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Abstract: Galectins are commonly overexpressed in cancer cells and their expression pattern is often
associated with the aggressiveness and metastatic phenotype of the tumor. This study investigates
the prognostic influence of the expression of galectin-7 (Gal-7) and galectin-8 (Gal-8) in tumor cell
cytoplasm, nucleus and on surrounding immune cells. Primary breast cancer tissue of 235 patients
was analyzed for the expression of Gal-7 and Gal-8 and correlated with clinical and pathological data
and the outcome. To identify immune cell subpopulations, immunofluorescence double staining was
performed. Significant correlations of Gal-7 expression in the cytoplasm with HER2-status, PR status,
patient age and grading, and of Gal-8 expression in the cytoplasm with HER2-status and patient age
and of both galectins between each other were found. A high Gal-7 expression in the cytoplasm was
a significant independent prognosticator for an impaired progression free survival (PFS) (p = 0.017)
and distant disease-free survival (DDFS) (p = 0.030). Gal-7 was also expressed by tumor-infiltrating
macrophages. High Gal-8 expression in the cytoplasm was associated with a significantly improved
overall survival (OS) (p = 0.032). Clinical outcome in patients showing both high Gal-7 and with low
Gal-8 expression was very poor. Further understanding of the role of galectins in the regulation and
interaction of tumor cells and macrophages is essential for finding new therapeutic targets.

Keywords: breast cancer; galectins; galectin-7; galectin-8; prognostic markers; tumor infiltrating
macrophages

1. Introduction

Breast cancer is one of the three most prevalent cancers worldwide and the most frequent malignant
tumor in women [1]. In 2018, about 2.1 million female patients were diagnosed with breast cancer and
it represented the leading cause of tumor-related deaths in over 100 countries [2].

Based on gene profiling studies, breast cancer can be classified into different intrinsic subtypes [3].
In daily clinical practice, a surrogate system based on immunohistochemical and molecular
characteristics is generally used: luminal A-like tumors show a strong expression of estrogen (ER) and
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progesterone (PR) receptors, low proliferation rates and a good prognosis. Luminal B-like human
epidermal growth factor receptor 2 (HER2), and negative tumors show a lower hormone receptor
expression and higher grading than Luminal A-like tumors and have an intermediate prognosis.
Tumors that show an amplification of HER2 can be further classified based on hormone receptor
expression in Luminal B-like HER2+ and in HER2+ non-luminal tumors. Triple negative breast cancers
(TNBC) lack the expression of both hormone receptors and HER2, and show the worst prognosis of all
breast cancer subtypes [3,4]. Even though therapy has improved in recent years, [1] new therapeutic
strategies aiming at specific targets are needed [5–7]. This is especially important for TNBC, because
patients still have a poor outcome and cannot be treated with endocrine therapy or targeted therapies
like anti-HER2-therapy [8].

The discovery of galectins in 1994 [9,10] led to investigations on their impact on tumor development,
progression and metastasis [11]. Galectins are a group of proteins able to bind to β-galactoside-binding
sugars, either by N-linked or O-linked glycosylation, and they share primary structural homology in
their carbohydrate-recognition domains (CRDs) [10]. A total of 12 different human galectin coding
genes were found, including two for galectin-9 [12]. Galectins are divided into the subgroups of
dimeric galectins (galectin-1,-2,-7,-10,-13,-14) with two identical CRD subunits, tandem galectins
(galectin-4,-8,-9,-12) with two distinct CRD subunits, and chimeric galectins (galectin-3) with one or
even multiple subunits of the same type [10,12]. Galectins are commonly overexpressed in cancer
cells and cancer-associated stromal cells [13]. This altered galectin expression often correlates with the
aggressiveness of the tumor and the metastatic phenotype [14]. In breast cancer, a connection between
diverse galectin expression patterns and different cancer characteristics—like a correlation of galectin-1
(Gal-1) expression with tumor grading—was found [11,15]. Recently, the role of Gal-1 and galectin-3
(Gal-3) was thoroughly investigated [14]. Silencing Gal-1 led to both impaired tumor growth and
reduced metastasis in a breast cancer mouse model [16]. Furthermore, it was found that Gal-1 interacts
with E-selectin and influences adhesion [17]. However, targeting Gal-1 still has not come to clinical
practice because no strategy of a fully specific Gal-1 blocking has been established yet. Gal-3 was
identified as a molecular signature of breast cancer [18] and also as a potential therapeutic target [19].
Galectin-9, however, was described as anti-tumorigenic with possible antimetastatic potential in
breast cancer [20]. Galectin-7 (Gal-7), like Gal-1 and Gal-3, seems to have tumor-promoting effects:
in a Gal-7 deficient mouse model, a delayed development of HER2+ breast cancer was observed.
Further investigations showed a positive correlation of Gal-7 expression with the frequency of HER2+

