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Abstract: The metabolic requirements of metastatic non-small cell lung (mNSCLC) tumors from
patients receiving first-line platinum-doublet chemotherapy are hypothesized to imprint a blood
signature suitable for survival prediction. Pre-treatment samples prospectively collected at baseline
from a randomized phase III trial were assayed using nuclear magnetic resonance (NMR) spectroscopy
(n = 341) and ultra-high performance liquid chromatography – mass spectrometry (UPLC-MS) (n = 297).
Distributions of time to event outcomes were estimated by Kaplan-Meier analysis, and baseline
characteristics adjusted Cox regression modeling was used to correlate markers’ levels to time to
event outcomes. Sixteen polar metabolites were significantly correlated with overall survival (OS) by
univariate analysis (p < 0.025). Formate, 2-hydroxybutyrate, glycine and myo-inositol were selected for
a multivariate model. The median OS was 6.6 months in the high-risk group compared to 11.4 months
in the low risk group HR (Hazard Ratio) = 1.99, 95% C.I. (Confidence Interval) 1.45–2.68; p < 0.0001).
Modeling of lipids by class (sphingolipids, acylcarnitines and lysophosphatidylcholines) revealed a
median OS = 5.7 months vs. 11. 9 months for the high vs. low risk group. (HR: 2.23, 95% C.I. 1.55–3.20;
p < 0.0001). These results demonstrate that metabolic profiles from pre-treatment samples may be
useful to stratify clinical outcomes for mNSCLC patients receiving chemotherapy. Genomic and
longitudinal measurements pre- and post-treatment may yield addition information to personalize
treatment decisions further.

Keywords: non-small-cell-lung cancer; metabolomics; lipidomics; NMR; UPLC-MS; overall survival

1. Introduction

Although targeted therapies and immunotherapy have reshaped the approach to treating
metastatic non-small cell lung cancer (mNSCLC), chemotherapy remains an integral part of treatment
algorithms for mNSCLC. Whether chemotherapy is used alone, or in combination with novel therapies,
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there is added toxicity from cytotoxic agents, thus predicting those who are most likely to benefit
from the inclusion of chemotherapy remains important, even in the era of personalized medicine.
Presently no prognostic or predictive biomarkers exist to identify which patients are most likely to
benefit from chemotherapy.

The current study was initiated as a proof-of-principal study to evaluate metabolomics as a
platform for prognostic marker discovery. To date, studies of metabolic profiling in lung cancer
patients have largely focused on its potential as a diagnostic tool [1]. Various metabolites have been
found at higher levels in lung cancer tissues/patients versus controls/healthy volunteers, while others
appear to distinguish between tumour subtype [2] and stage [3]. In our previous pilot study
evaluating serum samples collected before, during, and after chemotherapy ± radiation, we have
demonstrated that metabolite profiles varied temporally over the course of treatment [4]. Metabolite
profiles have the potential to act as prognostic markers of clinical outcomes; metabolites such as
hydroxylamine, tridecan-1-ol, octadecan-1-ol, were indicative of survival and metabolites such as
tagatose, hydroxylamine, glucopyranose, and threonine that were reflective of progression. Building on
this prior work, here we report the evaluation of metabolomic profiling in a larger, homogenous cohort
of mNSCLC patients undergoing treatment with platinum-doublet chemotherapy with prospectively
collected serum samples. Using a combination of nuclear magnetic resonance (NMR) and ultra-high
performance liquid chromatography-mass spectrometry (UPLC-MS) lipidomics, we demonstrate that
survival risk can be stratified based on the circulating levels of selected metabolites.

2. Results

2.1. Patient Characteristics

Seven hundred and seventy four (774) patients from 63 participating centers in 14 countries
were accrued to BR18 between April 2000 and May 2002. Full results of the clinical trial have been
previously reported [5]. An interim safety analysis revealed no survival advantage for the experimental
agent BMS-275291 vs. placebo groups (overall survival = 8.6 months vs. 9.2 months for BMS-275291
vs. control) leading to early termination of the study. The CONSORT diagram (Figure 1) describes
the breakdown of the study population broken down into training and validations sets for NMR
spectroscopy and LC-MS.

Among the 774 patients recruited, 767 patients received treatment, of which 439 had baseline
pretreatment serum samples collected. 341 and 297 serum samples were used for NMR spectroscopy
and LC-MS respectively. Patients’ clinical characteristics by analytic method (NMR vs. LC-MS) are
outlined in Table 1; Table 2. There were no significant differences in age, gender, performance status,
treatment received or OS between patients with serum samples available for analysis and the overall
study population.

2.2. Overall Survival Analysis from NMR Data

NMR spectroscopy was used to quantitatively profile water soluble polar molecules of low
molecular weight. Among the 341 samples in which NMR data was acquired, 213 were used as a
training set and 128 in the test set. Concentration data of each metabolite was log2 transformed and
z-scored by mean centering. Out of 43 polar metabolites, 16 were found to be significantly correlated
with the overall survival rate using univariate cox regression (Table S1, p < 0.025). Final multivariate
prognostic model was created from 4 metabolites (2-hydroxybutyrate, formate, glycine and myo-inositol)
after backward variable elimination at 5% significance level (Table S1).
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Figure 1. Study consort diagram describing the study population breakdown into training and 
validations sets for NMR spectroscopy and LC-MS. 

