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Abstract: Endometrial cancer is the sixth most common cancer in women, with a rising incidence
worldwide. Current approaches for the diagnosis and screening of endometrial cancer are invasive,
expensive or of moderate diagnostic accuracy, limiting their clinical utility. There is a need
for cost-effective and minimally invasive approaches to facilitate the early detection and timely
management of endometrial cancer. We analysed blood plasma samples in a cross-sectional diagnostic
accuracy study of women with endometrial cancer (n = 342), its precursor lesion atypical hyperplasia
(n = 68) and healthy controls (n = 242, total n = 652) using attenuated total reflection-Fourier transform
infrared (ATR-FTIR) spectroscopy and machine learning algorithms. We show that blood-based
infrared spectroscopy has the potential to detect endometrial cancer with 87% sensitivity and 78%
specificity. Its accuracy is highest for Type I endometrial cancer, the most common subtype, and for
atypical hyperplasia, with sensitivities of 91% and 100%, and specificities of 81% and 88%, respectively.
Our large-cohort study shows that a simple blood test could enable the early detection of endometrial
cancer of all stages in symptomatic women and provide the basis of a screening tool in high-risk
groups. Such a test has the potential not only to differentially diagnose endometrial cancer but also to
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detect its precursor lesion atypical hyperplasia—the early recognition of which may allow fertility
sparing management and cancer prevention.

Keywords: blood diagnostics; endometrial cancer; screening; spectroscopy

1. Introduction

There has been a steady rise in the incidence of endometrial cancer in the Western world [1],
with the UK reporting a 56% rise over the last two decades [2]. In 2018, there were 380,000 new
cases of endometrial cancer worldwide, rendering it the sixth most common cancer in women [3].
The rising incidence of endometrial cancer has been attributed to the emerging obesity epidemic [4],
fewer hysterectomies for benign indications and the ageing population [5].

Endometrial cancer typically presents with postmenopausal bleeding, yet only 5–10% of
symptomatic women have underlying cancer [6]. Symptoms are usually investigated by measuring
endometrial thickness using transvaginal ultrasound scan (TVS) in the first instance [7]. This is an
intimate procedure, costly, operator dependent and limited by the scarcity of trained ultrasonographers.
Different endometrial thickness cut-offs also affect its clinical utility [5,8]. Women with a thickened
endometrium undergo invasive sampling for histological assessment, either in the outpatient setting
or under general analgesia [5]. This is an invasive test that is poorly tolerated by some and yields
insufficient tissue for diagnosis in up to 22% of cases [9].

Whilst the majority of women are diagnosed with stage 1 disease in the UK, 30% are diagnosed with
advanced disease and have a poor prognosis [2]. Earlier recognition of disease by screening might enable
stage shift and improve patient outcomes [10]. In the United Kingdom Collaborative Trial of Ovarian
Cancer Screening (UKCTOCS) cohort, screening average-risk women for endometrial cancer by TVS had
inferior diagnostic accuracy compared to symptomatic women for standard test thresholds [8].

Blood biomarkers have the potential to provide an inexpensive screening/diagnostic tool for
endometrial cancer. Such a tool could be used on its own or as a means of triaging women for further
tests and may be more acceptable to women than current investigations because it does not require
intimate examination. The search for circulating biomarkers to facilitate the early detection of cancer
has gained great momentum over the last decade [11–13].

Vibrational spectroscopy explores the vibrations induced to molecules’ chemical bonds after
exposure to electromagnetic radiation, thus providing valuable information about a biological sample
and its constituents [14]. The two main vibrational spectroscopic techniques, namely infrared and
Raman spectroscopy, are sensitive to different types of vibrations and therefore provide complementary
spectral information. One of the major advantages of spectroscopy is that it is not limited to investigating
one biomolecule at a time but instead simultaneously examines the full range of molecules present
within a sample, including proteins, lipids and nucleic acids. Previous research has demonstrated the
promise of spectroscopy as a means of diagnosing and classifying Alzheimer’s disease, AIDS, ovarian
cancer and brain cancer, amongst others [15–18]. The easy accessibility and information-rich nature
of blood samples hold promise not only for the diagnosis of disease but also for the assessment of
prognosis or response to treatment.

In this large cross-sectional diagnostic study, we used blood-based infrared spectroscopy to
differentiate healthy individuals from women with endometrial cancer and its precursor lesion, atypical
hyperplasia. We included women with the full range of histological subtypes, grades and stages
of cancer. We sought to identify the spectral regions that were responsible for the differentiation
between the various pathologies. We also determined whether blood-based spectroscopy could detect
cancer at its earliest stage and even its precursor lesion, atypical hyperplasia, which may prevent the
development of endometrial cancer [19].
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2. Results