breast cancer. Furthermore, an association of Gal-7 expression with increased lymph node axillary
metastasis in HER2+ tumors was seen [21,22]. Another study revealed an augmented Gal-7 expression
in aggressive molecular subtypes, notably in estrogen receptor negative breast cancer and in cell lines
with a basal-like phenotype. High expression of Gal-7 caused a higher metastatic risk, rendering
cancer cells more resistant to apoptosis in a mouse model. Gal-7 might be part of the p53-promoted
cancer progression pathway [23]. It is not known if these effects are specific to Gal-7, as most of the
studies focused on one galectin and did not compare all individual galectins with each other. There is
no detailed analysis of all galectins and their specific effects in breast cancer and most galectins, like
galectin-8 (Gal-8), have not been studied in detail. There are only limited data suggesting that silencing
a Gal-8-dependent pathway might lead to impaired tumor growth, especially in TNBC [24].

In this study, the specific role of Gal-7 and Gal-8 in a bigger cohort of human primary non-metastatic
breast cancer was evaluated. The analysis included the specific location of galectin expression in the
nucleus or cytoplasm and the expression in tumor-surrounding immune cells.
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2. Results

2.1. Gal-7 and Gal-8 Expression in Breast Cancer and Correlation to Different Clinical and
Pathological Characteristics

2.1.1. Gal-7 and Gal-8 Expression in Breast Cancer Cytoplasm and Nucleus

Expression of both galectins was observed in the cytoplasm as well as in the nucleus, being more
pronounced for Gal-7. Gal-7 expression could not be evaluated in 19 sections (due to technical issues).
Seven cases showed no Gal-7 expression in the cytoplasm and 35 no staining in the nucleus. For Gal-8,
20 tissue sections could not be analyzed (due to technical issues), and 15 and 63 samples revealed no
staining in the cytoplasm and in the nucleus, respectively. The distribution of the immunoreactivity
score (IRS) for the staining in the cytoplasm and in the nucleus is shown in Table 1; Table 2. The mean
IRS for staining in the cytoplasm was 4.88 for Gal-7 and 4.37 for Gal-8, while it was 2.51 for staining in
the nucleus for Gal-7 and 2.56 for Gal-8.

Table 1. Staining results of Gal-7 in the cytoplasm and the nucleus. Gal = galectin; NA = not applicable;
IRS = immunoreactivity score.

Gal-7 Cytoplasm Gal-7 Nucleus
IRS n % IRS n %

0 7 3.0 0 35 14.9
1 2 0.9 1 17 7.2
2 43 18.3 2 64 27.2
3 21 8.9 3 51 21.7
4 40 17.0 4 25 10.6
6 60 25.5 6 24 10.2
8 27 11.5 NA 19 8.1
9 8 3.4 total 235 100.0
12 8 3.4

NA 19 8.1
total 235 100.0

Table 2. Staining results of Gal-8 in the cytoplasm and the nucleus. Gal = galectin; NA = not applicable;
IRS = immunoreactivity score.

Gal-8 Cytoplasm Gal-8 Nucleus
IRS n % IRS n %

0 15 6.4 0 63 26.8
1 12 5.1 1 14 6.0
2 50 21.3 2 55 23.4
3 27 11.5 3 7 3.0
4 18 7.7 4 43 18.3
6 54 23.0 6 22 9.4
8 16 6.8 8 1 0.4
9 18 7.7 9 9 3.8
12 5 2.1 12 1 0.4

NA 20 8.5 NA 20 8.5
total 235 100.0 total 235 100.0

2.1.2. Gal-7 and Gal-8 Expression and Correlation with Clinical Characteristics, Histopathological
Breast Cancer Subtypes and Grading

Both Gal-7 and Gal-8 expression in the cytoplasm and in the nucleus did not correlate with the
clinical parameters: tumor size and lymph node status. Gal-7 and Gal-8 expression in the cytoplasm
correlated negatively with patient age (see Spearman correlation analyses in Supplementary Data:
Tables S1 and S2).
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The Gal-7 expression correlated negatively with the histopathological subtype. Kruskal–Wallis
test and boxplots analysis showed that Gal-7 expression in the cytoplasm was significantly higher in
no special type (NST) tumors compared to non-NST tumors (median IRS 6 in NST vs. 4 in non-NST,
p < 0.001) (Figure 1a). Similarly, Gal-7 expression in the nucleus was significantly higher in NST tumors
(p = 0.042). The Gal-8 expression did not differ concerning the histological subtype.