Based on the model, each patient was assigned a prognostic score and were divided into two 
groups based on the median prognostic score. Median overall survival (OS) was found to be 11.4 
months for the low risk and 6.6 months for the high-risk group (HR = 1.99, 95% C.I 1.45–2.68; p < 
0.0001, Figure 2A). Multivariable Cox regression model adjusted for baseline factors was performed 
to check the high-risk group’s effect and found its effect is similar to the univariate analysis (HR: 2.16, 
95% C.I. 1.57–2.98; p < 0.0001, Table 1). 

Figure 1. Study consort diagram describing the study population breakdown into training and
validations sets for NMR spectroscopy and LC-MS.

Based on the model, each patient was assigned a prognostic score and were divided into two
groups based on the median prognostic score. Median overall survival (OS) was found to be 11.4 months
for the low risk and 6.6 months for the high-risk group (HR = 1.99, 95% C.I 1.45–2.68; p < 0.0001,
Figure 2A). Multivariable Cox regression model adjusted for baseline factors was performed to check
the high-risk group’s effect and found its effect is similar to the univariate analysis (HR: 2.16, 95% C.I.
1.57–2.98; p < 0.0001, Table 1).
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Figure 2. Prognostic survival analysis using the nuclear magnetic resonance (NMR) and lipid data
sets. The data is presented using Kaplan-Meier curves on test and training sets from the two analytical
platforms. Samples were divided into training and test sets as described in Figure 1. (A). NMR training
dataset, (B). NMR test dataset, (C). Lipid training dataset and (D). Lipid test dataset.

Table 1. Prognostic effects of polar metabolite markers on overall survival after adjusting for
baseline factors.

A. Polar Metabolites Training Set

Factors Hazard ratio 95% C.I. of HR p-Value

Risk group
High
Low

2.16
1 1.57–2.97 <0.0001

ECOG Performance
status

2, 3
0, 1

1.47
1 0.89–2.41 0.13

Weight loss
≥5%
<5%

1.89
1 1.35–2.66 0.0004
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Table 1. Cont.

A. Polar Metabolites Training Set

Factors Hazard ratio 95% C.I. of HR p-Value

Sex
Male

Female
1.30

1 0.87–1.94 0.20

Disease Stage
III
IV

1.20
1 0.81–1.78 0.35

Histology
Squamous

Non-Squamous
0.99

1
0.70–1.42

1 0.98

Hemoglobin 1

Grade 1+
Grade 0

1.51
1

1.18–2.23 0.01

B. Polar Metabolites Test Set

Factors Hazard ratio 95% C.I. of HR p-Value

Risk group
High
Low

2.42
1 1.61–3.65 <0.0001

ECOG Performance
status

2, 3
0, 1

1.74
1 0.89–3.42 0.11

Weight loss
≥5%
<5%

1.48
1 0.93–2.34 0.10

Sex
Male

Female
0.98

1 0.61–1.59 0.94

Disease Stage
III
IV

0.51
1 0.30–0.85 0.01

Histology
Squamous

Non-Squamous
0.97

1
0.59–1.59

1 0.90

Hemoglobin 1

Grade 1+
Grade 0

1.59 1.06–2.68 0.04

1: Within normal limits (grade 0), <Lower limit of normal (grade 1+). H.R.: Hazard ratio, C.I: confidence interval.
ECOG Eastern Cooperative Oncology Group.

The test set was used for validating the results found from the training set. In order to do so,
the risk scores for patients in the test set were separated into two groups based on the median of the
training set. The Kaplan-Meier (K-M) estimate of the survival distribution based on the median is
presented in Figure 2B. The median OS are 11.6 and 5.3 months for the low and high-risk groups,
respectively (HR = 2.43, 95% C.I 1.61–3.66; p < 0.0001). Multivariate Cox regression modeling, adjusted
for baseline factors was performed to check the effect of the high risk group, and found to be similar to
the univariate analysis (HR: 2.43, 95% C.I. 1.61–3.66; p < 0.0001, Table 1).

Among the four metabolites used for constructing the multivariable model, 2-hydroxybutyrate
(2-HB, p = 0.001) and formate (p = 0.002) were found to be significantly associated to the OS in the
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test set. The correlation between two other metabolites, glycine (p = 0.11) and myo-inositol (p = 0.31),
trended the same direction, but did not meet the significance threshold.