2.1. Participant Demographics

Our study population comprised 652 women, with 242 healthy controls, 342 women with endometrial
cancer (Type I: 258; Type II: 64; Mixed: 20) and 68 with atypical hyperplasia (Table 1). The mean age of the
healthy controls, women with Type I cancers, Type II cancers and atypical hyperplasia was 52 years (standard
deviation SD 11), 63 years (SD 13), 69 years (SD 12) and 52 years (SD 15), respectively. Information for the
stage of the disease was recorded: 68 patients had atypical hyperplasia (Stage 0), 192 patients had FIGO 2009
Stage IA cancer, 59 patients Stage IB, 3 patients were staged as IA/1B (indeterminate), 29 patients were Stage
II, 52 were Stage III and 6 were Stage IV; one patient’s stage was missing from our records. The healthy
controls were significantly younger than the cancer patients (52 years vs. 63–69 years (for Type I and Type II
cancers respectively), p < 0.0001), but not those with atypical hyperplasia (52 years vs. 52 years, p = 1.000).
After taking all the groups into account, age was not found to be statistically independent (p = 0.268). BMI
was not statistically significant in the control vs. Type I (p = 0.220) and control vs. Type II comparisons
(p = 0.241) as well as mixed cancers (p = 0.220) and atypical hyperplasia (p = 0.220). Overall, BMI showed no
statistical independence between the groups (p = 0.412). Self-reported diabetes (p = 0.268), blood pressure
(p = 0.268) and fasting status (p = 0.345) did not show statistical independence when considering all classes.

Table 1. Patient characteristics.

Patient Characteristics
Controls
(n = 242)

Cancer
(n = 342) Atypical

Hyperplasia
(n = 68)

All
(n = 652)Type I

(n = 258)
Type II
(n = 64)

Mixed *
(n = 20)

Age, years p-value: 0.268

Mean (SD) 52 (11) 63 (13) 69 (10) 69 (10) 52 (15) -

<60, n/N (%) 194/242 (80) 92/258 (36) 10/64 (16) 4/20 (20) 45/68 (66) 345/652 (53)

≥60, n/N (%) 48/242 (20) 166/258 (64) 54/64 (84) 16/20 (80) 23/68 (34) 307/652 (47)

p-value - <0.0001 <0.0001 <0.0001 1.00 -

BMI, n/N (%) p-value: 0.412

Underweight (<18) 0/242 (0) 1/258 (0) 2/64 (3) 0/20 (0) 0/68 (0) 3/652 (<1)

Normal weight
(18.5–24.9) 33/242 (14) 33/258 (13) 17/64 (26.5) 2/20 (10) 1/68 (1) 86/652 (13)

Overweight (25–29.9) 42/242 (17) 58/258 (22) 17/64 (26.5 6/20 (30) 5/68 (7) 128/652 (20)

Obese (30–39.9) 41/242 (17) 95/258 (37) 20/64 (31) 8/20 (40) 14/68 (21) 178/652 (27)

Severely obese (>40) 124/242 (51) 71/258 (28) 7/64 (11) 4/20 (20) 48/68 (71) 254/652 (39)

Unknown 2/242 (1) 0/258 (0) 1/64 (2) 0/20 (0) 0/68 (0) 3/652 (<1)

p-value - 0.220 0.241 0.220 0.220 -

Diabetes, n/N (%) p-value: 0.268

Yes 58/242 (24) 47/258 (18) 9/64 (14) 4/20 (20) 21/68 (31) 139/652 (21)

No 184/242 (76) 210/258 (81) 54/64 (84) 15/20 (75) 47/68 (69) 510/652 (78)

Unknown 0/242 (0) 1/258 (<1) 1/64 (2) 1/20 (5) 0/68 (0) 3/652 (<1)

p-value - 0.157 0.157 0.157 0.157 -

Blood pressure, n/N (%) p-value: 0.268

Normotension 128/242 (53) 129/258 (50) 38/64 (59) 9/20 (45) 30/68 (44) 334/652 (51)

Hypertension 74/242 (31) 108/258 (42) 14/64 (22) 3/20 (15) 36/68 (53) 235/652 (36)

Unknown 40/242 (16) 21/258 (8) 12/64 (19) 8/20 (40) 2/68 (3) 83/652 (13)

P-value - 0.157 0.157 0.157 0.157 -

Fasting status, n/N (%) p-value: 0.345

Fasting 36/242 (15) 188/258 (73) 36/64 (56) 7/20 (35) 43/68 (63) 310/652 (47)

Non-fasting 93/242 (38) 38/258 (15) 12/64 (19) 3/20 (15) 16/68 (24) 162/652 (25)

Liver diet 73/242 (30) 3/258 (1) 0/64 (0) 0/20 (0) 7/68 (10) 83/652 (13)

Unknown 40/242 (17) 29/258 (11) 16/64 (25) 10/20 (50) 2/68 (3) 97/652 (15)

p-value - 0.199 0.199 0.199 0.199 -

* Mixed includes endometrioid and clear cell, high-grade serous and clear cell, endometrioid with serous component,
endometrioid with squamous component, endometrioid carcinosarcoma. SD: standard deviation; BMI: body mass index.
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2.2. Endometrial Cancer and Pre-Cancer Diagnosis

