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Abstract: Extracellular vesicles (EVs) are small membrane vesicles released by all cells and involved
in intercellular communication. Importantly, EVs cargo includes nucleic acids, lipids, and proteins
constantly transferred between different cell types, contributing to autocrine and paracrine signaling.
In recent years, they have been shown to play vital roles, not only in normal biological functions,
but also in pathological conditions, such as cancer. In the multistep process of cancer progression,
EVs act at different levels, from stimulation of neoplastic transformation, proliferation, promotion of
angiogenesis, migration, invasion, and formation of metastatic niches in distant organs, to immune
escape and therapy resistance. Moreover, as products of their parental cells, reflecting their genetic
signatures and phenotypes, EVs hold great promise as diagnostic and prognostic biomarkers.
Importantly, their potential to overcome the current limitations or the present diagnostic procedures
has created interest in bladder cancer (BCa). Indeed, cystoscopy is an invasive and costly technique,
whereas cytology has poor sensitivity for early staged and low-grade disease. Several urine-based
biomarkers for BCa were found to overcome these limitations. Here, we review their potential
advantages and downfalls. In addition, recent literature on the potential of EVs to improve BCa
management was reviewed and discussed.

Keywords: extracellular vesicles; microvesicles; bladder cancer; urothelial cancer; biomarkers;
liquid biopsy

1. Introduction: Bladder Cancer and Disease Management

Urological tumors represent approximately 25% of all human cancers [1]. Bladder cancer (BCa) is
the 10th most common, and the 9th cause of death by malignancy worldwide [2]. Aging, ethnicity,
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and male gender are considered non-modifiable risk factors [2–4], but most tumors are derived from
acquired environmental exposure to carcinogenic substances. Cigarette smoking is considered the main
risk factor [5,6], with an estimated causal association for half of BCa in both genders [7–9], whereas
occupational exposure accounts for 10–20% of all cases [10]. The worldwide incidence of BCa seems to
reflect areas with higher exposure to risk factors [10], which explains why developed countries have a
larger number of diagnosed cases [2,10]. As an example, Schistosoma haematobium infection, another
known risk factor, is more prevalent in northern and sub-Saharan African countries, where there is a
relatively higher incidence of BCa [10]. In addition, differences in healthcare systems also account for
disparity of incidence rates, being better resources associated to an easier and faster diagnosis.

Urothelial cancer originates in the epithelial cells of the urothelium, extending from the renal
pelvis to the urethra [11–13]. The majority of these tumors are located in the bladder, accounting for
90–95% of cases, while 5–10% are located in the upper urinary tract (UUT) [14–18]. Tumor extension is
classified according to the TNM (Tumor-Node-Metastasis) staging system. At diagnosis, approximately
75–80% of bladder tumors are non-muscle invasive (NMIBC), which includes mucosa (for stages Ta
and Cis) and lamina propria (T1 stage) confined disease, while 20–25% are muscle-invasive (MIBC),
when invading the muscle layer and beyond (T2–T4 stages) [1,4,14].

Although clinical presentation may be suggestive, the gold standard diagnostic procedures are
cystoscopy and urinary cytology [19–24]. Nevertheless, cystoscopy is an invasive, operator-dependent
procedure, with low sensitivity for small papillary or Cis tumors, which, if underdiagnosed and
untreated, progress to muscle-invasive disease in approximately half of the patients [19–24]. The
sensitivity and specificity of white light cystoscopy is 71% (95% CI: 0.49–0.93%) and 72% (95% CI:
47–96%), respectively [24]. However, due to its invasiveness, it is frequently associated with side effects
such as dysuria (50%), hematuria (19%), or urinary tract infection (3%) [25,26].

As for urinary cytology, it has high diagnostic accuracy for high grade lesions and Cis, with a
sensitivity of 80–90% and specificity between 98% and 100% [27]. However, it exhibits low sensitivity
for low grade lesions, between 4% and 31% [28–33], and high rate of false positives, due to benign
or inflammatory conditions produced by chemo or radiation therapy [34,35]. To overcome these
limitations, several urinary biomarkers were developed and are currently commercially available.
Compared to cytology, they have higher sensitivity but lower specificity and are, unfortunately, less
useful in low risk BCa [36–38]. Therefore, consensus among the different international societies on
these biomarkers still do not recommend them as replacements of cytology in the current clinical
practice [36–38].

The standard therapy for NMIBC is trans-urethral resection of the bladder (TURB), with both
diagnostic and therapeutic purposes, complemented or not by intravesical adjuvant treatment [39,40].
However, even after complete endoscopic resection, there is a high recurrence rate, around 50–70%,
and 10–30% will progress to MIBC [39,40]. This feature of BCa natural history elicits the need for a
regular follow-up with cystoscopy and cytology at every 3 months interval, generally accompanied by
repeated treatments due to recurrence, and which frequently result in high morbidity and economic
burden [1,41,42].

Driven by the invasiveness and morbidity of cystoscopy, the lack of acceptable sensitivity of
urinary cytology and of specificity of the commercially available urinary diagnostic biomarkers,
urge the need for extensive research on the identification of novel and more effective biomarkers, to
implement better tools for diagnosis, follow-up, and screening of at risk populations [1,29,34,42–44].

Extracellular vesicles (EVs) are small membrane vesicles which have emerged as a source of
biomarkers in bladder cancer [45]. Their detection in liquid biopsies is feasible, due to their presence
and stability in most human fluids, and may serve as biomarkers in bladder cancer early detection as
they present similar cargo to their donor cancer cells [46]. Additionally, they have some advantages as
a source of biomarkers since they are more abundant in liquid biopsies compared to circulating tumor
cells (CTCs), protect their cargo against degradation and may carry molecular signatures associated
with specific phenotypes [47–49]. The present review focus on the status of urinary biomarkers in
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diagnosis and follow-up of bladder cancer, pinpointing the emerging potential role of urinary EVs on
bladder cancer diagnosis and management.

2. Liquid Biopsy as a Source of Biomarkers for Bladder Cancer

The ideal biomarker would be cost-effective, objective, fast to process, and easy to interpret, with
high sensitivity and specificity [43,50–54]. For urothelial cancer biomarkers, four goals have been
proposed to be accomplished: (i) reduce the need for frequent invasive procedures; (ii) exclude recurrence;
(iii) detect progression towards invasive disease; (iv) predict effective treatment response [43,44].
The close contact with urothelium makes urine an attractive approach to detect the presence of tumor
cells, in a minimally invasive way. Importantly, this liquid biopsy approach would allow multiple
longitudinal sampling of the tumor to identify presence of malignancy, grade, and genomic landscape
for improved clinical follow-up. [53,54].

Following this line of thought, previous research for BCa biomarkers has been conducted using
mostly proteins, nucleic acids, inflammatory and metabolite markers, within the concept of liquid
biopsies [55,56]. Taking into consideration that such biopsies concern the detection of any kind of
molecular or cellular biomarkers in patient bodily fluids (including urine, blood, saliva, pleural,
peritoneal, or cerebrospinal fluids), a novel biomarkers array emerged. These include circulating tumor
cells (CTCs), proteins, metabolites, circulating nucleic acids, namely cell-free tumor DNA (ctDNA),
messenger RNA (mRNA), micro RNA (miRNA), or long non-coding RNA (lncRNA). Most of these
biomarkers may be found free or within extracellular vesicles (EVs) shed by tumor cells or by other
elements of the tumor microenvironment [56,57] (Figure 1). There is a growing interest on the liquid
biopsy concept, since (i) the biomarkers found have extensive potential for diagnosis and monitoring
of disease stage and recurrence; (ii) prediction of therapeutic response/resistance and disease prognosis,
with minimally invasive procedures, and (iii) helping therapeutic clinical reasoning based on identified
molecular changes [56–58].

