetic model is a two-compartment model, where the vasculature
represents the first compartment, and the extravascular extracellular space represents the second
compartment [9,27]. The model assumes that the CA is well mixed within each compartment.
This assumption is not valid for necrotic and fibrotic tissue where the density of functional capillaries
can be extremely low, and the diffusion distances in the extravascular extracellular space can be
large [9,27,28]. We have shown that our algorithms produce unphysiological ve values (often > 1000)
for voxels consisting of necrotic or fibrotic tissue [28–30]. Most of these voxels also have low Ktrans

values, similar to voxels found in hypoxic tissue. It is important to exclude these voxels to avoid
overestimation of the hypoxic fraction [20,30]. We obtained individual ve threshold values for eight
melanoma xenograft models by carefully comparing ve images and histological preparations [20].
We also demonstrated that simply excluding voxels with ve > 1.0 is sufficient to exclude the majority of
unphysiological voxel values in cervical carcinoma and PDAC xenograft models [24,25]. We recommend
using this general threshold value to exclude unphysiological voxels when histolological preparations
of the imaged tissue are not available.

Knowledge of the CA concentration in arterial blood (the arterial input function, AIF) is required
in most pharmacokinetic models, including Tofts standard pharmacokinetic model. If a large
artery is present in the image frame, the AIF can (in principle) be measured from the DCE-MRI
series. However, measurement of the AIF requires higher temporal resolution (typically 1–3 s) than
measurements of CA concentration in tumor tissue (typically 10–20s). In our laboratory, we used
a population-based AIF developed for mice rather than measuring individual AIFs [31]. The main
advantage of using a population-based AIF is that imaging can be performed with improved spatial
resolution and/or increased signal-to-noise ratio because the required temporal resolution is lower.
A possible disadvantage is that the AIF may vary for individual mice, and any variation is ignored
when using a population-based AIF. However, our population-based AIF was established by analyzing
blood samples from 12 individual mice and the data points suggested that the AIFs did not differ
between the mice [31]. We also developed individual AIFs by performing DCE-MRI of the heart of mice,
and the individual AIFs did not differ from each other and did not differ from the population-based
AIF [31]. These experiments suggest that using a population-based AIF does not represent a significant
limitation when imaging genetically identical mice. One may suspect that AIFs in patients with
different pathologies vary more than AIFs in genetically identical mice and that using individual AIFs
for DCE-MRI analysis is necessary in a clinical setting. However, some investigators have argued that
the uncertainties introduced by measuring individual AIFs may be comparable or even larger than the
interpatient variation in AIF, and population-based AIFs have also been developed for patients [32].
We have shown that parameters derived by using a population-based AIF predict outcome for patients
with locally-advanced cervical carcinoma [33].
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Figure 1. The reproducibility of the dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)
acquisition and analysis was investigated by subjecting tumors and normal muscle tissue to DCE-MRI
twice, with an imaging interval of 60 min. The figure shows the transfer rate constant (Ktrans) images,
Ktrans frequency distributions, extravascular extracellular volume fraction (ve) images, and ve frequency
distributions derived from the first and the second DCE-MRI session of a tumor and a tumor-free leg
muscle and illustrates that highly reproducible data was obtained. Modified from Wegner et al. [24].

Figure 2. DCE-MRI series were analyzed on a voxel-by-voxel basis by using Tofts standard
pharmacokinetic model and a population-based arterial input function. (a) Plots of gadolinium
diethylene-triamine penta-acetic acid (Gd-DTPA) concentration versus time and the corresponding
pharmacokinetic model fits for individual voxels. (b,c) Ktrans image, Ktrans frequency distribution,
ve image, and ve frequency distribution of a TS-415 (b) and a CK-160 (c) cervical carcinoma xenograft.
Modified from Ellingsen et al. [26].
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3. Ktrans Reflects Naturally Occurring Tumor Hypoxia