After blood analysis, all raw spectroscopic data (Figure 1A and Figure S1) were pre-processed
to correct for non-biological interference that could lead to misinterpretation of the results.
The pre-processed spectra (Figure 1B) were then used for multivariate analysis and class differentiation
according to the final histopathological diagnosis. Five sequential spectra were collected from each
patient, resulting in a total number of 3260 spectra. Discriminant function (DF) graphs were generated
to show the differences and similarities between the different classes (Figure 2 and Figure S5). Figure 2
shows both the samples used in the training dataset and the ones used in the test dataset for each
comparison. For our main analysis, we compared controls with all cancer cases (Figure 2A), controls
with Type I cancers (Figure 2B), controls with Type II cancers (Figure 2C), controls with hyperplasia
(Figure 2D), Type I and Type II cancers (Figure 2E), controls with hyperplasia/Stage IA cancers
(Figure 2F), and controls with Stage I cancers (Figure 2G). We also performed additional subgroup
comparisons to compare hyperplasia against Type I cancers (Figure S5A,B), hyperplasia against Type II
cancers (Figure S5C,D), and hyperplasia against cancer (Figure S5E,F). The mean pre-processed spectra
for all the different comparisons are given in Figure S7.
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Figure 1. Infrared spectral data for the healthy controls (n = 242), Type I cancers (n = 258), Type II
cancers (n = 64) and atypical endometrial hyperplasia (n = 68) at the fingerprint region (1800–900 cm−1).
(A) Raw infrared spectra for the different classes. (B) Pre-processed spectra after 2nd Savitzky–Golay
(SG) derivative (window of 5 points, 2nd-order polynomial fitting) and vector normalization. Coloured
lines denote all spectra, while black line shows the average spectrum.
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Figure 2. Discriminant function (DF) graphs showing the differences and similarities between the
different classes after supervised partial least squared discriminant analysis (PLS-DA). (A) Control
(n = 242) vs. cancer (n = 342; including Type I (n = 258), Type II (n = 64) and mixed (n = 20)). (B) Control
(n = 242) vs. Type I cancers (n = 258). (C) Control (n = 242) vs. Type II (n=64) cancers. (D) Control
(n = 242) vs. hyperplasia (n = 68). (E) Type I (n = 258) vs. Type II cancers (n = 64). (F) Control (n = 242)
vs. hyperplasia/Stage IA (n = 260). (G) Control (n = 242) vs. Stage I (n = 254). o: training samples;
*: test samples.
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Receiver operating characteristic (ROC) curves were used to calculate the area under the curve
(AUC) and find a compromise between sensitivity and specificity [20]. Comparing healthy controls
with cancer generated an AUC of 88%, 87% sensitivity and 78% specificity (overall accuracy of 83%)
(Figure 3A). When healthy controls were compared with Type I cancers alone, the AUC increased
to 92%, sensitivity to 91% and specificity to 81% (overall accuracy of 86%) (Figure 3B). Comparing
controls to Type II endometrial cancers resulted in an 88% AUC, 79% sensitivity and 88% specificity
(overall accuracy of 86%) (Figure 3C). After comparison of the controls with the hyperplasia cases,
AUC was 98%, sensitivity 100% and specificity 88% (overall accuracy of 90%) (Figure 3D). Comparison
of the two subtypes of endometrial cancer, Type I and Type II, gave an AUC of 87%, sensitivity 79%
and specificity 81% (overall accuracy of 80%) (Figure 3E). Comparing controls to hyperplasia/Stage IA
cancers gave an AUC of 82%, 77% sensitivity and 74% specificity (overall accuracy of 76%). Finally,
after the comparison between controls and Stage I cancers, the AUC was 80%, sensitivity 71% and
specificity 84% (overall accuracy of 78%). Comparing hyperplasia against Type I cancer generated a
71% AUC with 60% sensitivity and 77% specificity (overall accuracy of 73%) (Figure S6); hyperplasia
against Type II cancer achieved 95% AUC, 90% sensitivity and 84% specificity (overall accuracy 87%);
and hyperplasia against cancer achieved 80% sensitivity and 71% specificity (overall accuracy of 76%)
(Figure S6).

2.3. Panel of Potential Diagnostic Spectral Markers

The spectral peaks responsible for the segregation between the different classes were identified
and their absorbance levels were recorded and compared to allow quantitative assessment (Figure 4,
Figure S7, Table S1). The discriminatory peaks between healthy controls and cancers were 1716 cm−1

(p = 0.183), 1446 cm−1 (p = 0.003), 1377 cm−1 (p = 0.060), 1234 cm−1 (p = 0.05), 1045 cm−1 (p = 0.415) and
900 cm−1 (p < 0.0001). The two peaks that were found to be significantly different were tentatively
assigned to chemical bonds and potential biological molecules: a peak at 1446 cm−1, indicative of –CH2

bending vibrations (lipids), was increased in cancer while a peak at 900 cm−1, indicative of C-O or
C-C stretching (carbohydrates) or fatty acids, was decreased (Figure 4) [21,22]. The peaks that were
found to differentiate controls from Type I cancers were 1446 cm−1 (p = 0.002), 1234 cm−1 (p = 0.123),
1130 cm−1 (p = 0.349), 1061 cm−1 (p = 0.231), 1045 cm−1 (p = 0.321) and 900 cm−1 (p < 0.0001). As before,
the same peaks were statistically significant, with 1446 cm−1 increased and 900 cm−1 decreased in
cancer cases (Figure 4). After comparison of controls and Type II cancers, the following peaks were
detected: 1715 cm−1 (p = 0.92), 1559 cm−1 (p = 0.062), 1377 cm−1 (p = 0.043), 1319 cm−1 (p = 0.133),
1234 cm−1 (p = 0.158) and 900 cm−1 (p < 0.0001); both peaks at 1377 cm−1(stretching C-N cytosine,
guanine) and 900 cm−1 (C-O or C-C stretching (carbohydrates) or fatty acids) were decreased in Type II
cases (Figure 4). Peaks at 1763 cm−1 (p = 0.843), 1674 cm−1 (p = 0.257), 1458 cm−1 (p = 0.885), 1404 cm−1