Regarding tumor grading, a positive correlation with the cytoplasmic Gal-7 expression was found
(Spearman correlation analysis in Table S1). Kruskal–Wallis test showed that Gal-7 expression in the
cytoplasm was higher in higher tumor grading (Gal-7 in G1 median IRS 3 and in G2/3 median IRS 6,
p = 0.003, Figure 1b). The Gal-7 expression in the nucleus and the Gal-8 expression in the cytoplasm
were not associated with tumor grading. The Gal-8 expression in the nucleus correlated negatively
with the tumor grading and showed a trend towards a lower IRS in higher tumor grading (p = 0.089).
Exemplary immunohistochemical Gal-7 and Gal-8 staining in tumors with different gradings are shown
in Figure 2.

Cancers 2020, 12, x 4 of 21 

 

The Gal-7 expression correlated negatively with the histopathological subtype. Kruskal–Wallis 
test and boxplots analysis showed that Gal-7 expression in the cytoplasm was significantly higher in 
no special type (NST) tumors compared to non-NST tumors (median IRS 6 in NST vs. 4 in non-NST, 
p < 0.001) (Figure 1a). Similarly, Gal-7 expression in the nucleus was significantly higher in NST 
tumors (p = 0.042). The Gal-8 expression did not differ concerning the histological subtype. 

Regarding tumor grading, a positive correlation with the cytoplasmic Gal-7 expression was 
found (Spearman correlation analysis in Table S1). Kruskal–Wallis test showed that Gal-7 expression 
in the cytoplasm was higher in higher tumor grading (Gal-7 in G1 median IRS 3 and in G2/3 median 
IRS 6, p = 0.003, Figure 1b). The Gal-7 expression in the nucleus and the Gal-8 expression in the 
cytoplasm were not associated with tumor grading. The Gal-8 expression in the nucleus correlated 
negatively with the tumor grading and showed a trend towards a lower IRS in higher tumor grading 
(p = 0.089). Exemplary immunohistochemical Gal-7 and Gal-8 staining in tumors with different 
gradings are shown in Figure 2.  

 

(a) 

 

(b) 

Figure 1. Association of Gal-7 expression with histological subtype and tumor grading. Boxplots of 
the median IRS of Gal-7 staining in the cytoplasm dependent on histological subtype (a) and tumor 
grading (b) of the tumor are shown. (a) In non-NST tumors, Gal-7 expression in the cytoplasm is 
significantly lower than in NST tumors. (b) Tumors with G2/3 grading show a significantly higher 
Gal-7 expression in the cytoplasm compared to G1 tumors. 

Red asterisks indicate means. Please note that individual datapoints have been jittered to avoid 
overlap. 

p = 0.003 p < 0.001 

Figure 1. Association of Gal-7 expression with histological subtype and tumor grading. Boxplots of the
median IRS of Gal-7 staining in the cytoplasm dependent on histological subtype (a) and tumor grading
(b) of the tumor are shown. (a) In non-NST tumors, Gal-7 expression in the cytoplasm is significantly
lower than in NST tumors. (b) Tumors with G2/3 grading show a significantly higher Gal-7 expression
in the cytoplasm compared to G1 tumors. Red asterisks indicate means. Please note that individual
datapoints have been jittered to avoid overlap.
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Figure 2. Gal-7 and Gal-8 expression dependent on tumor grading. Exemplary immunohistochemical
staining of Gal-7 in grade 1 (A), 2 (B), and 3 (C) tumors and of Gal-8 in grade 1 (D), 2 (E), 3 (F) tumors
are shown. Magnification: main images x10, image sections x25.

2.1.3. Gal-7 and Gal-8 Expression and Correlation with Hormone Receptor Status, HER2 Amplification
and Surrogate Intrinsic Subtypes

Spearman analysis revealed that Gal-7 expression in the cytoplasm did correlate to PR-status
and Gal-8 expression in the nucleus to ER-status (Spearman analysis in Tables S1 and S2). In the
Kruskal–Wallis analysis, the Gal-7 staining in the cytoplasm was significantly higher in PR-negative
compared to PR-positive tumors (median IRS in PR-positive: 4 vs. in PR-negative: 6, p = 0.038,
Figure 3b), but was not significantly different concerning ER-status (p = 0.159, Figure 3a). The Gal-8
expression in the nucleus was significantly higher in ER-positive tumors (p = 0.026, Figure 3c) and a
trend towards a higher Gal-8 expression in PR-positive compared to PR-negative tumors was observed
(p = 0.098, Figure 3d). Both Gal-7 expression in the nucleus and Gal-8 in the cytoplasm did not correlate
with the ER- or PR-status.