2.1. Commercially Available Urine Biomarkers in Bladder Cancer

Several interesting and promising biomarkers have been under clinical scrutiny during the past
years, although only those approved by in vitro diagnostics (IVD) regulatory entities (e.g., FDA)
became commercially available biomarkers, to be used as adjuncts to cystoscopy in primary diagnosis
and follow-up of BCa. Taking into consideration the various reports on the subject, novel urinary
biomarkers contributed to higher sensitivity but lower specificity than cytology, leaving them out of
international guidelines recommendations [1,36,53,54,59–62]. Table 1 provides an overview of the
biomarkers approved for clinical use and their reported diagnostic accuracy.
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Figure 1. Urine biomarkers for bladder cancer (BCa) diagnosis and follow up. Illustration of the distinct 
available approaches for the detection of urothelial cancer cells in patients’ urine. The close interaction 
between the bladder tumor and the urine makes this body fluid a reliable source of cancer biomarkers. A 
plethora of non-invasive assays exploring distinct analytes (exfoliated tumor cells; proteins; genes; 
metabolites and extracellular vesicles) in patients’ urine allows the longitudinal analysis of tumor 
progression. Some of the commercially-available tests includes FDA-approved (UroVysion™: aneuploidy of 
chromosomes 3; 7; 17 and the loss of 9p21 by FISH; ImmunoCyt™/uCyt+™ test: detection of 
carcinoembrionary antigen (CEA) and mucins by immunohistochemistry (IHC); bladder tumor antigen 
(BTA) TRAK/BTA Stat and NMP22 BC test kit); non-FDA approved (CxBladder™: IGFBP5, HOXA13, MDK, 
CDK1 and CXCR2 by RT-qPCR; Assure MDx™: FGFR3, TERT and HRAS (mutations), OTX1, ONECUT2 
and TWIST1 (methylation); XPert Bladder Cancer Monitor™: UPK1B, IGF2, CRH, ANXA10 and ABL1 by 
RT-qPCR; and UBC™: cytokeratins 8 and 18 by ELISA) and the emerging extracellular vesicles (EV)-based 
biomarkers (not commercialized yet). 
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Figure 1. Urine biomarkers for bladder cancer (BCa) diagnosis and follow up. Illustration of the
distinct available approaches for the detection of urothelial cancer cells in patients’ urine. The close
interaction between the bladder tumor and the urine makes this body fluid a reliable source of cancer
biomarkers. A plethora of non-invasive assays exploring distinct analytes (exfoliated tumor cells;
proteins; genes; metabolites and extracellular vesicles) in patients’ urine allows the longitudinal analysis
of tumor progression. Some of the commercially-available tests includes FDA-approved (UroVysion™:
aneuploidy of chromosomes 3; 7; 17 and the loss of 9p21 by FISH; ImmunoCyt™/uCyt+™ test: detection
of carcinoembrionary antigen (CEA) and mucins by immunohistochemistry (IHC); bladder tumor
antigen (BTA) TRAK/BTA Stat and NMP22 BC test kit); non-FDA approved (CxBladder™: IGFBP5,
HOXA13, MDK, CDK1 and CXCR2 by RT-qPCR; Assure MDx™: FGFR3, TERT and HRAS (mutations),
OTX1, ONECUT2 and TWIST1 (methylation); XPert Bladder Cancer Monitor™: UPK1B, IGF2, CRH,
ANXA10 and ABL1 by RT-qPCR; and UBC™: cytokeratins 8 and 18 by ELISA) and the emerging
extracellular vesicles (EV)-based biomarkers (not commercialized yet).
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Table 1. Urine-based tests to aid bladder cancer clinical reasoning.

Test Sample Biomarker Assay Purpose Sensitivity Specificity References

BTA TRAK® Protein Complement factor H-related CIA Follow-Up 0.64
(0.58–0.69)

0.77
(0.73–0.81) [63–65]

BTA Stat ® Protein Complement factor H-related SIA Follow-Up 0.65
(0.54–0.75)

0.74
(0.64–0.82) [64–66]

NMP22 BC test® Protein NMP-22 SIA Follow-Up 0.69
(0.62–0.75)

0.77
(0.70–0.83) [67,68]

NMP22 BladderChek test® Protein NMP-22 SIA
Diagnosis 0.47

(0.33–0.61)
0.93

(0.81–0.97) [67–69]

Follow-Up 0.70
(0.40–0.89)

0.83
(0.75–0.89) [67–69]

ImmunoCyt/uCyt+™ Sediment
Tumor associated cellular antigens

(M344; LDQ10; 19A11)
IF cytology Diagnosis 0.85

(0.78–0.90)
0.83

(0.77–0.87) [64,65,70]

Follow-Up 0.75
(0.64–0.83)

0.76
(0.70–0.81) [64,65,70]

UroVysion™ Sediment
Aneuploidy for chromosomes 3; 7; 17;

and loss of 9p21 locus FISH
Diagnosis 0.73

(0.50–0.88)
0.95

(0.87–0.98) [71–73]

Follow-Up 0.55
(0.36–0.72)

0.80
(0.66–0.89) [71–73]

CxBladder Detect® mRNA IGFBP5; HOXA13; MDK; CDK1; CXCR2 RT-qPCR Diagnosis 0.74
(0.65–0.81)

0.82
(0.79–0.84) [74]

CxBladder Monitor® mRNA IGFBP5; HOXA13; MDK; CDK1; CXCR2 RT-qPCR Follow-Up 0.91
(0.88–0.99) 0.96 (NPV) [75]

AssureMDx™ DNA FGFR3; TERT; HRAS; OTX1; ONECUT2; TWIST1 DNA methylat Diagnosis 0.93 0.86 [76]

Xpert® Bladder Cancer mRNA UPK1B; IGF2; CRH; ANXA10; ABL1 RT-qPCR Follow-Up 0.84
(0.69–0.93)

0.91
(0.83–0.96) [77]

UBC® Protein Cytokeratin 8 and 18 fragments SIA Diagnosis 0.61–0;65 0.77–0.82 [78]

Abbreviations: BTA; bladder tumor antigen; CIA; colorimetric immunoassay; IF; immunofluorescence; NMP; nuclear matrix protein; UBC; urinary bladder cancer antigen; FISH;
fluorescence in situ hybridization; RT-qPCR; reverse transcription-quantitative polymerase chain reaction; SIA; sandwich immunoassay.
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2.1.1. FDA-Approved Urine Biomarkers

The bladder tumor antigen (BTA) is a complement factor H related protein secreted by malignant
cells, which confers them survival advantage, as it interferes in the complement cascade [79]. There are
two approved versions of this test for BCa follow-up in concurrent use with cystoscopy, the BTA TRAK
and the BTA Stat (Polymedco Inc., Cortlandt Manor, New York, USA) [63]. In different reviews and
meta-analysis, the BTA Stat has a sensitivity and specificity of 64% and 77%, respectively, whereas
the BTA Trak has 65% and 74%, respectively [64–66]. The sensitivity was higher in the diagnosis of
symptomatic patients rather than in follow-up, but with similar specificity. Both tests demonstrated
higher sensitivity than urinary cytology, despite the decreased specificity in conditions where the
complement factor H related protein is present, such as in other genitourinary malignancies and
benign conditions with hematuria, including lithiasis, inflammation, instrumentation, and intra-vesical
therapies [31,64–66,80].