2.3. Overall Survival Analysis from Lipid Data

A total of 297 baseline lipid profiles were assayed. The dataset was randomly divided into two
subsets with roughly 3:2 ratio (184 patients in training set and 113 in testing set). The data was log2

transformed and mean centered to construct z scores. A total of 1420 lipid features were analyzed via
univariate Cox regression modeling to establish each variable’s correlation with OS from training set
data and 53 variables (Table S2, p < 0.025) were identified. To take care of the inter-variable co-linearity
due to biosynthetic pathways and other factors, these variables were subjected to hierarchical cluster
analysis resulting in 12 branches (Table S3). For the branches with moderate to significantly correlated
lipid features, principal component analysis (PCA) was carried out and the first principal component
(PC) from each such branch was used as the representative variable for further analysis, 9 PCs were
identified using this method. Backward variable elimination with a 5% significance level led final to a
multivariable model using 4 variables — two of those include largely sphingolipids and triglycerides
while specific lipid classes could not be assigned to the other two classes (Table S3). A prognostic score
for each patient was generated as detailed in Supplementary Information S1. Based on these scores the
patients were separated into high and low risk groups. Using Cox regression modeling, the median
OS for the high-risk group was found to be 5.7 months while median OS for low risk group was
11.9 months (Figure 2C, HR: 2.34, 95% C.I. 1.68–3.26; p < 0.0001). Multivariate Cox regression modeling
adjusted for baseline factors was performed and results were similar to the univariate analysis (Table 2,
HR: 2.23, 95% C.I. 1.55–3.20; p < 0.0001).

Table 2. Prognostic effects of lipid markers on overall survival after adjusting for baseline factors.

A. Lipids Training Set

Factors Hazard ratio 95% C.I. of HR p-Value

Risk group
High
Low

2.23
1 1.55–3.22 <0.0001

ECOG Performance
status

2, 3
0, 1

1.51
1 0.87–2.64 0.14

Weight loss
≥5%
<5%

1.93
1 1.31–2.85 0.0009

Sex
Male

Female
1.62

1 1.02–2.56 0.04

Disease Stage
III
IV

1.20
1 0.80–1.81 0.38

Histology
Squamous

Non-Squamous
0.95

1
0.60–1.49

1 0.81

Hemoglobin 1

Grade 1+
Grade 0

1.52
1 1.12–2.34 0.03
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Table 2. Cont.

B. Lipids Test Set

Factors Hazard ratio 95% C.I. of HR p-Value

Risk group
High
Low

1.83
1 1.19–3.22 0.006

ECOG Performance
status

2, 3
0, 1

1.70
1 0.75–3.86 0.21

Weight loss
≥5%
<5%

1.55
1 0.86–2.79 0.15

Sex
Male

Female
1.11

1 0.61–2.02 0.83

Disease Stage
III
IV

0.58
1 0.32–1.08 0.09

Histology
Squamous

Non-Squamous
0.85

1
0.45–1.61 0.62

Hemoglobin 1

Grade 1+
Grade 0

1.60
1 1.03–2.68 0.04

1: Within normal limits (grade 0), <Lower limit of normal (grade 1+). H.R.: Hazard Ratio; C.I: Confidence Interval.
ECOG Eastern Cooperative Oncology Group.

In the lipid data generated from LC-MS, four PC variables were used to create a risk score and
patients were divided into high and low risk groups based on the median risk scores. The K-M estimate
of the OS was found to be 10.4 and 6.2 months for the low and high-risk groups, respectively (Figure 2D,
HR: 1.86, 95% C.I. 1.23–2.82; p = 0.003). As with the polar data, multivariable Cox regression modeling
adjusted for baseline factors was performed to evaluate the effect of the high risk group; results were
similar to the univariate analysis (Table 2, HR: 1.83, 95% C.I. 1.19–2.81; p = 0.006).

3. Discussion

Pre-treatment serum metabolites and lipid profiles in mNSCLC patients have the potential to
serve as prognostic markers of clinical outcomes. Using prospectively collected serum samples from a
large cohort of mNSCLC that was linked to outcomes, we demonstrated that with both polar data and
lipid data, patients could be divided into high and low risk groups with differential OS. The results
suggest that NMR and LC-MS characterize different, but complementary, metabolomic and lipidomic
profiles that each identifies a high vs. low risk group even after correcting for known clinical prognostic
variable such as gender, stage, histology and performance status. Tian et al. [6] recently reported
analagous findings using pre-treatment serum metabolic profiles from a larger cohort of mNSCLC
patients treated with platinum-doublet chemotherapy, providing support for this approach. The results
from our study are complementary. The metabolite panel reported by Tian et al. was associated with
longer median progression free survival, but was a different set of seven metabolites (hypotaurine,
uridine, dodecanoylcarnitine, choline, dimethylglycine, niacinamide, L-palmitoylcarnitine) [6] perhaps
reflecting differences in the patient population or the systemic therapy used.

Results from our polar NMR data suggest that elevation of glutathione synthesis supported by
elevated methylation pathways may be associated with better survival in NSCLC patients (Figure 3).
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We observed that elevated blood 2-HB, glycine and formate, were all positively associated with
overall survival (Table S1). 2-HB is a metabolite related to glutathione synthesis [7]. Glutathione
regulates the activity of ribonucleotide reductase that synthesizes deoxyribonucleotides from
ribonucleotides [8] which is required for both cancer initiation and proliferation [9]. In NSCLC patients,
elevated glutathione-S-transferase (GST) expression has been shown to decrease chemotherapeutic
response [10,11]. The balance between the opposing effects of glutathione synthesis and metabolism
may regulate the outcome of the disease. Glycine is also key component of glutathione synthesis [12].
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Figure 3. Metabolic changes associated with overall survival in NSCLC patients. Alteration in
glutathione metabolic pathway is apparent from association of 2-hydroxybutyrate and survival.
In addition, methylation pathways (formate, glycine), triglyceride and sphingomyelin metabolism are
also associated to overall survival. FA: fatty acid, TG: triacylglycerol, S1P: Sphingosine-1-phosphate;
SM: Sphingomyelin, SAM: S-adenosylmethionine, GSH: reduced glutathione, ROS: Reactive oxygen
species, 2-HB: 2-hydroxybutyrate.