We investigated the potential of DCE-MRI to assess tumor hypoxia by using cervical carcinoma,
melanoma, and PDAC xenografts as preclinical models of human tumors [20,24,25]. These tumor
models differ considerably in histological appearance. The cervical carcinoma and PDAC xenografts
both develop substantial stroma, but the connective tissue is more extensive, and the density of
collagen fibers is higher in the PDAC than in the cervical carcinoma xenografts. In addition, in these
models, many blood vessels are located within the connective tissue rather than in the tumor
parenchyma, and this feature is more pronounced in the PDAC than in the cervical carcinoma xenografts.
The melanoma xenografts show a sparse stroma with little collagen, and the majority of the blood
vessels are not separated from the tumor parenchyma by connective tissue. Despite these differences,
we found strong correlations between Ktrans and hypoxic fraction for all the tumor models [20,24,25].
This is illustrated in Figure 3a, which shows plots of Ktrans versus hypoxic fraction for 4 cervical
carcinoma, 8 melanoma, and 4 PDAC xenograft models. Importantly, similar correlations between
Ktrans and hypoxic fraction were found both when mean values of the tumor models were considered
(Figure 3a), as well as when values of individual tumors were examined (Figure 3b). Only weak or no
correlations were found between ve and hypoxic fraction (Figure 3c–d). These observations imply that
Ktrans reflected blood perfusion and oxygen supply, and imply that the heterogeneity in hypoxic fraction
was caused by heterogeneity in oxygen supply rather than heterogeneity in cell density and oxygen
consumption in these tumor models. The similar correlations between Ktrans and hypoxic fraction in
xenograft models with vast differences in extracellular matrix density and composition, imply that the
extracellular matrix does not represent a substantial barrier to extravascular and interstitial transport
of low-molecular weight CA, such as magnevist (Gd-DTPA) and dotarem (Gd-DOTA).

A few clinical studies have compared DCE-MRI derived parameters with tumor oxygenation
or the hypoxic tumor fraction in the same individual tumors. Loncaster et al. [15] measured tumor
oxygenation by using the Eppendorf pO2 histograph in 35 cervical carcinoma patients and subjected the
same tumors to DCE-MRI. They found correlations between tumor oxygenation and DCE-MRI derived
parameters both when parameters were calculated from the increase in signal intensity without using
pharmacokinetic models and when parameters were calculated by using the Brix pharmacokinetic
model. The strongest correlations were found between tumor oxygenation and ABrix. ABrix is the
amplitude calculated by using the Brix pharmacokinetic model, and this parameter is strongly related
to Ktrans [9]. ABrix was also correlated with a hypoxia gene signature in a study involving 80 cervical
carcinoma patients [34]. In a small study involving 7 patients with head and neck cancer, correlations
were found between tumor hypoxia assessed by pimonidazole-staining and perfusion parameters
derived by DCE-MRI [35]. Although the clinical studies were rather small and different strategies
were used to analyze and validate the DCE-MRI data, the studies support that DCE-MRI can provide
information on the hypoxic status of tumors.
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Figure 3. Xenografted tumors were subjected to DCE-MRI before the fraction of hypoxic tumor tissue
was determined by immunohistochemistry. The figure shows Ktrans versus hypoxic fraction (a,b),
and ve versus hypoxic fraction (c,d) in early and late passages of BK-12, ED-15, HL-16, and LA-19
cervical carcinoma xenografts, A-07, C-10, R-18, D-12, T-22, U-25, V-27, and Z-98 melanoma xenografts,
and BxPC-3, MIAPaCa-2, Capan-2, and Panc-1 pancreatic ductal adenocarcinonma (PDAC) xenografts.
Hypoxic fractions were measured in histological preparations by using pimonidazole as a hypoxia
marker. Points represent mean of 9–28 tumors (a,c) or individual tumors (b,d). Bars represent SEM (a,c).
Exponential and linear curves were fitted to the data by regression analysis. p-values were obtained
by Pearson product moment correlation test. Modified from Hauge et al. [25], Egeland et al. [20],
Øvrebø et al. [36], Wegner et al. [24], and Wegner et al. [37].
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4. Ktrans Reflects Radiation Responsiveness

It is well known that hypoxia causes radiation resistance [1]. To investigate whether Ktrans

and/or ve values can predict radiation responsiveness, we subjected xenografted tumors to DCE-MRI
before irradiation [26,36]. Strong correlations were found between Ktrans and cell surviving fraction
for cervical carcinoma and melanoma xenografts subjected to irradiation, whereas weak or no
correlations were found between ve and cell surviving fraction (Figure 4). In the same studies,
strong correlations were also found between Ktrans and the hypoxic tumor fraction, implying that
Ktrans reflected radiation responsiveness because Ktrans was sensitive to hypoxia-induced radiation
resistance [26,36]. Hallac et al. [38] subjected Dunning R3327-AT1 prostate tumors to DCE-MRI before
irradiation and used tumor growth delay as parameter for radiation responsiveness. They found
correlations between tumor growth delay and both Ktrans and ve, suggesting that DCE-MRI is also
sensitive to radiation responsiveness in models of prostate cancer.