(p = 0.041), 1292 cm−1 (p = 0.823) and 1238 cm−1 (p = 0.017) were responsible for the differentiation
between controls and women with hyperplasia. The absorbance level at peak 1404 cm−1 (symmetric
bending of -CH3 in proteins) was decreased, while that at 1238 cm−1 (asymmetric PO2

− stretching,
collagen and nucleic acids) was increased in hyperplasia (Figure 4). After comparing the different
subtypes of cancer, the six differential peaks were 1693 cm−1 (p = 0.006), 1624 cm−1 (p = 0.263), 1593 cm−1

(p = 0.115), 1547 cm−1 (p < 0.0001), 1497 cm−1 (p = 0.072) and 1404 cm−1 (p = 0.494), with 1693 cm−1

(Amide I of proteins) being elevated in Type II and 1547 cm−1 (Amide II of proteins) being decreased
in Type II (Figure 4). Comparison between controls and hyperplasia/Stage IA cancers showed the
following peaks as the most discriminatory: 1800 cm−1 (p = 0.356), 1578 cm−1 (p = 0.123), 1562 cm−1

(p = 0.041), 1080 cm−1 (p < 0.001), 1057 cm−1 (p < 0.0001) and 1045 cm−1 (p < 0.0001). All four absorbance
peaks that showed statistical significance were decreased in the hyperplasia/Stage IA group: 1562 cm−1

(Amide II), 1080 cm−1 (symmetric PO2
− stretching), 1057 cm−1 (stretching C-O deoxyribose) and

1045 cm−1 (carbohydrates). Finally, after comparing controls and Stage I cancers, the detected peaks
were: 1800 cm−1 (p = 0.478), 1732 cm−1 (p = 0.665), 1720 cm−1 (p = 0.579), 1261 cm−1 (p < 0.0001),
1057 cm−1 (p = 0.001) and 1045 cm−1 (p = 0.001), with 1261 cm−1 (asymmetric PO2

− stretching) being
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increased in Stage I cancers and 1057 cm−1 (stretching C-O deoxyribose), 1045 cm−1 (carbohydrates)
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Figure 3. Receiver operating characteristic (ROC) curves along with overall accuracies, sensitivities,
specificities and area under the curve (AUC) values after supervised partial least squares discriminant
analysis (PLS-DA). (A) Control (n = 242) vs. cancer (n = 342; including Type I (n = 258), Type II (n = 64)
and mixed (n = 20)). (B) Control (n = 242) vs. Type I cancers (n = 258). (C) Control (n = 242) vs. Type II
(n = 64) cancers. (D) Control (n = 242) vs. hyperplasia (n = 68). (E) Type I (n = 258) vs. Type II cancers
(n = 64). (F) Control (n = 242) vs. hyperplasia/Stage IA cancer (n = 260). (G) Control (n = 242) vs.
Stage I cancer (n = 254). The red circle denotes the cut-off point for the optimal compromise between
sensitivity and specificity.
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Figure 4. The six most discriminatory peaks for each subgroup analysis detected after partial least
squared discriminant analysis (PLS-DA). The differences in the absorbance levels are given as the mean
± standard deviation and were calculated after automatic weighted least squares baseline correction
and vector normalization. * p < 0.05; ** p < 0.005.

2.4. Consideration of Potential Confounding Factors

In order to confirm that the diagnostic performance generated from the subgroup comparisons
was attributable to the presence/absence of disease, we performed further analyses to take into account
potential confounding factors that could affect the results (Figure 5). These conditions were tested
on the healthy controls and the Type I cancers because of the greater number of participants in these
groups. An unsupervised exploratory analysis by means of principal component analysis (PCA)
was performed to identify differences and similarities between the groups. The PCA scores plot did
not show any segregation pattern among the confounding factor comparisons, indicating that age,
BMI, diabetes, fasting status and blood pressure did not affect the spectral response within each class
of sample. In addition, no statistical significance was found at a 95% confidence level for spectral
differences in age (<60 vs. ≥60 years) for either controls (p = 0.984) or Type I cancers (p = 0.979)
(Figure 5A,B); BMI (normal vs. overweight vs. obese vs. severely obese) for controls (p = 1) or Type I
cases (p = 0.999) (Figure 5C,D); diabetes (diabetic vs. non-diabetic) for controls (p = 0.972) or Type I
(p = 0.97) (Figure 5E,F); blood pressure (normotension vs. hypertension) for controls (p = 0.994) or
Type I cancers (p = 0.980) (Figure 5G,H); and fasting status (fasting vs. non-fasting vs. liver diet) for
controls (p = 0.996) or Type I (p = 0.996) (Figure 5I,J) based on a MANOVA test applied to the spectral
wave numbers. There was no difference in the quality of spectra and the diagnostic performance of
blood spectroscopy on samples taken from gynaecology clinics in Manchester or Lancashire (Figure S2).
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Figure 5. Score plots generated after unsupervised principal component analysis (PCA) to visualize
differences and similarities according to confounding factors. (A,B) Score plots according to age
(<60 years; ≥60 years) for controls (A) and Type I cancers (B). (C,D) Score plots according to BMI
(normal: BMI = 18.5–24.9; overweight: BMI = 25–29.9; obese: BMI = 30–39.9; severely obese: BMI > 40)
for controls (C) and Type I cancers (D). (E,F) Score plots according to diabetes (diabetic; non-diabetic)
for controls (E) and Type I cancers (F). (G,H) Score plots according to fasting status (fasting; non-fasting;
liver diet) for controls (G) and Type I cancers (H). (I,J) Score plots according to blood pressure (normal;
hypertension) for controls (I) and Type I cancers (J).