Both glycine and formate are byproducts of transformylation via serine which donates the one
carbon unit to tetrahydrofolate that further leads to purine/pyrimidine synthesis and transmethylation
via the methionine cycle [13]. Two of the metabolites from Tian et al. are also involved in one-carbon
metabolism (dimethylglycine, choline) [6]. Of note, another study designed to elucidate metabolites
predictive for platinum-chemotherapy efficacy primarily identified caffeine-based metabolites [14]
which affects plasma homocysteine level [15], a key reporter metabolite for one carbon metabolism.
Hypermethylation facilitates cancer cell proliferation in various ways including reduced tumor
suppressor gene expression [16], regulation of translation by methylation of RNA [17] and regulation
of protein function by posttranslational modification [13].

Recent studies have shown that serine and glycine can provide the adenosine moiety needed
for synthesis of S-adenosylmethionine (SAM) from methionine to support the methylation cycle [18]
and in turn generate homocysteine which can lead to excessive systemic glutathione. The positive
association of overall survival and methylation metabolites, glycine and formate, may ultimately be
linked to glutathione metabolism.
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The lipid analysis of the patient serum samples provides further interesting insights to survival
in NSCLC. Sphingolipids were positively associated to overall survival (Table S2). One of the three
sphingolipids that was positively associated to overall survival was sphingomyelin (SM d18:2/25:0).
The other two sphingolipids were putatively identified as ceramides based on their retention times.
We hypothesize that elevated ceramide synthesis from membrane sphingomyelin may be associated
to less aggressive tumorigenesis and better overall survival. Ceramide, a central sphingolipid which
may be synthesized from sphingomyelin by sphingomyelinase [19], is associated with cell growth
inhibition, induction of apoptosis, autophagy and ER stress response [20] and thus may be considered
a tumor repressor lipid. We also observed several triglycerides were negatively associated to the
overall survival. Cancer cells growth is enhanced in lipid-rich environments where the triglycerides are
hydrolyzed to provide the fatty acids that may be used as the energy source by the cells [21]. Limiting
fatty acids availability could serve as a potential therapeutic strategy against cancer [22], thus the
negative association of triglyceride level with overall survival seen in this study reflects may reflect
limited availability of fatty acids essential for the growth of cancer cells ultimately leading to improved
survival of the patients.

Other metabolomics studies in cancer patients have used different analytic platforms such as
gas chromatography-mass spectrometry (GC-MS) and LC-MS. 1H-NMR can measure a wide range
of metabolites with little sample preparation but is limited by a lower sensitivity and requires more
expensive instrumentation. However, the technique is highly quantitative and hence the diagnostic
value of biomarkers identified is much more useful from a clinical perspective. In contrast, hyphenated
mass spectrometry generally requires more extensive sample preparation and can usually measure
only a specific subset of metabolites depending on the type of hyphenation techniques that precedes
the detection (GC/CE/LC). For example, hydrophilic interaction chromatography (HILIC) is more
suitable for polar metabolites while reverse phase chromatography detects lipids/nonpolar metabolites
more efficiently. The importance of polar metabolites in progression and prediction of survival in
lung cancer have been underscored by different studies [14,23,24]. However, despite significant
evidence of alteration in lipid metabolism in lung cancer [25], untargeted lipidomics analyses, as was
performed in our study, have rarely been employed for biomarker discovery in lung cancer patients.
NMR spectroscopy is not a suitable technique for measuring lipids and mass spectrometry coupled
with reverse phase chromatography offers a more suitable approach.

The main strength of our study was examined a large, homogenous population of patients with
mNSCLC who were treated with first line cytotoxic chemotherapy. The serum samples we analyzed
were uniformly collected prior to receiving systemic therapy hence the treatment would not have
influenced our findings. Although patients in Canadian Clinical Trials Group (CCTG) BR18 study
were treated with BMS-275291 vs placebo, the addition of BMS-275291 did not affect survival [5];
therefore our results serve as proof-of-principal that in mNSCLC patients receiving platinum-doublet
chemotherapy, the pre-treatment metabolite profile could potentially be used as a prognostic marker.
However, because the serum samples we evaluated were collected from a cohort dating back to 2000 to
2002, at a time when genomic profiling and/or tumour PDL-1 (Programmed death-ligand 1) status was
not evaluated, it is conceivable that imbalances in tumour characteristics might have accounted for the
observed differences between high and low risk groups. Confirmation in a more contemporary cohort
would be necessary to substantiate these findings.