Figure 4. Xenografted tumors were subjected to DCE-MRI prior to fractionated or single-dose
irradiation. The figure shows median Ktrans versus cell surviving fraction and median ve versus cell
surviving fraction in TS-415 and CK-160 cervical carcinoma xenografts, and R-18, U-25, and V-27
melanoma xenografts. The cervical carcinoma xenografts were irradiated with 5 fractions of 4 gray
(Gy) in 48 h, and the melanoma xenografts were irradiated with a single dose of 10 Gy. The cell
survival of irradiated tumors was measured in vitro as detailed previously [39]. Briefly, the tumors
were resected immediately after the last radiation fraction, minced in saline and treated with an enzyme
solution. Trypan blue negative cells were plated in tissue culture flasks and incubated for 14 days
for colony formation. The cell surviving fraction of an irradiated tumor was calculated from the
number of cells plated, the number of colonies counted, and the mean plating efficiency of the cells.
Points represent individual tumors, and curves were fitted to the data by linear regression analysis.
p-values were obtained by Pearson product moment correlation test. Modified from Ellingsen et al. [26]
and Øvrebø et al. [36].

5. Ktrans Is Insensitive to Radiation-Induced Hypoxia

The hypoxic tumor fraction may increase shortly after radiation exposure because aerobic cancer
cells are inactivated, whereas the hypoxic cancer cells survive. To investigate whether Ktrans and/or ve

are sensitive to radiation-induced hypoxia, we subjected melanoma xenografts to DCE-MRI before (day
0) and after (day 1) radiation exposure [40]. Although the hypoxic fraction increased after irradiation,
no changes in Ktrans nor ve were observed (Figure 5). This observation illustrates that Ktrans and ve are
insensitive to increases in hypoxic fractions that are not caused by reduced blood perfusion or increased
cell density. This important limitation applies because DCE-MRI does not measure oxygenation
directly but rather provides information on the oxygen supply and oxygen consumption. If the hypoxic
fraction is increased without changes in the oxygen supply or oxygen consumption, DCE-MRI cannot
be expected to reflect the increase in hypoxic fraction.
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Figure 5. Xenografted tumors were subjected to DCE-MRI before and after irradiation. The figure
shows hypoxic fraction, Ktrans, and ve in unirradiated and irradiated A-07 melanoma xenografts before
(day 0) and after (day 1) tumors were exposed to a single dose of 20 Gy. Hypoxic fractions were
measured with a radiobiological assay. Columns represent mean of 6–10 tumors and bars represent
SEM. p-values were obtained by Student’s t-test. Modified from Benjaminsen et al. [40].

6. Ktrans Reflects Hypoxia Induced by Antiangiogenic Treatment

Several strategies have been developed to inhibit angiogenesis [41]. The antiangiogenic drugs
reduce vessel density and can thus lower tumor perfusion and induce tumor hypoxia. In our laboratory,
we investigated the effect of bevacizumab, a humanized antibody against vascular endothelial growth
factor A (VEGF-A), and sunitinib, a tyrosine kinase inhibitor targeting several receptors, including VEGF
receptors 1–3 [37,42,43]. The antiangiogenic drugs increased the hypoxic fraction in some but not
all cervical carcinoma, melanoma, and PDAC xenograft models (Figure 6a). The treatment-induced
hypoxia was reflected by reduced Ktrans values, whereas the tumor models that did not respond did
not show altered Ktrans values (Figure 6a). Importantly, strong correlations were found between Ktrans