Both Gal-7 and Gal-8 staining in the cytoplasm correlated significantly with the HER2-status
(Spearman analysis in Tables S1 and S2). HER2-positive breast cancer samples showed a distinctly
higher Gal-7 expression in the cytoplasm compared to HER2-negative tumor sections (median IRS in
HER2+: 8 vs. in HER2-: 4, p < 0.001, Figure 3e). Gal-8 expression in the cytoplasm in HER2-positive
tissue sections was significantly higher than in HER2-negative samples (median IRS in HER2+: 6 vs.
in HER2-: 3, p = 0.004, Figure 3f). Gal-7 and Gal-8 staining in the nucleus were not significantly
associated with HER2-status (Figure S1).
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Figure 3. Association of Gal-7 and Gal-8 expression with the ER-, PR- and HER2-status. Boxplots
of the median IRS of Gal-7 staining in the cytoplasm dependent on ER-status (a), PR-status (b) and
HER2-status (e) and of Gal-8 staining in the nucleus dependent on ER-status (c) and PR-status (d) as
well as Gal-8 staining in the cytoplasm dependent on HER2-status (f) are shown. ER-positive tumors do
not differ concerning Gal-7 staining but show a higher Gal-8 staining. PR-positive tumors show lower
Gal-7 staining and a trend towards higher Gal-8 staining. HER2-positive tumors show a significantly
higher Gal-7 and Gal 8 expression in the cytoplasm compared to HER2-negative tumors. Staining
in the nucleus does not show significant differences. Red asterisks indicate means. Please note that
individual data points have been jittered to avoid overlap.
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The Gal-7 expression in the cytoplasm differed significantly regarding the different surrogate
intrinsic subtypes (p < 0.001) (Figure 4): HER2-positive tumors (both luminal B-like and non-luminal)
clearly showed the highest Gal-7 expression in the cytoplasm compared to all other subtypes (Luminal
A-like and B-like and TNBC). The distribution of Gal-8 staining, neither in the cytoplasm (Figure S2)
nor in the nucleus, and Gal-7 expression in the nucleus in the different surrogate intrinsic subtypes
showed no significant differences.
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Figure 4. Association of Gal-7 expression with different surrogate intrinsic subtype. Boxplot of the
median IRS of Gal-7 staining in the cytoplasm dependent on the surrogate intrinsic subtype of the
tumor is shown. HER2-positive, both luminal and non-luminal tumors show a significantly higher
Gal-7 expression in the cytoplasm compared to the other subtypes. Red asterisks indicate means. Please
note that individual datapoints have been jittered to avoid overlap.

2.1.4. Correlation of Gal-7 and Gal-8 Expression

Gal-7 expression in the nucleus and cytoplasm correlated to each other as well as Gal-8 expression
in the nucleus and cytoplasm (Table 3). Gal-7 and Gal-8 expressions in the nucleus and cytoplasm also
correlated with each other.

2.2. Correlation of Gal-7 and Gal-8 Expression with Survival in Breast Cancer Patients

Median overall survival (OS), progression-free survival (PFS) and distant disease-free survival
(DDFS) in the whole cohort was not reached (NR). The prognostic relevance of Gal-7 and -8 was
analyzed concerning PFS, DDFS and OS and tumors were categorized in “high” and “low” expressing
tumors using ROC-curve analysis.

2.2.1. High Gal-7 Expression in the Cytoplasm is a Negative Prognosticator for Survival in Breast
Cancer Patients

High Gal-7 expression in the cytoplasm (IRS > 6) was associated with a worse outcome: tumors
with high Gal-7 expression in the cytoplasm showed a significantly impaired PFS (p = 0.017, median
PFS in Gal-7 high: 9.7 years, median PFS in Gal-7 low: NR) (Figure 5a) and DDFS (p = 0.030, median
DDFS in both subgroups NR) (Figure 5b). Concerning OS, no significant difference was detected
(p = 0.927, median OS in both subgroups NR) (Figure 5c).
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Table 3. Spearman correlation analysis of Gal-7 and Gal-8 expression in the nucleus and cytoplasm.
Significant correlations are displayed in bold. ** indicates a significance level of p < 0.01.