4. Methods and Materials

4.1. Patients

All serum samples used were prospectively collected from patients with mNSCLC participating
in the CCTG BR 18 study, a randomized, double-blind phase III trial evaluating carboplatin, paclitaxel
plus either placebo vs. the matrix metalloproteinase inhibitor BMS-275291 [5]. The samples were all
collected and processed in a uniform fashion as per protocol. All samples were stored at the CCTG
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Tumour Tissue Data Repository in Kingston (Kingston ON, Canada). Clinical data including age,
gender, stage, histology, and outcome were collected as part of the trial. This translational study was
approved by the Health Research Ethics Committee of Alberta-Cancer Committee and the University
of Pennsylvania.

As part of the original BR-18 trial, patients provided written informed consent with regards to
participation in the trial and collection of blood samples for future studies.

This study was approved by the University of Calgary Conjoint Health Research Ethics Board
(Ethics ID: E-24705, 2012-08-22) and the University of Pennsylvania Institutional Review Board (Protocol
#816578, 2012-09-27).

4.2. Sample Preparation

We used two different methodologies to evaluate metabolomics signatures: nuclear magnetic
resonance (1H-NMR) spectroscopy and liquid chromatography mass spectrometry (LC-MS).
Blood serum (200 µL) was extracted using 1:2 chloroform/methanol. The upper polar fraction
was dried using vacuum concentrator and the lower non-polar fraction was dried overnight in
the hood. The polar fraction was further dissolved in 200 µL NMR solvent made up in 10% D2O
with pH adjusted to ~7.0 by NaHPO4/NaH2PO4 and 0.25 mM 4,4-dimethyl-4-silapentane-1-sulfonic
acid (DSS) added as internal standard. The reconstituted samples were put into 3 mm NMR tubes
(Bruker Biospin, Billerica, MA, USA) in 96 tube racks designed for samplejet (Bruker Biospin) for
acquiring the NMR spectra.

The non-polar fraction was used for analyzing the lipids. 40 µL of the fraction was dried and
dissolved in 700 µL of solvent containing 60% solvent A (40% H2O, 60% ACN, 10 mM ammonium
formate) and 40% solvent B (90% isopropanol 10% acetonitrile, 10 mM ammonium formate). 30µL of the
reconstituted solvent was added to microtubes containing 10 µL of internal standards (detail needed).
The sample was further diluted to 150 µL using 60% A/40% B for injection.

4.3. NMR Spectroscopy

All NMR spectra were acquired in a 700 MHz Bruker AVANCE III HD NMR spectrometer equipped
with a 3 mm triple resonance inverse probe and Samplejet automated sample handling system (Bruker
Biospin, Billerica, MA, USA). The pulseprogram used for acquiring the spectra took the shape of first
transient of 2-dimensional NOESY spectroscopy (RD-90-t-90-tm-90-ACQ, where RD = relaxation delay,
t = echo time, tm = mixing time and ACQ = acquisition) [26]. Spectral acquisition was performed
in Topspin 3.0 (Bruker Biospin). The FIDs (free induction decay) were acquired using 96 scans each
acquiring 76K data points from a spectral width of 14 ppm with acquisition time 4 s for each FID.
The FIDs generated was further exported for targeted NMR spectral profiling:

Targeted spectral profiling [27] was performed using Chenomx v 8.0 (Chenomx Inc. Edmonton,
AB, Canada). Imported FIDs were zero filled to 128k and applied line broadening factor 0.1 Hz and
Fourier transformed. All spectra were calibrated with respect to the internal standard (0.25 mM DSS)
and the spectral peaks were fitted with Chenomx reference library.

4.4. Lipidomics Assay by UPLC-Qtof-MS

Dried lipid fraction was reconstituted in 60% solvent A (40% H2O, 60% ACN, 10 mM ammonium
formate) and 40% solvent B (90% IPA, 10% ACN, 10 mM ammonium formate). These samples
were transferred into glass vials for ultra-performance liquid chromatography coupled with a qTOF
Xevo G2S detector (Waters Corporation, Milford, MA, USA) for high throughput LC-MS-based
lipidomics. 10 µL sample was injected into a reverse phase column (XSELECTTM CSHTM C18,
2.1 mm × 100 mm × 2.5 µm) using an Aquity H-class UPLC system (Waters Corporation). Samples
were chromatographed for 9 min at 0.5 mL/min flow rate. The UPLC gradient was as follows - 75% A
and 25% B for 0.5 min, a quick ramp of 50% A and 50% B for 0.5 min, 25% A and 75% B for 4 min,
followed by a ramp of 10% A and 90% B for 2 min, and finally a ramp to 1% A and 99% B for 2 min.
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Column eluent was directly introduced into mass spectrometer that was performed in both positive
and negative ion–sensitive mode with a capillary voltage of 3000 V and a sampling cone voltage of
40 ◦C. The desolvation gas flow was set to 800 L/h, and the temperature was set to 450 ◦C. The source
temperature was set to 80 ◦C. Assessment of accurate mass was maintained by the introduction of a
lock-spray interface of leucine-enkephalin (556.2771 m/z) at a concentration of 0.5 ng/µL in 50% aqueous
acetonitrile and a rate of 5 µL/min. Data was acquired in the centroid MSe mode from 50–1200 m/z
mass ranges for both MS (low energy) and MSe (high energy) modes. Low-energy or fragmented data
were collected without collision energy, whereas high-energy or fragmented data were collected by
using a collision-energy ramp from 15–40 eV. The entire set of duplicate sample injection was bracketed
with test mix of standard metabolites at the beginning and end of run for evaluating instrument
performance. Samples were randomized and injected in duplicates with pooled quality control sample
injection after every 10 runs to compensate for instrumental drift. Data analysis and lipid identification
were performed with Progenesis QI 2.3 software (Waters Corporation, Milford, MA, USA).