and the hypoxic fraction of individual tumors, and the correlations were similar for untreated and
treated tumors (Figure 6b). Furthermore, treated and untreated tumors showed similar ve values,
and only weak or no correlations were found between ve and the hypoxic fraction of individual tumors.
Taken together, these observations imply that Ktrans but not ve is sensitive to hypoxia induced by
antiangiogenic treatment, probably because the treatment increased the hypoxic fraction by reducing
blood perfusion and did not alter cell density. Our experiments correspond well with a study including
13 cervical carcinoma patients treated with sorafinib, a tyrosine kinase inhibitor targeting VEGF
receptors [44]. Sorafinib treatment induced hypoxia as revealed by the Eppendorf pO2 histograph
and staining of the endogenous hypoxia markers hypoxia inducible factor 1 (HIF-1) and carbonic
anhydrase IX (CAIX). Importantly, the sorafinib-treated tumors also showed reduced Ktrans.
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Figure 6. Tumors were subjected to DCE-MRI and measurement of hypoxic fraction after antiangiogenic
treatment. Tumor-bearing mice were given 3 doses of 10 mg/kg bevacizumab over a period of 8 days
(BK-12 and HL-16 cervical carcinoma xenografts), or daily doses of 40 mg/kg sunitinib for 4 days
(A-07 melanoma and BxPC-3 and Panc-1 PDAC xenografts). (a) Hypoxic fraction, Ktrans, and ve in
untreated (control) and treated tumors. (b) Median Ktrans versus hypoxic fraction and median ve versus
hypoxic fraction in untreated and treated tumors. Hypoxic fractions were measured in histological
preparations by using pimonidazole as a hypoxia marker. Columns represent mean of 9–22 tumors
and bars represent SEM (a). Points represent individual tumors, and exponential curves were fitted to
the data by regression analysis (b). p-values were obtained by Student’s t-test (a) or Pearson product
moment correlation test (b). Modified from Hauge et al. [42], Gaustad et al. [43], and Wegner et al. [37].

7. Ktrans Reflects Metastatic Potential

The cervical carcinoma and melanoma xenograft models established in our laboratory show
different metastatic patterns. Some models metastasize to lymph nodes, and others develop spontaneous
lung metastases [26,36,45]. To investigate whether Ktrans and/or ve values were sensitive to the metastatic
potential, primary tumors were subjected to DCE-MRI before the tumor-bearing mice were euthanized
and examined for lymph node and pulmonary metastasis. Tumors that developed lymph node or
pulmonary metastases had lower Ktrans values than tumors that did not develop metastases in all the
investigated xenograft models except the TS-415 model (Figure 7). Interestingly, correlations have been
found between tumor hypoxia and spontaneous metastasis in all the models except the TS-415 model,
where elevated interstitial fluid pressure (and not hypoxia) has been identified as an important promoter
of metastatic dissemination [26,36,45]. These observations imply that Ktrans can reflect metastatic
potential when metastasis is hypoxia-induced but not necessarily when metastasis is induced by
other mechanisms. Only small or no differences in ve were found between metastasis-positive and
metastasis-negative tumors (Figure 7). Studies comparing DCE-MRI derived parameters with the
metastatic potential of individual tumors are sparse. However, in a study involving 13 patients with
ocular melanoma, Wei et al. [46] found that metastatic tumors had lower Ktrans than non-metastatic
tumors, in line with our experiments.
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Figure 7. Tumors were subjected to DCE-MRI before the tumor-bearing mice were euthanized and
examined for lymph node and pulmonary metastasis. The figure shows median Ktrans and median
ve in metastasis-negative and metastasis-positive CK-160 and TS-415 cervical carcinoma xenografts,
and R-18, C-10, and D-12 melanoma xenografts. Mice with CK-160, TS-415, and R-18 tumors showed
lymph node metastasis, and C-10 and D-12 tumors developed spontaneous pulmonary metastasis.
Points represent individual tumors and lines represent mean values. p-values were obtained by
Student’s t-test. Modified from Ellingsen et al. [26], Øvrebø et al. [36], and Øvrebø et al. [45].