The nuclear matrix has an important role on DNA replication and RNA transcription and
splicing [81], with nuclear matrix proteins (NMP) being essential components of mitosis, with a role
in tumoral proliferation. Numerous NMPs have been described in solid tumors, although NMP22
was shown to be specific for BCa [81,82]. It is released from apoptotic cells towards urine, with
significantly higher release rate in cancer than in normal cells [81,83,84]. The NMP22 BC test kit
(Matritech Inc.; Newton, MA, USA) is a quantitative test used for patient follow-up, whereas the NMP22
BladderChek test® (Matritech Inc.; Newton, MA, USA) is qualitative and used for both follow-up
and initial diagnosis, in symptomatic patients [85–87]. Concerning sensitivity and specificity, the
quantitative test has 69% and 77%, while the qualitative has 58% and 88%, respectively [64,67–69,88,89].
When compared to urinary cytology, the sensitivity of NMP22 was higher (70% versus 40%), albeit
specificity was lower (81% versus 97%) [28]. Taken together, both NMP22 and cytology, resulted in
sensitivity of 91% [28,89]. Notably, Grossman et al. studied approximately 2000 patients, to compare
NMP22 Bladder Chek test® with cystoscopy, and observed decreased NMP22 sensitivity (50–56%)
in comparison to cystoscopy (89–91%), although diagnostic accuracy was 94–99% if both tests were
considered together [90]. Although NMP22 has higher sensitivity than urinary cytology, specificity
is too low to replace it. The fact that it is released from apoptotic cells, which might also be seen in
benign conditions, is responsible for the relatively high false positive rate [91]. However, if combined
with cistoscopy, this significantly increases its diagnostic value.

The ImmunoCyt™/uCyt+™ test (Diagnocure Inc, Quebec, Canada) combines cytology with
monoclonal antibody immunofluorescence labelling to detect three BCa antigens, M344, LDQ10, and
19A11, specifically found in malignant exfoliated urothelial cells [92]. To be positive, it requires many
exfoliated cells (>500 per field). This test is expensive, with inter-observer variation and time-consuming
analysis, but less prone to be influenced by benign inflammatory conditions, comparatively to other
tests [93,94]. It is recommended in BCa patients only for follow-up as adjunct test to urinary
cytology [95]. Sensitivity varies between 83% and 85% and specificity between 75% and 87%. These
are higher in primary diagnosis than follow-up [28,64,65,70]. Mowatt et al. [28] compared uCyt+™

with urinary cytology and showed that this test presented higher sensitivity (82% versus 44%) and
lower specificity (85% versus 94%), respectively. Interestingly, the simultaneous use of both tests
improved sensitivity without impacting on specificity (87% and 68%, respectively). Sensitivity and
specificity, in the study of Schmitz-Dräger et al. [96], was 85% and 88% for immunocytology and 84%
and 98% for cystoscopy. When combined, sensitivity increased to 100%, whereas specificity decreased
to 87%. Although less prone to interference, immunoCyt™ has lower specificity than urinary cytology.
Likewise, despite combination with cystoscopy increases sensitivity, the false positive rate remains
elevated [96]. Pfister et al. [97] assert that due to its good sensitivity, the combined use of uCyt+™

with cytology might delay the time intervals between cystoscopies, particularly in lower risk patients.
Currently, this test was approved only for patient follow-up [95].

UroVysion (Abbott Laboratories, Abbott Park, Illinois, USA) is a fluorescence in situ hybridization
(FISH) probe set to detect bladder cancer cells [95,98]. It uses fluorescent labelled DNA probes to assess
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genetic changes in exfoliated cells, namely chromosomal aberrations suggestive of BCa, aneuploidy of
chromosomes 3, 7, and 17, and loss of the 9p21 locus. It has been approved for primary diagnosis and
follow-up of BCa patients [95,98]. The reported sensitivity is 63–72% and specificity 85–87% [28,64].
Their diagnostic accuracy was superior in primary diagnosis than in follow-up, showing low sensitivity,
similarly to urinary cytology, particularly for low grade tumors [71,72]. Compared to cytology,
UroVysion had better sensitivity (72% vs. 42%) and lower specificity (83% vs. 96%) [71]. When
used simultaneously, there was a significant improvement in sensitivity but still a low specificity
of 50% [72,73]. UroVysion™ is more expensive than cytology and requires specialized laboratory
techniques. However, it could be useful in situations of atypical cytology and equivocal cystoscopy,
identifying patients that may need further investigation [62,97]. Two prospective studies found that
UroVysion had high positive predictive value, supporting that patients with a positive test and negative
cystoscopy are more likely to have disease recurrence within one year [99–101]. Thus, a FISH test
that is positive may be used to anticipate BCa recurrence during follow-up, especially in low risk
patients [99,100], and reduce the number of unnecessary bladder biopsies [102]. Therefore, these
studies suggest that chromosomic aberrations precede the detection of malignant lesions by cystoscopy
and other standard techniques [101].

Analyses comparing the above-mentioned biomarkers have been reported. No differences were
found in terms of sensitivity and specificity between the NMP22 test kit (cut-off > 10 U/mL) and the BTA
Stat, in different stages and tumor grades [91,103–108]. The ImmunoCyt™ has higher sensitivity for low
stage (Ta, T1) and low-grade tumors, although lower specificity than the UroVysion™ test [107,109,110].
However, although these tests were FDA approved for diagnosis and follow-up of BCa, together with
standard techniques, most of these studies are case–control ones in populations with high prevalence
of the disease, giving them an unrealistically high positive predictive value. On the other hand, the
question remains how to interpret positive findings of these tests, when no significant findings are
found on cystoscopy during follow-up. In fact, most positive results have not been submitted to
confirmatory biopsy. Moreover, there are few external validation studies to support their use in daily
practice. In summary, multicentric prospective studies are required to assess consequences from
positive and negative tests in the long term, to increase the likelihood to be supported by international
urology organizations.