3. Discussion

We evaluated whether infrared spectroscopy could detect endometrial cancer and its precursor
lesion, atypical hyperplasia, in blood samples. In this large diagnostic test accuracy study, we achieved
sensitivities of 71–100% and specificities of 81–88% for detection of disease, highlighting the potential
of spectroscopy as an inexpensive diagnostic and/or screening tool.

We examined the spectroscopic profiles to identify the peaks responsible for distinguishing
between cases and controls and found six discriminatory features, which could serve as a panel of
spectral markers indicative of disease. We found that cancer cases were associated with increased
lipid-related (peak at 1446 cm−1) and decreased carbohydrate- and fatty acid-related regions (peaks at
1377 and 900 cm−1). The elevated expression of the lipid species has been described before [23–25],
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but the lower carbohydrate- and fatty acid-related peaks is a novel finding, perhaps originating from
overlapping absorptions of other biomolecules. Two spectral markers were identified as statistically
different in atypical hyperplasia compared to the cancer cases: a decreased peak at 1404 cm−1,
potentially corresponding to proteins, and an increased peak at 1238 cm−1, corresponding to collagen
and nucleic acids. Both peaks related to proteins (Amide I at 1693 cm−1 and Amide II at 1547 cm−1)
showed statistically significant increases in Type II when compared to Type I cancers. After comparing
controls with early stage cases (hyperplasia/Stage IA or Stage I), the latter revealed decreased levels
of absorbance in regions representing proteins (peak at 1562 cm−1), nucleic acids (peaks at 1080 and
1057 cm−1) and carbohydrates (peak at 1045 cm−1); only peak 1261 cm−1 (indicative of asymmetric
PO2

−) was found to be increased in Stage I cancers.
To investigate the effect of confounding factors within each class and to establish that the differences

between classes were attributable to disease per se, we took into consideration patient characteristics
associated with an increased risk of endometrial cancer. Age [5], obesity [26], diabetes [27] and
hypertension [28] are all established risk factors for the disease [29,30]; we also controlled for fasting
status, as this was expected to affect spectroscopic signal. Nevertheless, after exploratory analysis,
these factors alone were not sufficient to generate statistical significance within groups, indicating that
the diagnostic performance of spectroscopy in this study related to the presence or absence of disease.

We found that the sensitivity and specificity of spectroscopy was sufficiently high to have clinical
utility, justifying its potential incorporation into future clinical practice diagnostic algorithms. Since
sensitivity was generally higher than specificity, spectroscopy could be most valuable as a first-line
diagnostic test that safely reassures healthy women and identifies women at highest risk of disease for
invasive diagnostic procedures. Such a strategy should be tested in a prospective diagnostic accuracy
study before its assimilation in clinical practice. For comparison, in a meta-analysis of 90 studies
assessing the diagnostic accuracy of TVS at different endometrial thickness thresholds [31], the authors
demonstrated a sensitivity of 94.8% (95% CI 86.1–98.2%) and specificity of 46.7% (95% CI 38.3–55.2%)
for 4 mm and 90.3% (95% CI 80.0–95.5%) and 54.0% (95% CI 46.7–61.2%) for 5 mm, respectively.
Our spectroscopic blood test achieved comparable sensitivity of 87% and superior specificity of 78%
for diagnosing cancer, which highlights its clinical value.

Effective cancer management is dependent on early detection, when treatment is most likely
to be curative; this has led to the search for novel imaging and blood biomarkers [13,32]. A ‘cancer
blood test’ was ranked as the second most important research priority from a total of 1362 suggestions
from 554 patients, the public and health care providers in our recently completed James Lind Alliance
Priority Setting Partnership for Detecting Cancer Early [33]. Currently, there is no blood biomarker
with sufficient diagnostic accuracy to benefit patient management in endometrial cancer. A number
of serum biomarkers, including human epididymis protein 4 (HE4) [34] and cancer antigen 125
(CA-125) [35] have been studied in endometrial cancer, but their low diagnostic performance limits
their clinical utility. Multibiomarker panels may have superior discriminatory power compared with
individual biomarkers [32,36]. For instance, transferrin, prealbumin and apolipoprotein-1 combined
enable the early detection of endometrial cancer with a sensitivity and specificity of 71% and 88%,
and detection of late stage disease with a sensitivity of 82% and a specificity of 86%, respectively [36].
Circulating tumor DNA (ctDNA) is a useful prognostic biomarker for endometrial cancer but its low
levels in pre-symptomatic and early stage disease limit its use as a screening tool [37]. Other potential
non-invasive diagnostic blood biomarkers for endometrial cancer include microRNAs. Small pilot
studies have shown specific microRNAs are variously up- or down-regulated in cancer cases compared
to controls [38–40]. These molecular tests may facilitate endometrial cancer detection. However,
their mediocre accuracy and/or high costs limit their use in the clinic. Spectroscopy is based on
an inexpensive multiuse platform, gives an immediate result and is a potential alternative to other
costly and laborious assays under development. A previous pilot study by our group (including 30
endometrial cancers and 30 healthy controls) revealed the potential of vibrational spectroscopy to
detect endometrial cancer using blood serum, achieving an accuracy of 82% overall [15].