4.5. Statistical Analysis

Exploratory analyses were performed to characterize the relationships between patients’ lipid
and polar metabolite levels with baseline characteristics and outcomes. Chi-square test was used to
assess association between categorical variables; Principle component analysis was used to synthesize
information of correlated variables. Kaplan-Meier curves were used to estimate the distributions of time
to event outcomes, log-rank test was used to test difference between groups, and Cox regression model
was used to correlate markers’ levels to time to event outcomes while adjusting baseline characteristics.

Prior to any analysis, patients with NMR and/or LC-MS data were randomly divided in
approximately a 3:2 ratio into training and testing sets, stratified by treatment received (BMS275291 vs.
Placebo), stage (III vs. IV), and ECOG PS (0, 1, vs. ≥2). Overall survival between the two cohorts were
compared and found to be similar. We then used the 3/5 of the data as training set, and the remaining
2/5 of the data as test set.

5. Conclusions

In an era of rapidly changing standards of care that now include immunotherapy and targeted
therapy, conventional cytotoxic chemotherapy still forms part of the treatment algorithm for most
mNSCLC patients. Therefore, tools to guide clinicians regarding which patients are the most likely to
benefit from the addition of chemotherapy remain relevant in current times. Our results align with
other metabolomics studies and taken together, suggest that this minimally invasive strategy warrants
further validation among mNSCLC. In addition, the evaluation of changes in metabolomics/lipidomic
profiles over the course of treatment may provide further insights into which patients are most likely
to benefit for a specific therapeutic approach.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/7/1926/s1,
Table S1: Polar metabolites that significantly correlated to overall survival in the training set measured by NMR,
Table S2: Lipids that significantly correlated to overall survival in the training set measured by RP-UPLC-qTOF-MS,
Table S3: 53 significant lipid features were subjected to hierarchical cluster analysis to compensate for the linearity
due to chemical similarity, Supplementary information S1: Statistical methodologies for analyzing correlated
lipid data.

Author Contributions: Conceptualization, D.H., A.W., F.A.S., L.S., and N.B.L.; Methodology, A.S., E.U., S.K., A.W.;
Formal Analysis, K.D., Resources, A.W.; Writing—Original Draft Preparation, A.S., D.H., A.W.; Writing—Review
& Editing, A.S., D.H., A.W.; Visualization, A.S., K.D., D.H.; Supervision, D.H., A.W.; Funding Acquisition, A.W.,
D.H., K.D., L.S. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Alberta Cancer Foundation and Alberta Innovates Health Solutions
grants and NIH grant R21-CA-213234 to AMW; the Canadian Cancer Society Grant # 704970 to K.D. and L.S.

Conflicts of Interest: Authors declare no conflict of interest.

Data Availability: The data is available at www.doi.org/10.5281/zenodo.3887012.

http://www.mdpi.com/2072-6694/12/7/1926/s1
www.doi.org/10.5281/zenodo.3887012


Cancers 2020, 12, 1926 12 of 13

References

1. Hori, S.; Nishiumi, S.; Kobayashi, K.; Shinohara, M.; Hatakeyama, Y.; Kotani, Y.; Hatano, N.; Maniwa, Y.;
Nishio, W.; Bamba, T.; et al. A metabolomic approach to lung cancer. Lung Cancer 2011, 74, 284–292.
[CrossRef]

2. Jordan, K.W.; Adkins, C.B.; Su, L.; Halpern, E.F.; Mark, E.J.; Christiani, D.C.; Cheng, L.L. Comparison of
squamous cell carcinoma and adenocarcinoma of the lung by metabolomic analysis of tissue-serum pairs.
Lung Cancer 2010, 68, 44–50. [CrossRef]

3. Deja, S.; Porebska, I.; Kowal, A.; Zabek, A.; Barg, W.; Pawelczyk, K.; Stanimirova, I.; Daszykowski, M.;
Korzeniewska, A.; Jankowska, R.; et al. Metabolomics provide new insights on lung cancer staging and
discrimination from chronic obstructive pulmonary disease. J. Pharm. Biomed. Anal. 2014, 100, 369–380.
[CrossRef] [PubMed]

4. Hao, D.; Sarfaraz, M.O.; Farshidfar, F.; Bebb, D.G.; Lee, C.Y.; Card, C.M.; David, M.; Weljie, A.M. Temporal
characterization of serum metabolite signatures in lung cancer patients undergoing treatment. Metabolomics
2016, 12, 1–9. [CrossRef] [PubMed]