2.1.2. Non-FDA Approved Urine Biomarkers

To overcome the limitations of approved diagnostics biomarkers, extensive research is ongoing
to find more effective biomarkers for BCa diagnosis and follow-up. There are several commercially
available tests, despite not being approved by regulatory institutions. The CxBladder (Pacific Edge
Diagnostics, Dunedin, New Zeland) is a RTqPCR test in voided urine, that quantifies different mRNAs
expressed in BCa, as IGFBP5, HOXA13, MDK, CDK1, and CXCR2, associated with non-malignant
conditions, to reduce the number of false-positives results due to inflammation [75,111]. The Triage™,
Detect™, and Monitor™ tests have specific population targets. The first was developed for screening
of high-risk populations as a pre-test guiding the need for cystoscopy, the Cxbladder Detect™ was
intended for aiding in diagnosis of symptomatic patients and the Monitor™ for BCa follow-up [75].
Studies using Cxbladder Detect™ found higher sensitivity but lower specificity than cytology (73.6%
sensitivity and 81.7% specificity) in one study [74], while another described 82% sensitivity and
similar specificity [112]. There are reports for Cxbladder Monitor™ stating a sensitivity of 93% that
increases to 95% in high risk patients [75]. A large study comparing biomarkers performance for
BCa detection in urine, found that the Cxbladder Monitor™ sensitivity (91%) overcomed cytology by
22%, NMP22 BC test kit® by 26% and NMP22 BladderChek® by 11%, with an estimated reduction in
the number of cystoscopies needed in follow-up by 81.7% [38]. Although prospective confirmatory
trials are needed, some authors suggest its use as an auxiliary test to postpone the need of repeated
cystoscopies in low risk patients [38,54]. The Assure MDx™ (MDx Health, Irvine, CA, USA) is a
test performed in urine to identify DNA mutations in three genes (FGFR3, TERT, and HRAS) and
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methylations in another three genes (OTX1, ONECUT2, and TWIST1) [113]. A multicentric study
demonstrated a sensitivity of 93% and specificity of 86% for BCa diagnosis [76]. It might be useful for
screening low risk patients with symptomatic hematuria, reducing by an estimated 77% the number of
unnecessary diagnostic cystoscopies. The XPert® Bladder Cancer (BC) Monitor (Cepheid, Sunnyvale,
CA, USA) is a RT-PCR test that measures the number of urinary transcripts in five genes, UPK1B,
IGF2, CRH, ANXA10, and ABL1, and was designed for BCa patient follow-up [77]. This test was
superior to cytology on NMIBC during follow-up, in terms of sensitivity (84% versus 33%), while
presenting similar specificity (91% versus 94%) [77], despite controversial findings from another study,
that indicated 46.7% sensitivity and 77% specificity [114]. The heterogeneity between studies and the
lack of external validation makes its present use unreliable. The UBC® (Urinary bladder cancer) is a
test that detects the expression of cytokeratins 8 and 18 in urine, with presentation of quantitative,
UBC®-ELISA, and qualitative UBC®-rapid procedures [78]. The reported sensitivity for UBC®-rapid
was 86.9% for detecting Cis, 30.4% for low grade NMIBC, 71.4% for high grade NMBC, and 60%
for MIBC [78]. Other studies reported sensitivities between 30% and 87% for Cis and specificity of
63–91% [115–118]. The UBC®-rapid is a test that provides results within 10 min, but in comparison
with other tests has the lowest specificity [115].

2.2. Emerging Urine Biomarkers

Besides these commercially available diagnostic tools for BCa detection in the urine, extensive
research is underway to find more effective biomarkers [60,86,119]. The insufficient number of
patients in most studies, the lack of external validation in large scale prospective studies, and absence
of comparative trials between biomarkers, foster the need for both methodological improvement
of existing biomarkers and uncover novel robust biomarkers. Moreover, the existing biomarkers,
in general, perform poorly in low risk BCa or have low specificity, and are more accurate in the
initial diagnosis of BCa than in follow-up [66]. Taken together, these limitations preclude actual
recommendations by most international clinical societies, and current literature suggests that single
biomarkers are insufficient to overcome this problem. Therefore, the current trends of research are
focusing on the combination of different biomarker signatures, to develop more accurate diagnostic
and surveillance tools in BCa, as well as to predict its behavior in order to provide prognostic
information [120].

3. Extracellular Vesicles from Liquid Biopsies as a Source of Biomarkers

Recently, tumor-derived extracellular vesicles (EVs) have received considerable interest by the
biomarker research community for BCa diagnosis and follow-up. EVs are non-replicable small
lipid bilayer membrane vesicles continuously released by all prokaryotic and eukaryotic cells to the
extracellular surroundings. Importantly, this mechanism allows cells to exchange information (encoded
in nucleic acids or proteins) between donor and target cells [121].

Depending on their biogenesis mechanism and secretion, EVs are broadly divided in exosomes,
microvesicles, and apoptotic bodies (Figure 2). Exosomes are the generally smallest vesicles (30–150 nm)
and originate by inward budding of intracellular endosomes, later converted into multivesicular bodies
(MVBs) that fuse with the cellular membrane and release their cargo into the extracellular space. Instead,
microvesicles are typically larger (100–1000 nm) and shed directly from the bleebing of the outward
cellular membrane [46,121–123]. Apoptotic bodies (1000–5000 nm) are produced by cells undergoing
programmed cell death. The processes of synthesis and release of EVs are regulated by endosomal
sorting complexes required for transport (ESCRT), p53/TSAP6 pathway, syndecan-syntenin-ALIX,
Rab proteins, phospholipase D, sphingomyelinase, and ceramide [124]. To date, it is not possible
to experimentally support the attribution of certain activities or markers to specific EV subtypes,
which prompted the International Society for Extracellular Vesicles (ISEV: www.isev.org/) to publish
guidelines on EVs nomenclature and characterization. The current recommendation is to report all
EV subtypes generically as “extracellular vesicles”, while describing in detail the mechanisms used

www.isev.org/
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for their separation and characterization, their physical characteristics, biochemical composition, or
descriptions of the cell of origin, unless their biogenesis pathway is confirmed [124–126].
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Figure 2. Schematic representation of extracellular vesicles biogenesis. Extracellular and plasma
membrane molecules are engulfed by plasma membrane endocytosis, creating the early endosomes.
These are converted into late endosomes called multivesicular bodies (MVB) containing intraluminal
vesicles (ILV). The MVBs may either fuse with the plasma membrane and empty their ILVs by
exocytosis, termed exosomes, or may be converted into lysosomes and degrade their components.
The process of microvesicle formation is calcium dependent and comes from direct shedding from
outward cellular membrane budding; thereby carrying membrane markers of the parent cell. Apoptotic
bodies are produced by secreting cells undergoing programmed cell death. Extracellular vesicle
uptake by recipient cells may occur via fusion of the vesicle membrane with the cell membrane or by
endocytosis. The vesicle may also transduce an intracellular signal by ligand binding to a receptor
on the recipient cell. Abbreviations: MHC—major hystocompatibility complex; ER—endoplasmic
reticulum; MVB—multivesicular bodies; ILV—intraluminal vesicles.

3.1. Physiological Functions of Extracellular Vesicles

EVs behave ubiquitously, and have been identified in most body fluids, including blood, saliva,
breast milk, urine, and amniotic fluid [125–132]. It is known that they carry a cargo from their
donor cell, primarily composed of proteins, mRNAs, miRNAs, lncRNAs, small DNA fragments, and
lipids. Indeed, it was postulated that EVs may reflect the biological functions of the originating
cells [46,123,133], even though they were thought to be biologically insignificant or a simple vehicle for
cellular waste disposal. In recent years, EVs were recognized as having physiological and pathological
relevance [134].

Extracellular vesicles are key intervenients in several processes involved in cellular
homeostasis [134]. Besides their physiological role on cell survival and anti-stress protection, they have
a main function in intercellular communication, transporting key molecular messengers to recipient
cells, thereby influencing the recipient cells function. Packaging this information into vesicles provides
additional protection to the messengers (i.e., cargo) and allows simultaneous delivery to remote
locations, which might be achieved through distinct mechanisms (Figure 3): (i) transfer of nucleic
acids that induce phenotypic changes and affect multiple functions in recipient cells; (ii) transfer of
lipids and proteins (such as cytokines, chemokines, and growth factors) to neighboring or distant
cells, thus modulating the targeted recipient cells; (iii) trigger cell signaling pathways in recipient cells
by exposure of ligands, proteins, and lipids, that bind to and stimulate matched receptors at the cell
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surface; (iv) transfer of functional receptors to recipient cells, thus allowing cell signaling in recipient
cells that originally lacked that receptor or enhancing their number [47–49].Cancers 2020, 12, x 10 of 30 
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Figure 3. Routes of EV delivery to target cells and their potential role in bladder cancer progression.
(a) Transfer of EV-enclosed nucleic acids derived urothelial carcinoma cells to nearby naïve fibroblasts
can induce their transformation into Cancer-Associated Fibroblasts (CAFs) with altered pro-tumoral
secretome. (b) Likewise, transfer of EV-associated lipids and/or oncoproteins to neighbor or distant
cells modulate targeted immune cells into an immunosuppressive phenotype and/or facilitate the
transformation of healthy epithelial cells. (c) Many of the signaling molecules that integrate the EVs
membrane can act directly on the surface receptors of target cells and trigger their own cell signaling
pathways without the need of EV internalization. (d) The uptake of EVs derived from drug resistant
tumor cells by drug sensitive tumor cells (or even supporting stroma) can mediate the transfer of
functional receptors/molecules to recipient cells, thus allowing a similar phenotypic behavior in cells
that originally lacked those receptors/molecules (e.g., transfer of functional drug efflux pumps).