Gal-7 IRS
Cytoplasm

Gal-7 IRS
Nucleus

Gal-8 IRS
Cytoplasm

Gal-8 IRS
Nucleus

Gal-7 IRS
cytoplasm

Correlation Coefficient 1.000 0.467 ** 0.332 ** 0.188 **
Sig. (2-tailed) <0.001 <0.001 0.007

N 216 216 206 206

Gal-7 IRS
nucleus

Correlation Coefficient 0.467 ** 1.000 0.185 ** 0.301 **
Sig. (2-tailed) <0.001 0.008 <0.001

N 216 216 206 206

Gal-8 IRS
cytoplasm

Correlation Coefficient 0.332 ** 0.185 ** 1.000 0.594 **
Sig. (2-tailed) <0.001 0.008 0.000

N 206 206 215 215

Gal-8 IRS
nucleus

Correlation Coefficient 0.188 ** 0.301 ** 0.594 ** 1.000
Sig. (2-tailed) 0.007 <0.001 <0.001

N 206 206 215 215
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Figure 5. Association of Gal-7 expression in the cytoplasm to the clinical outcome. Kaplan–Meier
analysis of PFS (a), DDFS (b) and OS (c) in Gal-7 high- and low-expressing tumors (in the cytoplasm)
is shown. Tumors with high Gal-7 expression in the cytoplasm showed a significantly impaired PFS
and DDFS.
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Multivariate COX regression analysis revealed Gal-7 expression as an independent prognostic
factor for PFS (Table 4) but not for DDFS (Table S3). Concerning OS, where Gal-7 was not significant
in the univariate analysis, COX regression analysis revealed ER-status, nodal status and age as
independent prognosticators (Table S4).

Table 4. Multivariate analysis of PFS concerning Gal 7 expression in the cytoplasm. Significant factors
are highlighted in bold.

Prognostic Factor B SE Wald df Sig. Exp(B) 95,0% CI for Exp(B)

Lower Upper

Histological subtype
(NST vs. non-NST) 0.245 0.459 0.286 1 0.593 1.278 0.520 3.140

Grading (G1 vs. G2-3) 0.312 0.817 0.146 1 0.702 1.367 0.276 6.773
Tumor size

(pT1 vs. pT2-4) 0.284 0.377 0.564 1 0.453 1.328 0.634 2.783

Nodal status
(pN0 vs. pN1-3) 0.553 0.397 1.935 1 0.164 1.738 0.798 3.788

HER2 status
(positive vs. negative) −0.161 0.538 0.090 1 0.764 0.851 0.297 2.443

ER (positive vs. negative) −0.823 0.459 3.219 1 0.073 0.439 0.179 1.079
PR (positive vs. negative) −0.345 0.460 0.565 1 0.452 0.708 0.288 1.743
Patient age (continuous) 0.010 0.017 0.329 1 0.566 1.010 0.977 1.043
Gal-7 expression in the

cytoplasm (high vs. low) 0.806 0.410 3.860 1 0.049 2.239 1.002 5.003

Subgroup analysis revealed that Gal-7 expression in the cytoplasm had prognostic relevance for
an impaired PFS in the ER-negative (but not in ER-positive) (p = 0.036, median PFS in Gal-7 high
2.52 years, Figure S3), in the pT1 (but not in pT > 1) (p = 0.014) and in the pN0 (but not in pN > 0)
(p = 0.043) subgroups. A trend towards an impaired PFS could be observed in PR positive (but not PR
negative) (p = 0.098) and in HER2 positive (but not in HER2 negative) tumors (p = 0.084, Figure S4).

Gal-7 expression in the nucleus did not show prognostic relevance for PFS, DDFS or for the OS
(Figure S5). Subgroup analysis did also not show any new prognostic relevance of nuclear Gal-7
expression concerning the subgroups of PR-positive vs. -negative, HER2-positive vs. -negative tumors,
grading, tumor size and lymph node status. However, in ER-negative tumors, a high nuclear Gal-7
expression showed an impaired OS while nuclear Gal-7 expression was not relevant in ER-positive
tumors even if statistical significance was not reached (p = 0.082. Similarly, a worse outcome regarding
PFS could be seen in lower grading (G1, p = 0.058) (but not in G2-3) when nuclear Gal-7 expression
was high.