Cancers 2020, 12, 1256 11 of 17

To our knowledge, this is the largest study to date that explores the potential of blood spectroscopy
as an early detection tool in endometrial cancer. Patient characteristics were prospectively recorded and
included in our analysis to identify and control for potential confounding factors, where previous studies
did not. All healthy control participants were investigated by ultrasound scan and/or endometrial
biopsy to exclude pathology at baseline and were followed up for at least 12 months to ensure their
reliability as ‘controls’, another strength of our work. A potential limitation of spectroscopy is that the
derived peaks can only be tentatively assigned to biomolecules because spectral regions are formed
by many different biological entities; this limits its utility at unpicking the exact molecular pathways
involved in carcinogenesis. On the other hand, spectroscopic techniques provide a disease signature
and can reveal information about the status of a sample being either pathological or healthy in a
snapshot. Replication of our results in even larger cohorts and in high risk groups, such as women
with significant obesity [41], and those with inherited predisposition syndromes, for example Lynch
syndrome [42], is an important consideration for the future validation of spectroscopy for endometrial
cancer detection. Future studies of asymptomatic women at high risk of endometrial cancer followed
up longitudinally are needed to establish whether spectroscopic markers can predict the emergence of
cancer after negative gold-standard endometrial assessment.

A spectroscopic blood test could serve multiple roles in the current clinical workflow, either
independently or within algorithms that combine other biomarker tests. Scenarios include the
initial investigation of women with unexplained postmenopausal bleeding; screening asymptomatic
women with incidental radiological evidence of endometrial thickening; screening high-risk women,
particularly obese women, in whom ultrasound might be problematic; alerting pathologists and
clinicians to the histological type of endometrial cancer; and monitoring disease managed by
uterine-sparing protocols [43]. Additionally, this simple blood test might be useful in developing
countries, where costly molecular and imaging technologies are not readily available. Portable and
hand-held infrared spectrometers are already being trialled for point-of-care testing in developing
countries to detect diseases in blood, for example, malaria [44].

In this study, we have clearly demonstrated that blood biospectroscopy can differentiate early stage
1 cancers from controls and therefore detect disease when there is a high chance of therapeutic cure.
Further studies are required to fully evaluate the technique’s potential at discriminating pre-invasive
disease from cancers particularly as the subjective nature of classifying pre-invasive disease can lead to
misclassification of original disease phenotype.

In England, the NHS devised a strategy in 2016 to fast track all people with suspected cancer
by improving patient pathways, facilitating early access to medical care and the establishment of
rapid diagnostic and assessment centres. Incorporation of a simple, low-cost blood test that gives
an instantaneous result could potentially triage patients so that secondary care is not overwhelmed
by healthy women and only those women at significant risk of disease are referred for invasive
diagnostic workup. The new NHS standards to be enforced by 2020 set out that diagnosis should be
established within 28 days of attending primary care; this can only be achieved through the introduction
of innovative solutions. Spectroscopy is an emerging technology with potential to deliver on this
ambitious target.