Extracellular vesicles have been involved in thrombosis and hemostasis, as they contribute towards
increased availability of negatively charged phosphatidylserine and tissue factor, thus providing
the triggers for activation of the extrinsic pathway and subsequent thrombin generation, promoting
pro-thrombotic effects and platelet aggregation [48]. Interestingly, bladder cancer patients are at
increased risk for venous thromboembolism [135], an event associated with the worst prognosis.
Similarly, the crosstalk between blood and endothelial cells mediated by EVs expose cell surface
receptors and adhesion molecules, required for angiogenesis and neovascularization, of relevance upon
tissue injury, post-ischemic revascularization, and regeneration [47–49]. A pleiotrophic effect of EVs on
immunoinflammatory processes has also been described. Dendritic cell-derived EVs enhance natural
killer cell cytotoxic activity and stimulate epithelial cells to release proinflammatory cytokines [49].
Others, derived from circulating leukocytes, participate in endothelium activation and upregulate the
release of adhesion molecules, leading to leukocyte recruitment; EVs may also have antigen-presenting
properties, exposing major histocompatibility complexes (MHCs) and co-stimulatory molecules on
cell surface, initiating a pro-inflammatory response in epithelial cells and T-cell activation. Dendritic
cell-derived microvesicles containing tumor necrosis factor-α (TNF-α) might initiate an innate immune
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response in epithelial cells and affect adaptive immunity, whereas platelet-derived microvesicles can
increase B-cell production of immunoglobulins and activation of the complement system [47–49].

3.2. Pathological Functions of Extracellular Vesicles in Bladder Cancer

Interestingly, the recognized function of EVs as critical effectors in the maintenance of physiological
cell-to-cell interactions seems to be severely disturbed throughout cancer progression. Indeed, the
transfer of pro-tumoral EVs cargo between cancer cells and the surrounding tumor microenvironment
influences the multiple stages of tumorigenesis, namely neoplastic transformation, proliferation,
migration, invasion, and metastasis to distant organs, angiogenesis, immune response, and emergence
of drug resistant traits in cancer cells [47,121,136] (Figure 3). Their potential for tumor initiation
was shown in prostate cancer, where EVs isolated from tumor cells were able to upregulate the
pro-survival protein STAT3, converting normal into malignant epithelial cells [137]. Similarly, in other
cancer models, BRCA1-KO fibroblasts treated with sera (containing EVs) from cancer patients yielded
higher proliferation and malignant transformation than wild type control fibroblasts [138]. This was
demonstrated in BCa as well, as healthy recipient fibroblasts gained malignant phenotypes and
transformed into cancer associated fibroblasts (SMA, FAP, galectin), after exposure to cancer cell-derived
EVs [139]. EVs were also able to promote tumor cell proliferation in several cancers, including BCa.
When derived from cells under hypoxic conditions, EVs carry high levels of lncRNA-urothelial cancer
associated 1 (lncRNA-UCA1), which promotes proliferation and invasion in human recipient cells [140].
Their ability to induce migration, invasion, and angiogenesis has also been demonstrated [141]. In fact,
tumor-derived EVs can promote angiogenesis by supporting communication between cancer and
endothelial cells. Indeed, extracellular vesicles isolated from high grade bladder cancer cells, and from
the urine of patients with high grade bladder cancer, contained EDIL-3 and increased angiogenesis and
migration of bladder cancer and endothelial cells. Indeed, when EVs originate from high grade bladder
cancer cells isolated from the urine of patients submitted to radical cystectomy, EVs contain substantially
higher levels of EDIL-3, a pro-angiogenesis and migration protein, than healthy controls. Following
EDIL-3 knock-down in bladder cancer cells, the collected EVs had lower EDIL-3 levels, and were unable
to promote angiogenesis and migration [141]. Likewise, the EVs isolated from MIBC cells had increased
levels of periostin, which was capable of activating ERK oncogenic signals. This resulted in increased
aggressiveness of low-grade tumor cells and was associated with worse prognosis, in both MIBC
cell lines and clinical tissue samples [142]. On the other hand, Franzen et al. [143] demonstrated the
ability of MIBC derived EVs to induce epithelial to mesenchymal transition, a well-known mechanism
for initiation of metastasis and cancer progression. In another study, Ostenfeld et al. reported
that altered secretion of EVs containing tumor suppressive miRNAs, like the miR-23b, regulated
by members of the RAB family, namely the RAB27A and RAB27B, contributed to invasion, anoikis,
angiogenesis, and pulmonary metastasis in BCa patients [144]. The increased amount of mucin-1
(MUC1) and epidermal growth factor (EGF) receptor HER3 in EVs were shown to be associated with
a more favorable prognosis [145]. The EVs have a prominent role in damping the hosts immune
cell response to the emerging cancer cells [146]. Indeed, their role in immunosuppression has been
well established in several cancer types [146], once they may cooperate with cancer cells to overcome
immune checkpoints [146]. Nevertheless, the specific contribution of EVs for immunosuppression of
host response in BCa remains poorly understood.

3.3. EV Separation and Characterization from Urine Samples: Pitfalls and Technical Considerations

3.3.1. Pre-Analytical Considerations

Currently, there is limited consensus on the standard pre-analytical procedures for the clinical
validation of EV-based diagnostics in bladder cancer [147,148]. Some of these pre-analytical
factors include the standardization of procedures for urine selection, collection, storage, and
shipping/transportation conditions. Noteworthy, many of these factors have a direct impact on
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the co-elution and polymerization of Tamm–Horsfall protein (THP), one of the major contaminants
of urinary EV separation. Indeed, the (i) timing of urine collection (e.g., first morning urine vs
spontaneous urine vs intravesical urine); (ii) the need for inter-day urine collection due to sample
variation; (iii) the necessity for stabilization of urine pH; (iv) the type and impact of THP inhibitor
cocktails added to the urine (e.g., reducing dithiothreitol (DTT), detergent CHAPS or urea); (v) its
storage temperature (e.g., 4 ◦C vs 20 ◦C); and (vi) maximum storage time prior EV separation are some
of the unresolved issues required to improve EV-based diagnostic accuracy.

So far, the consensus seems to prefer first morning urine for collection, with some reports stating
that a citrate-based buffer is beneficial for controlling urine pH while reducing THP protein precipitates
after thawing [148]. Nevertheless, such pre-analytical interventions may affect the size and even the
native composition of isolated EVs [131,149,150]. Additionally, the high variation of EV recovery
due to inter-day urine collection seems to be hampered by the addition of protease inhibitors [148].
Unfortunately, the optimal inhibitor cocktail is still an open debate with several authors showing that
different protease inhibitor cocktails had different impacts on the ratio of THP polymerization and
consequently on the yield of urinary EVs in the UC pellets [148,151–153].