5. Leighl, N.B.; Paz-Ares, L.; Douillard, J.-Y.; Peschel, C.; Arnold, A.; Depeirre, A.; Santoro, A.; Betticher, D.C.;
Gatzemeier, U.; Jassem, J.; et al. Randomized Phase III Study of Matrix Metalloproteinase Inhibitor
BMS-275291 in Combination With Paclitaxel and Carboplatin in Advanced Non-Small-Cell Lung Cancer:
National Cancer Institute of Canada-Clinical Trials Group Study BR.18. J. Clin. Oncol. 2005, 23, 2831–2839.
[CrossRef] [PubMed]

6. Tian, Y.; Wang, Z.; Liu, X.; Duan, J.; Feng, G.; Yin, Y.; Gu, J.; Chen, Z.; Gao, S.; Bai, H.; et al. Prediction of
chemotherapeutic efficacy in non–small cell lung cancer by serum metabolomic profiling. Clin. Cancer Res.
2018, 24, 2100–2109. [CrossRef]

7. Gall, W.E.; Beebe, K.; Lawton, K.A.; Adam, K.P.; Mitchell, M.W.; Nakhle, P.J.; Ryals, J.A.; Milburn, M.V.;
Nannipieri, M.; Camastra, S.; et al. α-hydroxybutyrate is an early biomarker of insulin resistance and glucose
intolerance in a nondiabetic population. PLoS ONE 2010, 5, e10883. [CrossRef]

8. Sengupta, R. Thioredoxin and glutaredoxin-mediated redox regulation of ribonucleotide reductase. World J.
Biol. Chem. 2014, 5, 68–74. [CrossRef] [PubMed]

9. Harris, I.S.; Treloar, A.E.; Inoue, S.; Sasaki, M.; Gorrini, C.; Lee, K.C.; Yung, K.Y.; Brenner, D.;
Knobbe-Thomsen, C.B.; Cox, M.A.; et al. Glutathione and Thioredoxin Antioxidant Pathways Synergize to
Drive Cancer Initiation and Progression. Cancer Cell 2015, 27, 211–222. [CrossRef] [PubMed]

10. Inoue, T.; Ishida, T.; Sugio, K.; Maehara, Y.; Sugimachi, K. Glutathione S transferase Pi Is a powerful indicator
in chemotherapy of human lung squamous-cell carcinoma. Respiration 1995, 62, 223–227. [CrossRef]

11. Bai, F.; Nakanishi, Y.; Kawasaki, M.; Takayama, K.; Yatsunami, J.; Pei, X.H.; Tsuruta, N.; Wakamatsu, K.;
Hara, N. Immunohistochemical expression of glutathione S-transferase-Pi can predict chemotherapy response
in patients with nonsmall cell lung carcinoma. Cancer 1996, 78, 416–421. [CrossRef]

12. Lu, S.C. Glutathione Synthesis. Biochim. Biophys. Acta 2014, 1830, 3143–3153. [CrossRef] [PubMed]
13. Newman, A.; Maddocks, O. One-carbon metabolism in cancer. Br. J. Cancer 2017, 116, 1499–1504. [CrossRef]

[PubMed]
14. Shen, J.; Ye, Y.; Chang, D.W.; Huang, M.; Heymach, J.V.; Roth, J.A.; Wu, X.; Zhao, H. Circulating metabolite

profiles to predict overall survival in advanced non-small cell lung cancer patients receiving first-line
chemotherapy. Lung Cancer 2017, 114, 70–78. [CrossRef] [PubMed]

15. Verhoef, P.; Pasman, W.J.; Van Vliet, T.; Urgert, R.; Katan, M.B. Contribution of caffeine to the
homocysteine-raising effect of coffee: A randomized controlled trial in humans. Am. J. Clin. Nutr. 2002, 6,
1244–1248. [CrossRef] [PubMed]

16. Kulis, M.; Esteller, M. 2-DNA Methylation and Cancer. Adv. Genet. 2010, 70, 27–56. [CrossRef]
17. Fu, Y.; Dominissini, D.; Rechavi, G.; He, C. Gene expression regulation mediated through reversible m6A

RNA methylation. Nat. Rev. Genet. 2014, 15, 293–306. [CrossRef]
18. Maddocks, O.; Labuschagne, C.; Adams, P.; Vousden, K. Serine metabolism supports the methionine cycle

and DNA/RNA Methylation through de novo ATP synthesis in cancer cells. Mol. Cell 2016, 61, 210–221.
[CrossRef]