4. Materials and Methods

4.1. Study Design

The primary objective of the study was to assess the ability of infrared spectroscopy to detect women
with endometrial cancer at its earliest stage as well as its precursor lesion, atypical hyperplasia, using
blood samples. The secondary objective was to determine whether spectroscopy could discriminate
between Type I and Type II cancers. Women were recruited from clinics at Manchester University
NHS Foundation Trust, Salford Royal Foundation Trust and Lancashire Teaching Hospitals if they
were undergoing investigation for unexplained postmenopausal bleeding, investigation and treatment
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for atypical hyperplasia or endometrial cancer, surgery for benign gynaecological conditions or
management of obesity. All women gave written, informed consent to participate and donated their
clinical data and blood samples for future research. Ethical approval was obtained as follows: Weight
loss study (North West Research Ethics Committee ref. 12/NW/0050), PROTEC study (Cambridge East
Research Ethics Committee ref. 15/EE/0063), PREMIUM study (North West Research Ethics Committee
ref. 14/NW/1236), Metformin study (North West Research Ethics Committee ref. 11/NW/0442), PETALS
study (NRES Committee North West—Lancaster ref. 15/NW/0733), DETECT study (North West
Research Ethics Committee—Greater Manchester 16/NW/0660) and East of England—Cambridge
Central Research Ethics Committee ref. 16/EE/0010. Cases and controls were evenly distributed across
the different clinics, studies and recruitment period. Blood was taken in clinic or on the day of surgery;
the latter group of patients had fasted for at least six hours prior to blood draw. Women undergoing
bariatric surgery (gastric sleeve or bypass) had additionally followed a special low-calorie diet prior to
surgery (the so-called ‘liver diet’) to reduce the risk of complications at laparoscopy. Blood samples
were collected, processed and stored as described below. Most women underwent hysterectomy
for endometrial cancer, atypical hyperplasia or benign gynaecological indications. All other women
had endometrial biopsies taken in clinic or under general anaesthesia (e.g., at the time of bariatric
surgery) using a Pipelle endometrial sampler, to confirm the absence of pathology. The exception to
this was women referred with postmenopausal bleeding whose endometrial thickness was <4 mm
on transvaginal ultrasound scan. Endometrial biopsies were assessed by specialist gynaecological
pathologists. Only women with normal endometrium at the time of blood draw (by biopsy and/or scan)
and for≥12 months afterwards, were included as healthy controls. All hysterectomy specimens showing
atypical endometrial hyperplasia or cancer were assessed by at least two specialist gynaecological
pathologists reporting to Royal College of Pathology Standards. Hysterectomy specimens from women
with presumed atypical hyperplasia were examined in their entirety to exclude co-existing cancer.
Some women with atypical hyperplasia or cancer were managed conservatively; these cases were all
discussed at the Specialist Gynaecological Oncology Multidisciplinary Team Meeting following review
by at least two consultant gynaecological pathologists with a specialist interest in endometrial pathology.
Only cases with two consecutive pre-treatment biopsies (oral or intra-uterine progestin) showing
atypical hyperplasia only and no co-existing cancer were included as cases of atypical hyperplasia.
Type I endometrial cancers were pure endometrioid adenocarcinomas whereas Type II included serous,
clear cell and carcinosarcomas; the mixed group included cases with different subtypes. Atypical
hyperplasia was diagnosed according to WHO reporting standards [45].

Demographic details, including age, body mass index (BMI), diabetes and blood pressure, were
recorded and taken into account as potential confounding factors. Participants were categorized into
two groups according to age, using the mean age at blood draw as our cut-off (60 years). Women were
categorized according to their BMI into the following groups: underweight (BMI < 18 kg/m2), normal
weight (BMI = 18.5–24.9 kg/m2), overweight (BMI = 25–29.9 kg/m2), obese (BMI = 30–39.9 kg/m2)
and severely obese (BMI > 40 kg/m2). Fasting status and use of the pre-bariatric surgery liver diet
were recorded and included as potential confounding factors. Missing data were recorded for a small
proportion of women: BMI 3/652 (<1%), diabetic status 3/652 (<1%), blood pressure 83/652 (13%) and
fasting status 97/652 (15%), respectively. In total, 83/652 (13%) followed the liver diet for three weeks
prior to blood draw. The researcher who performed the spectroscopic analysis (MP) was blinded to
clinical information and histological results during collection of spectroscopic data. The results of the
spectroscopic test were not available to the pathologists at the time of histological assessment.

4.2. Sample Preparation and Spectroscopic Analysis

Blood was collected in standard EDTA tubes, centrifuged at 2000 rpm for 10 min to remove the
cells and the supernatant (i.e., plasma) was collected into microtubes and stored at −80 ◦C until analysis.
Frozen samples were thawed, 50 µL was deposited onto IR-reflective glass slides (MirrIR Low-E slides,
Kevley Technologies) and left to air-dry at room temperature.
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Spectra were collected with attenuated total reflection Fourier-transform infrared (ATR-FTIR)
spectroscopy using a Tensor 27 FTIR spectrometer with a Helios ATR attachment containing a diamond
ATR crystal (Bruker Optics Ltd., Coventry, UK). In this setting, the ATR crystal is on the top of the
attachment and the slide with the sample is placed on the platform with the sample facing up; the
platform is then moved upward to ensure good contact with the crystal [46]. Spectral resolution was
8 cm−1 with 2× zero-filling, giving a data-spacing of 4 cm−1. Thirty-two co-additions and a mirror
velocity of 2.2 kHz were used for optimum signal-to-noise ratio. A closed-circuit television (CCTV)
camera attachment was used to locate the area of interest and spectra were acquired from five different
locations of the blood spot to minimize bias. The diamond crystal was cleaned with distilled water
and dried before the next sample; a background spectrum was taken after the analysis of each sample
to account for potential changes in ambient conditions.

4.3. Data Analysis

Pre-processing of the acquired spectra is an essential step of all spectroscopic experiments and
is used to correct problems associated with spectral acquisition and instrumental noise. All data
processing was performed within MATLAB R2014b environment (MathWorks Inc., Natick, MA, USA).
An in-house developed IRootLab toolbox (http://trevisanj.github.io/irootlab/) was implemented to
load and pre-process the data, prior to which spectra were averaged by five to account for differences
between participants rather than individual spectra. Model construction was performed using the
PLS Toolbox version 7.9.3 (Eigenvector Research Inc., Manson, WA, USA). Spectra were cut at the
fingerprint region (1800–900 cm−1), followed by 2nd Savitzky–Golay (SG) derivative (window of
5 points, 2nd-order polynomial fitting) and vector normalization.