Regarding urine storage/transportation, 4 h seems to be the maximal time interval upon urine
collection to minimize EV sample degradation. Importantly, this time interval seems to be heavily
reliant on the storage temperature and type of analyte (e.g., nucleic acids, proteins, lipds, etc.) [154].

Taken together, several studies show that several pre-separation methodological issues have a
remarkable influence on the yield, purity, and cargo profile of EVs isolated from urine samples [148,154,155].
Importantly, this impact is transversal to all studies regardless of the selected EV separation method.
Indeed, the standardization of pre-analytical variables is required to ensure a reliable evaluation on the
reported quantity and EV profile for a given pathological state. Moreover, the development of shared
Standard Operating Procedures (SOPs) would enable the comparison (and even merging the data) of
urine EVs derived from bladder cancer patients from different laboratories. This would facilitate the
establishment of multicentric clinical trials to validate the clinical feasibility of EV-based biomarkers.
Considering this, the International Society of Extracellular Vesicles (ISEV) has been supporting several
initiatives to favor the development of such SOPs [156]. Some of these initiatives includes the Minimal
Information for reporting EV-related research [124], the EV TRACK: EV Transparent Reporting and
Centralizing Knowledge [157], and the Clinical Wrap-Up session at ISEV2018 [158].

3.3.2. EV Separation Methods

Regarding EV separation from urine samples, several technologies can be used for this purpose.
Some of the conventional methodologies include differential ultracentrifugation (dUC) [159], density
gradient ultracentrifugation (gUC) [160], chemical precipitation [161], affinity capture [162], hydrostatic
filtration dialysis [163,164], ultrafiltration (UF) [155,165,166], and size exclusion chromatography
(SEC) [167]. With no perfect solution in sight, the selection of the optimal EV separation method
typically lies on the compromise between urine EV recovery yields, EV integrity, and purity [124,168].
Within this reality, dUC remains the most used methodology despite having a low recovery yield of
EVs (1–5%) from urine samples. Moreover, dUC has a reported co-precipitation of contaminants (e.g.,
urine proteins, cell membrane debris, etc.) with the pellet EVs. This issue may compromise a reliable
proteomic approach for biomarker discovery [160].

Even more, gUC have a reported EV recovery yield of nearly 30% from crude urine samples.
However, both ultracentrifugation-based approaches have a timely and laborious nature which may
compromise its generalization for some clinical applications.

Facing this bottleneck issue, several authors have pursued other approaches for isolating highly
pure EVs from urine samples. In this regard, several two-step combination methods (e.g., UF combined
with SEC or asymmetrical-flow field-flow fractionation) have been pursued to minimize the impact of
urine contaminants on the purity of isolated EV sample [165,169–171]. Unfortunately, despite having
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higher EV recovery yields (up to 60%) these techniques fail to provide the same reliable EV proteomic
analysis obtained via gUC gold standard [165,171].

Direct comparisons between the different pre-analytical factors and EV separation methods on
the observed results remain difficult to perform. This is mostly due to inter-laboratory variability,
lack of widely accepted EV-marker normalization methodologies, backed up by the limited biological
sample availability to test all these conditions in a single experiment. Recently, the use of “spike-in”
fluorescent EVs standards were proposed to monitor the efficacy of pre-analytical methods and EV
separation procedures [172]. Their use could enable data normalization across laboratories and a deeper
comprehension on the causes of variability in the urinary EV cargo. This would increase the detection
rate of artefacts originated by technical variation (e.g., sample preparation and instrumentation).
Indeed, the use of such internal EV standards would facilitate the establishment of consensual and
evidence-based SOPs for optimal collection, storage, and handling of urine EVs [148].

As far as new urine EV separation methods are concerned, microfluidic [173–176] and/or
nanofiltration [177] miniaturized systems have recently emerged as promising approaches. These
technologies separate efficiently EVs from other urine components based either on acoustic
trapping [174], lateral fluidics displacement [175], immunocapture [178] and/or physical entrapment
by nanowires technology [176] or double filtration meshes [173,177]. These new technologies have the
advantage of enabling easy and rapid sample processing (e.g., less than 30 min) with minute amounts
of urine sample (up to 1 mL), compatible with an -omics approach. These are some of the critical
features of future point-of-care devices intended for clinical use.

3.3.3. Single-EV Detection Technologies

The EV-based liquid biopsy concept for bladder cancer diagnosis relies on the detection of rare
EV-subsets (shed by bladder cancer cells) in the pool of isolated urine EVs (derived from virtually all
cells of the body). In most cases, only small amounts of clinical samples are available, rare molecular
targets have to be detected in complex biological fluids with high specificity and sensitivity in a timely
fashion. Indeed, most of traditional methodologies (NTA, TEM, WB, etc.) for EV analysis become
obsolete and fail to provide such diagnostic detail under these strict clinical requirements [156].

To fulfill such requirements, innovative optical [179–181], nano-flow cytometry [182–185],
Raman [164,186,187] and other plasmonic sensors methods [188–191] have recently emerged for
highly sensitive single-EV detection. Nevertheless, their application has not been applied to urine
samples and the analysis of single-EVs and other submicron particles has presented many challenges
and has produced a few controversial results in other types of samples. Thus, consortium-based efforts
are being currently implemented. This will allow a combined effort for technique optimization for EV
detection, definition of data reporting criteria, and finally to forge consensual international guidelines
for each technique prior clinical application [192].

3.4. EVs as a Source of Biomarkers for Bladder Cancer Diagnosis

The role of EVs in the maintenance of tissue homeostasis, and the demonstration of their disruptive
role during cancer progression and metastization, render them as an attractive source for diagnostic
biomarker research, particularly in bladder cancer. Indeed, EVs have several advantages as source of
cancer biomarkers. Firstly, some studies suggest that EVs secretion by tumor cells may be higher than by
non-tumor cells, even though this still needs to be proved since other studies failed to demonstrate such
association [193]. Secondly, the EVs presence and stability in large quantities in most human body fluids,
being more abundant in liquid biopsies than CTCs, makes them easily attainable for non-invasive
collection and their detection is technically feasible [45,194,195]. Thirdly, their cargo reflects the
biological behavior and composition of their donor cells and, thereby, they may carry molecular
signatures associated with specific phenotypes or therapeutic resistance patterns [45,46,194,195].
Finally, the lipid bilayer membrane protects their cargo against degradation [45,130,195]. EVs recently
emerged as a source of biomarkers in cancer diagnosis and management [45,195–200]. EVs isolated
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from urine and blood have shown specific miRNA, mRNA, and protein content in different types of
solid tumors [201–206]. Notably, research and knowledge on EVs is now expanding to other diseases
such as hepatitis C, chronic kidney disease, and central nervous system and cardiac diseases [207–210].

Using EVs as diagnostic tool in bladder cancer remains elusive, however, a large body of evidence
is now accumulating and demonstrating their potential as a source of biomarkers for non-invasive
diagnosis of BCa. Research has been conducted on protein and genetic content of EVs from patients with
bladder cancer, providing a library for future biomarker identification [196–200] (Table 2). Although
plasma or serum can be used, urine is the preferred body fluid for EV collection, due to its availability,
low invasive procedure, and its physical contact with the bladder tumor cells. Recently, a high number
of EVs were detected in the urine of BCa patients when compared to healthy controls, using a newly
developed double-filtration microfluidic system as a point-of-care diagnostic device, which displayed
a sensitivity of 81% and a specificity of 90% [174].