2.2.2. High Gal-8 Expression in the Cytoplasm is a Positive Prognosticator for Overall Survival in
Breast Cancer Patients

High Gal-8 expression in the cytoplasm (IRS > 5) was associated with an improved outcome:
Tumors with a high Gal-8 expression in the cytoplasm showed a significantly improved OS compared
to tumors with low Gal-8 expression in the cytoplasm (p = 0.032, median OS in both subgroups NR)
(Figure 6a). No significance in the outcome regarding PFS (p = 0.974, median PFS in both subgroups
NS, Figure 6b) and DDFS (p = 0.138, median DDFS in both subgroups NR, Figure 6c) was found.
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Figure 6. Association of Gal-8 expression in the cytoplasm to the clinical outcome. Kaplan–Meier
analysis of OS (a), PFS (b) and DDFS (c) in Gal-8 high- and low-expressing tumors (in the cytoplasm) is
shown. Tumors with high Gal-8 expression in the cytoplasm showed a significantly improved OS.

The multivariate COX regression analysis could not confirm Gal-8 expression in the cytoplasm
as an independent prognostic factor (Table 5) for OS. In contrast, age at the surgery, ER status and
lymph-node status (pN) were detected as independent prognosticators for the OS. Gal-8 was also not
prognostically relevant in COX regression for PFS or DDFS.

Table 5. Cox regression analysis of prognostic factors for OS in breast cancer patients. Significant
factors are highlighted in bold.

Prognostic Factor B SE Wald df Sig. Exp(B) 95,0% CI for Exp(B)

Lower Upper

Histological subtype (NST vs. non-NST) 0.199 0.456 0.190 1 0.663 1.220 0.499 2.983
Grading (G1 vs. G2-3) −0.321 0.591 0.295 1 0.587 0.725 0.228 2.311

Tumor size (pT1 vs. pT2-4) 0.237 0.385 0.378 1 0.539 1.267 0.596 2.693
Nodal status (pN0 vs. pN1-3) 1.144 0.406 7.927 1 0.005 3.140 1.416 6.964

HER2 status (positive vs. negative) 0.429 0.617 0.483 1 0.487 1.535 0.458 5.143
ER (positive vs. negative) −1.178 0.504 5.466 1 0.019 0.308 0.115 0.827
PR (positive vs. negative) 0.568 0.483 1.381 1 0.240 1.765 0.684 4.551
Patient age (continuous) 0.051 0.017 9.367 1 0.002 1.053 1.019 1.088

Gal-8 expression in the cytoplasm (high vs. low) −0.258 0.372 0.479 1 0.489 0.773 0.372 1.603

Subgroup analysis revealed that Gal-8 expression in the cytoplasm had prognostic relevance with
a better outcome for the OS in NST (but not non-NST) tumors (p = 0.049), in HER2-negative (but not
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HER2-positive) (p = 0.029, Figure S6) in ER-positive (but not ER-negative) (p = 0.055, Figure S7) and in
pT1 (but not in pT2-4) (p = 0.038). Concerning PFS and DDFS, no significant prognostic impact could
be found for Gal-8 in the different subgroups.

Similar to Gal-7 staining in the nucleus, Gal-8 staining in the nucleus did not show prognostic
relevance for neither PFS, DDFS or OS (Figure S8). However, subgroup analysis revealed that high
Gal-8 staining in the nucleus was associated with improved PFS in ER-positive patients (p = 0.041) but
not in ER negative patients and to tendentially (p = 0.081) better OS in pT2-4 (but not in pT1) tumors.
Regarding the other subgroups (PR-positive vs. -negative, HER2-positive vs. -negative, nodal status,
histological subtype), nuclear Gal-8 staining did not show significant prognostic influence, similar to
the overall cohort.

2.2.3. Survival Analysis Using Combined Gal-7 and Gal-8 Staining

Survival analysis was also performed in subgroups with high or low Gal-7 expression in the
cytoplasm in combination with low or high Gal-8 expression in the cytoplasm, respectively. A high
Gal-7 combined with a low Gal-8 expression in the cytoplasm was associated with an impaired OS
compared to all other patients (p = 0.201, median OS in all subgroups NR, Figure 7a). When Gal-7
expression was high and Gal-8 was low, DDFS was significantly impaired (p = 0.009, median DDFS in
all subgroups NR, Figure 7b) compared to the rest of the patients, as well as PFS with a borderline
significance (p = 0.067, median PFS in all subgroups NR, Figure 7c). In summary, two different groups
regarding the outcome could be defined: The first group, representing 6.8% of the patients, consisted
of tumors expressing Gal-7 high (IRS > 6) and Gal-8 low (IRS ≤ 5) in the cytoplasm. This subgroup
showed a poor OS. The second group, formed by 13.6% of the patients with high Gal-8 (IRS > 5) and
low Gal-7 (IRS ≤ 6) expression in the cytoplasm, showed good OS (Figure 7a). Comparing the three
subgroups concerning PFS and DDFS, the “advantageous” subgroup (high Gal-8, low Gal-7) seems to
be less relevant (survival curves similar to the “others” subgroup, Figure S9).