8. Ktrans Predicts Outcome in Patients with Cervical Carcinoma

Tumor hypoxia is a major cause of treatment failure in cervical carcinoma patients given
cisplatin-based chemoradiotherapy [47,48]. To investigate whether Ktrans and/or ve can predict
outcome for this patient group, 80 patients with locally-advanced cervical carcinoma were subjected to
DCE-MRI prior to cisplatin-based chemoradiotherapy [33]. Figure 8 shows Ktrans and ve images of two
patients, as well as plots of CA concentration versus time and the corresponding pharmacokinetic model
fits for individual voxels. The figure illustrates that the quality of the DCE-MRI data obtained in human
tumors was sufficient to distinguish individual voxels with different CA uptake and to produce good
model fits. The patients were divided in two groups consisting of patients with high Ktrans (two third
of the patients) and patients with low Ktrans (one third of the patients). Equivalent groups were also
made based on ve. This grouping is in accordance with the overall observation that standard first-line
treatment fails in approximately one-third of patients with locally-advanced cervical carcinoma [49].
Figure 9 shows Kaplan–Meier plots for disease-free and overall survival for patients with high and
low Ktrans (Figure 9a) and high and low ve (Figure 9b). The patients with high Ktrans showed higher
disease-free and overall survival rates than the patients with low Ktrans, whereas the survival rates of
patients with high ve did not differ from the patients with low ve.



Cancers 2020, 12, 1979 11 of 15

Figure 8. DCE-MRI series of human tumors were analyzed on a voxel-by-voxel basis by using
Tofts standard pharmacokinetic model and a population-based arterial input function. (a) Plots of
Gd-DTPA concentration versus time and the corresponding pharmacokinetic model fits for individual
voxels. (b,c) Ktrans image, Ktrans frequency distribution, ve image, and ve frequency distribution of
locally-advanced cervical carcinoma in two representative patients. Modified from Lund et al. [33].

Figure 9. Eighty patients with locally-advanced cervical carcinoma were subjected to DCE-MRI prior
to cisplatin-based chemoradiotherapy. The patients were divided in two groups consisting of one-third
and two-thirds of the patients. The figure shows Kaplan–Meier curves for disease-free and overall
survival of the 26 patients with lowest and the 54 patients with highest median Ktrans (a), and the
26 patients with lowest and the 54 patients with highest median ve (b). p-values were obtained by
log-rank test. Modified from Lund et al. [33].
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DCE-MRI parameters derived by using Brix pharmacokinetic model and non-model based
parameters calculated from the increase in signal intensities have also been shown to predict outcome in
patients with cervical carcinoma, both by our group and others [15,34,50,51]. Moreover we have shown
that risk volumes defined by using non-model based parameters (i.e., the low enhancing tumor volume)
are strongly correlated to risk volumes defined by using ABrix [50] or Ktrans [33]. These observations
suggest that prognostic biomarkers can be derived from DCE-MRI data by using non-model-based
calculations, the Brix pharmacokinetic model, as well as the Tofts standard pharmacokinetic model.
However, as reviewed here, the parameters derived by Tofts standard pharmacokinetic model reflect
tumor physiology in a broad specter of tumor models, and Tofts model has been reported to be
preferable in analysis of human DCE-MRI data [22].

9. Conclusions and Recommendations

We have demonstrated that Ktrans derived from DCE-MRI data by using Tofts standard
pharmacokinetic model and a population-based AIF is associated with tumor hypoxia in xenograft
models of cervical carcinoma, melanoma, and PDAC. Ktrans reflected naturally occurring and
treatment-induced hypoxia when hypoxia was caused by low blood perfusion, radiation responsiveness
when radiation resistance was due to hypoxia, and metastatic potential when metastasis was
hypoxia-induced. However, Ktrans did not reflect treatment-induced hypoxia when the treatment
specifically inactivated aerobic cells (i.e., increased hypoxic fraction without reducing blood perfusion)
and did not reflect metastatic potential when metastasis was induced by elevated interstitial fluid
pressure (and not hypoxia). The similar correlations between Ktrans and hypoxic fraction observed
for xenograft models differing substantially in extracellular matrix density and composition strongly
suggest that the extracellular matrix does not represent a substantial barrier for extravascular and
interstitial transport of low-molecular weight CA. Ktrans and ve images were produced also for patients
with locally-advanced cervical carcinoma, and Ktrans was associated with survival after cisplatin-based
chemoradiotherapy in this patient group. Tofts standard pharmacokinetic model is not valid for fibrotic
and necrotic tissue, and voxels consisting mainly of fibrotic and necrotic tissue should be excluded to
avoid overestimation of hypoxic fractions. We recommend that voxels with ve > 1.0 are excluded when
histological preparations of the imaged tissue are not available.
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