Samples were divided into training (70%) and test (30%) datasets before further multivariate
analysis by using the Kennard–Stone uniform sample selection algorithm (Figure S3). Partial least
squares discriminant analysis (PLS-DA) is a widely used supervised classification approach based on a
linear classification model. PLS is applied to the pre-processed data to reduce the original variables
to a few number of latent variables (LVS) containing scores and loadings. Both spectral information
and patient groups are used in PLS decomposition, where the predicted response is obtained through
a vector of regression coefficients; a linear classifier is then applied to divide the predicted response
into groups. For the purposes of this study, PLS-DA was performed on a sample/patient basis with
cross-validation (venetian blinds with 10 data splits) used to select the number of LVS (Figure S4).
Six discriminatory peaks were identified for each pairwise comparison based on the PLS-DA regression
coefficients according to the absolute highest or lowest weights (Figure S3). Discriminatory peaks were
detected and evaluated after 2nd differentiation; the differences in the absorbance levels of these peaks
were calculated after automatic weighted least squares baseline correction and vector normalization,
as the 2nd differentiation changes the spectral scale to coefficient values rather than absorbance. ROC
curves and area under the curve (AUC) values were calculated using the easyROC version 1.3.1
(http://www.biosoft.hacettepe.edu.tr/easyROC/). AUC values represent the accuracy of the test with
values ranging from 0.9 to 1 being considered excellent, 0.8 to 0.9 good and 0.7 to 0.8 fair.

Principal component analysis (PCA) is an unsupervised method of exploratory analysis that
reduces the spectral dataset to only a small number of factors, principal components (PCs). Each PC is
orthogonal to each other and covers most of the variance present in the original data so that the first PC
covers the largest explained variance, followed by the second PC and so on. Each PC is composed of
scores (projections of the samples on the PC direction) and loadings (angle cosines of the wavenumbers
projected on the PC direction). The score plots can be generated to visualize the differences and
similarities between the groups. PCA was performed to investigate the effect of potential confounding
factors, such as age (<60 years; ≥60 years), BMI (normal: BMI = 18.5–24.9; overweight: BMI = 25–29.9;
obese: BMI = 30–39.9; severely obese: BMI > 40), diabetes (diabetic; non-diabetic), fasting status
(fasting; non-fasting; liver diet) and blood pressure (normotension; hypertension). PCA is preferred

http://trevisanj.github.io/irootlab/
http://www.biosoft.hacettepe.edu.tr/easyROC/
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to investigate variations within groups as, in contrast to the supervised PLS-DA, it requires no prior
knowledge of the disease class and thus it shows the “natural variations” within a dataset.

4.4. Statistical Analysis

Statistical analysis was performed within MATLAB. All statistical tests were performed on a
patient basis using the pre-processed data (2nd SG derivative and vector normalization) within the
biofingerprint region. Significant p-values were obtained through ANOVA tests applied to each
individual spectral marker response or MANOVA tests applied to the whole pre-processed spectra
for the confounding factor comparisons. A p-value <0.05 was considered significant. p-values were
also calculated to test for differences between the clinical characteristics of the groups (controls versus
reference class) using a t-test for the age comparison (data input as mean and standard deviation)
and a Pearson’s chi-squared test of independence for the other parameters (BMI, diabetes, blood
pressure and fasting status) based on a cross-tabulation analysis with the population size of each group.
Unknowns were excluded from the analysis to avoid inclusion of undefined sources of variation in
the test. For sample size calculations, a power test using a two-tailed t-test (data input as mean and
standard deviation in absorbance units of the spectral data for each class) indicated a minimum number
of 94 control samples, 151 cancer samples and 49 hyperplasia samples for a power of 80%. In this study,
we included more than the required number of samples (242 controls, 342 endometrial cancers and
68 atypical endometrial hyperplasia) to ensure our conclusions were robust.

5. Conclusions

We demonstrate the use of a blood-based test as a non-invasive and inexpensive approach to
effectively diagnose endometrial cancer and therefore triage women for invasive biopsy. This is the
largest study of its kind to demonstrate that spectroscopy of blood plasma can serve as an early
detection tool in endometrial cancer, hugely improving prognostic outcomes and expediting therapeutic
intervention. Women affected by or at risk of endometrial cancer will be the ultimate beneficiaries of
such a test, for whom few advances have been made in recent years despite the rising incidence and
deaths from the disease. This offers an important step forward for patients, clinicians and the research
community and has the potential to become practice changing.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/5/1256/s1,
Figure S1: Raw infrared spectra in the biofingerprint region (1800–900 cm−1) for control, Type I, Type II and
hyperplasia samples. Figure S2: Assessment of the quality of the samples collected from the biobanks at Central
Manchester or Lancashire Teaching Hospitals. Figure S3: Partial least squares discriminant analysis (PLS-DA)
regression coefficients and correct classification rates. Samples were split into training (70%) and test (30%) datasets.
Figure S4: Cross-validation (CV) error rate varying according to the number of latent variables for partial least
squares discriminant analysis (PLS-DA). Figure S5: Partial least squares discriminant analysis (PLS-DA) results for
hyperplasia vs. Type I, Type II, and hyperplasia. Figure S6: Receiver operating characteristic (ROC) curves along
with correct classification rates for the training, cross validation and test datasets. Figure S7: Mean pre-processed
spectra for all the subgroup comparisons. Table S1: Mean and standard deviation (SD) as absorbance units for the
selected features by partial least squares discriminant analysis (PLS-DA) for the different comparisons (A) to (G).
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