The characterization of genomics in urinary EVs, contributed towards the growing interest in its
RNA content. Indeed, miRNA and lncRNA are small non-coding RNAs that regulate the expression
of protein-coding genes involved in several cellular processes, including tumor development and
progression [211]. Their presence in urine and other body fluids, either in their cell free form or as
part of EVs, makes them interesting sources of tumor marker research with diagnostic, treatment, and
prognostic objectives in bladder BCa [212]. For this purpose, Perez et al. [213] compared the urinary EV
transcriptome from BCa patients and healthy controls, by performing PCR analyses of 15 genes with
differential expression between both groups. The authors described four genes differently expressed
in urinary EVs, where GALNT1 and LASS2 were specific of cancer patients, and the ARHGEF39
and FOXO3 transcripts were detected only in healthy controls. Other studies analyzed lncRNAs
isolated from EVs, finding different genetic patterns in patients with MIBC in comparison to normal
controls, particularly the HOX transcript antisense RNA (HOTAIR), implicated in tumor initiation
and progression [214,215]. The interest in this panel of genetic biomarkers was later confirmed
in another study that showed association to disease recurrence and poor prognosis [216]. Others
studied the miRNA content of urinary EVs from BCa patients [217–221] and found miRNA signatures
characteristic of high-grade BCa [216,220], which can be suggested as biomarkers of advanced disease.
Interestingly, a study detailed one miRNA (miR-21-5p) overexpressed in urinary EVs of BCa patients
with 75.0% sensitivity and 95.8% specificity for detecting disease, which was still present despite
negative urinary cytology, suggesting it might detect BCa at an earlier stage of the disease, with no
cytological changes [220].
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Table 2. Extracellular vesicles-derived biomarkers for bladder cancer.

Biomarker Sample EVs Separation Method Assay Purpose References

EDIL-3 Protein Sucrose cushion,
ultracentrifugation LC-MS/MS, Western blot Diagnosis [141]

Periostin Protein Ultracentrifugation LC-MS/MS, Western blot Prognosis [142]
CD10, CD36, CD44, 5T4, basigin, CD73, integrin β1,

integrin α6, MUC1 Protein Sucrose cushion,
ultracentrifugation Flow cytometry, Western blot Diagnosis [196]

LASS2, GALNT1 mRNA Ultracentrifugation Microarray, RT-PCR Diagnosis [213]

HOTAIR, HOX-AS-2, MALAT1 OCT4, SOX2 mRNA,
lncRNA Ultracentrifugation RT-PCR Diagnosis [214]

UCA1-201, UCA1-203, MALAT1, LINC00355 lncRNA Norgen Purification Kit RT-PCR Diagnosis [215]
miR-375, miR-146a miRNA Ultracentrifugation Microarray, RT-PCR Prognosis [217]

miR-4454, miR-205-5p, miR-200c-3p, miR-200b-3p,
miR-21-5p, miR-29b-3p, miR-720 /3007a miRNA Ultracentrifugation,

Norgen Purification Kit
NanoString nCounter

microRNA assay and ddPCR Diagnosis [218]

miR-200a-3p; miR-99a-5p; miR-141-3p; miR-205-5p miRNA Ultracentrifugation,
Life Technologies Separation Kit Microarray, RT-PCR Diagnosis [219]

miR-21-5p miRNA Ultracentrifugation Microarray, RT-PCR Diagnosis [220]
MAGE-B4, NMP22 mRNA, protein Norgen Purification Kit RT-PCR Diagnosis [221]

MDM2, ERBB2, CCND, CCNE1, CDKN2A, PTEN, RB1 DNA ExoQuick-TC Separation Kit Shallow whole genome
sequencing Diagnosis [222]

TACSTD2 Protein Ultracentrifugation LC-MRM/MS, ELISA Diagnosis [223]

Alpha-1-antitrypsin, histone H2B1K Protein Ultracentrifugation Western blot,
MALDI-TOF MS Diagnosis [224]

Resistin, GTPase NRas, EPS8L1, mucin 4, EPS8L2,
retinoic acid-induced protein 3, alpha subunit of GsGTP

binding protein, EH-domain-containing protein 4
Protein Ultracentrifugation LC-MS/MS, Western blot Diagnosis [225]

Abbreviations: LC-MS/MS: liquid chromatography-mass spectrometry; RT-PCR: reverse transcription polymerase chain reaction; LC-MRM/MS: liquid chromatography-multiple reaction
monitoring mass spectrometry; MALDI-TOF MS: matrix assisted laser desorption ionization-time of flight mass spectrometry; mRNA: messenger RNA; miRNA: micro RNA; lncRNA: long
non-coding RNA.
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Although most of the genomic research includes RNA, EVs may also be a source of tumor DNA.
Lee et al. compared the genomic profiling of ctDNA and EVs DNA with tumor samples of nine patients
submitted to radical cystectomy, and found the amplification of MDM2, ERBB2, CCND1, and CCNE1,
and deletion of CDKN2A, PTEN, and RB1 genes, thus suggesting EVs DNA could also be another
source for liquid biopsy [222].

Proteomic analysis of urinary EVs content has also started to contribute with the identification of
proteins, regarding its diagnostic properties. One of the first studies documented the protein content
of urinary EVs from healthy donors, using liquid chromatography-tandem mass spectrometry [131].
Chen et al. [223] analyzed the EV protein content in the urine of patients with BCa, compared
with inguinal hernia patients used as controls. Liquid chromatography-tandem mass spectrometry
identified 107 differently expressed proteins, including tumor associated calcium-signal transducer
2 (TACSTD2), a cell-surface protein absent in blood and with minimal expression in normal cells.
Another study analyzed proteomic data from 129 BCa patients and 62 healthy controls and revealed
urinary BCa biomarkers for diagnosis (alpha-1 antitrypsin, SERPINA1) and prognosis (Histone H2B
type 1-K, H2B1K) [224]. Smalley et al. [225] using mass spectrometry found higher urinary levels
for eight proteins in EVs from BCa patients. Besides the alpha subunit of GsGTP binding protein,
resistin, and retinoic acid-induced protein 3, these authors identified five proteins associated with
the epidermal growth factor receptor (EGFR) pathway, namely mucin 4, the epidermal growth factor
receptor kinase substrate 8-like protein 1 (EPS8L1), the Eps15 Homology (EH)-domain-containing
protein 4, the epidermal growth factor receptor kinase substrate 8-like protein 2 (EPS8L2) and the
Guanosine-50-triphosphate hydrolyzing enzyme NRas (GTPase NRas). Another study, by Welton et
al. [196] analyzed the urinary protein content on EVs of HT1376 bladder cancer cells, as well as in
patients diagnosed with bladder cancer and healthy controls, and found several proteins elevated
in BCa patients, namely basigin, integrin β1, integrin α6, MUC1, CD10, CD36, CD44, CD73, and
5T4. As mentioned before, Beckam et al. [141] found BCa derived EVs had higher levels of EDIL-3,
which besides promoting angiogenesis and migration in a neoplastic environment, could also serve
as a prognostic biomarker. The same principle could apply to periostin, which promotes tumor
aggressiveness and progression, and is also present in higher levels in urothelial cancer patients. Its
presence in cancer patients was associated with a poorer clinical outcome [142].