2.2.4. Immune Cell Infiltration Stained with Gal-7

Gal-7 had an interesting expression pattern in the tumor tissue, with staining on only the outer
layer of cancer cells and expression in the immune cells next to the tumor cells as well (Figure 8a–d).
Gal-7 staining in the immune cells was not included as part of the IRS-scoring for the cancer specimen
in the analyses described above. The immune cell staining of Gal-7 correlated significantly with the
tumor grading: in tissue sections defined as grade 1 no stained immune cell infiltration was observed,
whereas in grade 2 and 3, stained immune cells were detected (p = 0.008, Figure S10a). Gal-7-expressing
immune cells were furthermore found significantly more often in NST compared to non-NST tumors
(p = 0.001, Figure S10b) and in tumors with lymph node metastasis (p = 0.038, Figure S10c). A double
immunofluorescence staining with Gal-7 and CD68 (a macrophage marker) showed that the Gal-7
stained immune cells were macrophages (Figure 8e–g).
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Figure 7. OS, PFS and DDFS for the two groups. Kaplan–Meier analysis of OS (a), PFS (b) and DDFS
(c) in tumors with combined high or low Gal-7 expression with low or high Gal-8 expression (in the
cytoplasm), respectively, are shown. Tumors with high Gal-7 and low Gal-8 expression in the cytoplasm
show the trend of an impaired OS, while tumors with high Gal-8 and low Gal 7 expression show the
trend of an improved OS. Tumors with high Gal-7 and low Gal-8 expression in the cytoplasm show the
trend of an impaired PFS and a significantly reduced DDFS, while tumors with high Gal-8 and low
Gal-7 expression show the trend of an improved PFS and a DDFS.
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(d). Immunofluorescence results: Gal-7 is shown in red (e), CD68 in green (f) and the nucleus is 
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Figure 8. Gal-7-staining results (a–d) and double immunofluorescence staining with Gal 7 and
CD68 (e–g). Exemplary pictures of Gal 7-staining results are shown, revealing the distribution of
Gal 7-staining in tumor cells (a,b). Stained immune cells in Gal 7-expressing tumors are shown in (c)
and (d). Immunofluorescence results: Gal-7 is shown in red (e), CD68 in green (f) and the nucleus is
stained with DAPI in blue. Picture (g) shows that Gal 7- and CD8-staining is overlapping in some cells,
which appear yellow, showing that these are macrophages. Magnification: Images 8a, 8c and 8d x10,
and images 8b, 8e, 8f and 8g x25.
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3. Discussion

Galectins have been shown to be a pivotal factor in carcinogenesis. However, data on their
relevance in breast cancer are still sparse. As recently proposed [22,25], we could show in our cohort of
primary breast cancer patients that Gal-7 was a negative prognosticator for the clinical outcome. Gal-7
expression in the cytoplasm had a negative prognostic impact on PFS and DDFS, a negative trend on
OS and was even an independent negative prognosticator for PFS in the multivariate analysis. A strong
association between a high Gal-7 expression in the cytoplasm and HER2 amplification was observed,
suggesting that HER2-positive tumors might be especially interesting for potentially targeting Gal-7.
In HER2-positive tumors—like in the overall cohort—high Gal-7 expression was associated with an
impaired prognosis. Gal-8 expression in the cytoplasm, however, was associated with an improved OS.

Our data are in line with Grosset et al., [21,25] who found high Gal-7 expression only in
HER2-positive tumors and in TNBC. Recent studies showed Gal-3 as a modifier of the epidermal
growth factor receptor (EGFR), which is a regulator of cell growth and survival in normal and
cancerous tissues [26–28]. EGFR and HER2 are both known as members of the ErbB receptor family
and, when activated, they stimulate the activation of many signaling pathways [29]. Apart from Gal-3,
no functional associations between galectins and ErbB receptors have been reported to date. However,
these data suggest a functional connection between these two families which might also exist between
Gal-7 and HER2.