19. Mullen, T.D.; Hannun, Y.A.; Obeid, L.M. Ceramide synthases at the centre of sphingolipid metabolism and
biology. Biochem. J. 2012, 441, 789–802. [CrossRef]

http://dx.doi.org/10.1016/j.lungcan.2011.02.008
http://dx.doi.org/10.1016/j.lungcan.2009.05.012
http://dx.doi.org/10.1016/j.jpba.2014.08.020
http://www.ncbi.nlm.nih.gov/pubmed/25213261
http://dx.doi.org/10.1007/s11306-016-0961-5
http://www.ncbi.nlm.nih.gov/pubmed/27073350
http://dx.doi.org/10.1200/JCO.2005.04.044
http://www.ncbi.nlm.nih.gov/pubmed/15837997
http://dx.doi.org/10.1158/1078-0432.CCR-17-2855
http://dx.doi.org/10.1371/journal.pone.0010883
http://dx.doi.org/10.4331/wjbc.v5.i1.68
http://www.ncbi.nlm.nih.gov/pubmed/24600515
http://dx.doi.org/10.1016/j.ccell.2014.11.019
http://www.ncbi.nlm.nih.gov/pubmed/25620030
http://dx.doi.org/10.1159/000196451
http://dx.doi.org/10.1002/(SICI)1097-0142(19960801)78:3&lt;416::AID-CNCR6&gt;3.0.CO;2-H
http://dx.doi.org/10.1016/j.bbagen.2012.09.008
http://www.ncbi.nlm.nih.gov/pubmed/22995213
http://dx.doi.org/10.1038/bjc.2017.118
http://www.ncbi.nlm.nih.gov/pubmed/28472819
http://dx.doi.org/10.1016/j.lungcan.2017.10.018
http://www.ncbi.nlm.nih.gov/pubmed/29173770
http://dx.doi.org/10.1093/ajcn/76.6.1244
http://www.ncbi.nlm.nih.gov/pubmed/12450889
http://dx.doi.org/10.1016/B978-0-12-380866-0.60002-2
http://dx.doi.org/10.1038/nrg3724
http://dx.doi.org/10.1016/j.molcel.2015.12.014
http://dx.doi.org/10.1042/BJ20111626


Cancers 2020, 12, 1926 13 of 13

20. Ponnusamy, S.; Meyers-Needham, M.; Senkal, C.E.; Saddoughi, S.A.; Sentelle, D.; Selvam, S.P.; Salas, A.;
Ogretmen, B. Sphingolipids and cancer: Ceramide and sphingosine-1-phosphate in the regulation of cell
death and drug resistance. Future Oncol. 2010, 6, 1603–1624. [CrossRef]

21. Beloribi-Djefaflia, S.; Vasseur, S.; Guillaumond, F. Lipid metabolic reprogramming in cancer cells. Oncogenesis
2016, 5, e189. [CrossRef] [PubMed]

22. Currie, E.; Schulze, A.; Zechner, R.; Walther, T.C.; Farese, R.V. Cellular fatty acid metabolism and cancer.
Cell Metab. 2013, 18, 153–161. [CrossRef] [PubMed]

23. Puchades-Carrasco, L.; Jantus-Lewintre, E.; Pérez-Rambla, C.; García-García, F.; Lucas, R.; Calabuig, S.;
Blasco, A.; Dopazo, J.; Camps, C.; Pineda-Lucena, A. Serum metabolomic profiling facilitates the non-invasive
identification of metabolic biomarkers associated with the onset and progression of non-small cell lung
cancer. Oncotarget 2016, 7, 12904–12916. [CrossRef] [PubMed]

24. Musharraf, S.G.; Mazhar, S.; Choudhary, M.I.; Rizi, N. Plasma metabolite profiling and chemometric analyses
of lung cancer along with three controls through gas chromatography-mass spectrometry. Sci. Rep. 2015, 5,
8607. [CrossRef]

25. Salvador, M.M.; de Cedrón, M.G.; Rubio, J.M.; Martínez, S.F.; Martínez, R.S.; Casado, E.; de Molina, A.R.;
Sereno, M. Lipid metabolism and lung cancer. Crit. Rev. Oncol. Hematol. 2017, 112, 31–40. [CrossRef]

26. Beckonert, O.; Keun, H.C.; Ebbels, T.M.D.; Bundy, J.; Holmes, E.; Lindon, J.C.; Nicholson, J.K. Metabolic
profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and
tissue extracts. Nat. Prot. 2007, 2, 2692–2703. [CrossRef]

27. Weljie, A.M.; Newton, J.; Mercier, P.; Carlson, E.; Slupsky, C.M. Targeted Profiling: Quantitative Analysis of
1 H NMR Metabolomics Data. Anal. Chem. 2006, 78, 4430–4442. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.2217/fon.10.116
http://dx.doi.org/10.1038/oncsis.2015.49
http://www.ncbi.nlm.nih.gov/pubmed/26807644
http://dx.doi.org/10.1016/j.cmet.2013.05.017
http://www.ncbi.nlm.nih.gov/pubmed/23791484
http://dx.doi.org/10.18632/oncotarget.7354
http://www.ncbi.nlm.nih.gov/pubmed/26883203
http://dx.doi.org/10.1038/srep08607
http://dx.doi.org/10.1016/j.critrevonc.2017.02.001
http://dx.doi.org/10.1038/nprot.2007.376
http://dx.doi.org/10.1021/ac060209g
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Patient Characteristics 
	Overall Survival Analysis from NMR Data 
	Overall Survival Analysis from Lipid Data 

	Discussion 
	Methods and Materials 
	Patients 
	Sample Preparation 
	NMR Spectroscopy 
	Lipidomics Assay by UPLC-Qtof-MS 
	Statistical Analysis 

	Conclusions 
	References