Further research on EVs is warranted, while creating the bases for accumulating evidence from
past and present studies. Results should be consistently deposited in public databases, to facilitate the
progress of research in this area. There are different compendiums available, namely webdomains
such as the ExoCarta (http://www.exocarta.org), EVpedia (http://evpedia.info), and Vesiclepedia
(http://www.microvesicles.org) which are updated databases on EVs characterization, content of
proteins, mRNA, and lipids [226,227].

4. Discussion and Future Perspectives

Diagnosis and follow-up of bladder cancer currently relies on cystoscopy and cytology, despite
known limitations. Cystoscopy is costly, invasive, and has reduced sensitivity for Cis or non-papillary
lesions, whereas cytology lacks sensitivity for low grade tumors. Many urine-based tests have been
developed to improve efficacy beyond current diagnostic tests. FDA-approved systems for diagnosis
and monitoring of BCa have demonstrated higher sensitivity but lower specificity than cytology,
particularly in cases of low grade and early stage or recurrent BCa; other tests are costly, limiting
their use in the daily health practice (e.g., UroVysion test). Besides FDA-approved tests, the other
commercially available tests remain mostly at the research level. Most tests have been assessed in
inadequate conventional case-control studies, emphasizing the need for prospective cohort studies,
with serial samples at different time points from a person at-risk, as well as large randomized trials,
validating the biomarker clinical benefit compared to actual gold standard methods. This is the reason
why their use as adjunct or surrogate to conventional cystoscopy and cytology is still not recommended
by international societies’ guidelines. Moreover, positivity or equivocal results in these tests, when

http://www.exocarta.org
http://evpedia.info
http://www.microvesicles.org
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associated with negative cystoscopic findings, may increase patient’s anxiety and trigger further
invasive medical examinations, namely biopsies or ureteroscopic procedures. Consequently, besides
the need of adequate studies to validate biomarkers for early detection, the current trends of research
should focus on the combination of biomarkers into signatures.

Extracellular vesicles released by cancer cells carry potential cancer specific biomarkers, as they
shed directly from tumor cells and contain protein and nucleic acid material that reflect their cells
of origin. EVs play indeed a fundamental role in intercellular communication, being key effectors
in normal and pathophysiological cancer progression. Notably, unlike biopsies of solid tumors that
provide a small picture of tumor heterogeneity, EVs might provide a wider perspective of tumor
heterogeneity, since they are shed by tumor cells and from the cells of the tumor microenvironment.
Moreover, their stability within the biological milieu, seemingly increased concentration in some
tumors, and unique molecular signatures in oncological patients, makes EVs attractive biomarkers for
cancer diagnosis and follow-up. Although out of the scope of this review, EVs can also be explored as
therapeutic adjuvants, as a conveyance means for drug delivery and chemosensitization in BCa.

Here, we sought to describe research that has been done using EVs as biomarkers in BCa. Indeed,
EVs hold promise as biomarkers, not only in BCa, but overall, in oncology. Nevertheless, further
research from bench-to-bedside is still needed, as discussed next, particularly in demonstrating its
clinical effectiveness.

The first limitations to overcome are technical problems related to EVs separation and
characterization. There is a need for consensus in EVs nomenclature, to eventually stratify exosomes,
microvesicles, and apoptotic bodies [228], and the need for fast, reproducible, and effective separation
methods, improving standardization and comparison between studies. Currently, the most frequently
used methods for separation of EVs rely on ultracentrifugation procedures that separate them based
on size and density [150]. However, this is a time-consuming, laborious, and expensive method, that
needs large amounts of sample material and requires expensive equipment, halting its applicability
in the clinical laboratory. Other procedures, including double-filtration microfluidic chip-based
devices to separate EVs concentration at the point-of-care [174,229] have been proposed, which
combine immuno-affinity, sieving, and trapping to concentrate EVs. Indeed, this approach has the
advantage of needing lower sample volumes but the disadvantages of EVs structural damage and
lower recovery rates, thereby hampering its clinical applicability. Further separation techniques
include immune-affinity capture, using antibodies directed against EVs surface markers and bypassing
ultracentrifugation [230].

Another overlooked technical issue regards the specificity of these different EVs separation
methods. Some of the isolated material identified as of EVs origin by these methods may not in
fact be EVs related but derived from other soluble urinary components. On the other hand, urine is
enriched in contaminants, such as albumin, Tamm–Horsfall protein and different lipoproteins, and
other substances that need to be fully identified and isolated [160]. Therefore, there is the need of
a specific, reliable, standardized, and reproducible method, to reduce the confounding effect these
contaminants on the EV separation process. A recent research identified a list of 684 of these potential
contaminants and developed a bottom-up density gradient centrifugation method to separate EVs from
different kinds of protein material in urine, with high specificity and methodological repeatability [160].

Before clinical application, standardization of pre-analytical conditions for handling urine
specimens is also required. Variables such as urine collection, use of protease inhibitors, storage, and
shipping conditions should be accounted for, albeit often disregarded [155]. Bridging clinical usefulness
with EVs research requires reporting guidelines to support readability, interpretation, and replication
of experiments. We strongly encourage researchers to follow the International Society for Extracellular
Vesicles (ISEV) guidelines [124] and the recently created EV-TRACK database (http://evtrack.org)
stimulates researchers to report their methodologies for developing standardized protocols, place
experimental guidelines into practice and increase research reproducibility [157,231].

http://evtrack.org
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From a clinical analytical perspective, the use of EVs as a source of biomarkers needs to be properly
validated in negative controls, since urinary EVs are produced by cells from all urinary tract. Indeed,
one of the main impairments of available urinary biomarkers is the low specificity. Positive results with
these tests might also occur in benign conditions such as benign prostatic hyperplasia, urinary lithiasis,
endourologic stents, or urinary tract infections. Therefore, to overcome these limitations it is necessary
to distinguish EVs derived from BCa cells, from other sources of EVs such as the kidney or prostate,
imposing the need for including in clinical studies negative controls, such as EVS from patients with
prostate and kidney cancer and hematuria, in order to fully determine the specificity for BCa.

Another source of criticism that hampers EVs application as a source of biomarkers in BCa
relies on the fact that most studies typically have a small and often heterogeneous cohort of BCa
patients, limiting validity and comparisons. However, this is also one of the main limitations of other
commercially available urine tests, that preclude their recommendation by most international scientific
and clinical organizations. After the identification of robust candidate biomarkers in EVs, additional
external validation in large independent multi-institutional studies are required to establish their value
as useful biomarkers in bladder cancer.

5. Conclusions

Cystoscopy and cytology remain the clinically approved diagnostic and follow-up procedures for
bladder cancer management. This review provides a critical insight into the available urine-based
biomarkers, revealing their low improvement on the precision of diagnosis due to low specificity
and limiting clinical utility, and fostering the need for more reliable, sensible, and specific urinary
biomarkers for BCa.

Extracellular vesicles secreted from their cells of origin are vital players in the physiological and
pathological intercellular communication processes and are known to promote cancer progression.
In recent years, there has been growing interest in EVs as a source of biomarkers in liquid biopsies
for cancer diagnosis, management, prognosis, and even as vehicles for cancer treatment. Published
reports yielded encouraging findings, even though the path from bench-to-bedside still needs to be
optimized, namely regarding standardizing separation protocols and including powered studies with
external validation. These crucial steps are fundamental for clinical implementation of EVs as a source
of diagnostic and predictive biomarkers in liquid biopsies from BCa patients.
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