Other groups showed in an in silico mRNA survival analysis that Gal-7 and Gal-8 did not have
a prognostic impact in breast cancer patients. However, regarding protein level—similarly to our
data—high Gal-7 expression was associated with an impaired PFS (although not statistically significant),
whereas no effect could be shown for Gal-8 (both in the overall cohort) [25].

Our results suggest that combining Gal-7 and Gal-8 expression might further improve prognostic
accuracy. Two different groups could be defined: a small group (high Gal-8, low Gal-7) with a very
good outcome (6.8% of the patients), compared to a second group (high Gal-7, low Gal-8) with a
worse outcome, consisting of 13.6% of the patients. This is especially interesting, as Gal-7 and Gal-8
expressions are strongly correlated. Similar effects have been shown for galectin ligands: in BC patients,
high levels of- Gal-1 ligands and low levels of Gal-8 ligands have been observed, making their ratio a
strong marker for BC [30]. A similar ratio could be established using the Gal-7/Gal-8 expression for
prognostic considerations.

Galectin expression was also associated with tumor cell differentiation: Gal-7 expression was
significantly higher in less differentiated cells (reflected by higher grading), whereas Gal-8 expression
was highest in highly differentiated cells (reflected by lower grading). This is similar to other data
where high Gal-4 (which belongs to the same family as Gal-8) expression in highly differentiated, and
low Gal-1 (which belongs to the same family as Gal-7) expression in poorly differentiated, tumors have
been shown [31]. Furthermore, in our study, poor tumor cell differentiation was also associated with
high Gal-7 expression in tumor-surrounding macrophages, who are known to correlate with poor
breast cancer survival rates.

Regarding mechanisms of the regulation of galectin expression and distribution between nucleus
and cytoplasm, it is important to consider that Gal-7 is also provided extracellularly: The extracellular
Gal-7 controls the intracellular pool of Gal-7, firstly by an increase in the gene transcription, and
secondly by a re-entry pathway into the cells [32]. Similarly, for Gal-1 (which belongs to the same group
as Gal-7) an extracellular to nucleus transfer has been shown and nuclear Gal-1 accumulation drove
epithelial invasiveness. Extracellular glycans that bear N-acetyllactosamins (LacNAc) epitopes bind
Gal-1 and trap it extracellularly. An α-2,6-sialylation of these LacNAc epitopes inhibits Gal-1-binding
and drives the nuclear transfer of Gal-1 [33]. We could observe in our study that Gal-7 was also present
in macrophages next to the tumor cells. Therefore, these macrophages might also provide a source of
extracellular Gal-7 for tumor cells and might regulate the intracellular Gal-7 pool. Tumor-associated
macrophages are correlated with poor survival rates of breast cancer [34], rendering Gal-7 even more
interesting as a therapeutic target. Functional effects that have been described for Gal-8 include the
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activation of the activated leukocyte cell adhesion molecule (ALCAM) [23,35,36] and the activation
of the endothelial nitric oxide synthase (eNOS) pathway on endothelial cells [37]. However, these
pathways all describe a tumorigenic potential of Gal-8, while Gal-8 was a positive prognosticator in
our study. Therefore, other tumor-suppressing pathways that need further investigation might exist.

First attempts in targeting galectins in breast cancer have already been made: Grosset et al.
demonstrated that targeting CRD-independent cytosolic Gal-7 in breast cancer cells, and therefore
impairing p53-functions, might be a valuable strategy for the treatment of breast cancer [35]. Targeting
Gal-8 has not been performed to date. Gal-3 knockdown enhanced the sensitivity of tumor cells
to the apoptotic agent arsenic trioxide (ATO, which is already approved by the US Food and Drug
Administration for the treatment of acute myeloid leukemia) [19], making Gal-3 an interesting
therapeutic target. An orally applied Gal-3 antagonist was already studied in a mouse model, leading
to less lung adenocarcinoma growth [36]. Furthermore, a Gal-1 inhibitor that showed synergistic
activity with the chemotherapeutic paclitaxel in BC has been discovered [37]. As Gal-7 belongs to the
same family as Gal-1, similar therapeutic potential could exist for Gal-7.

4. Materials and Methods

4.1. Patients

Formalin-fixed, paraffin-embedded (FFPE) primary breast cancer samples of 235 patients were
examined in this study (Table 6).

We included in our study all patients that were diagnosed with primary non-metastatic
breast cancer and underwent surgery at the Department of Gynaecology and Obstetrics,
Ludwig-Maximilians-University Munich, Germany, from the period 1998 to 2000.

Therefore, there was no pre-selection and a complete group of patients attending the clinic was
analysed. Only women with benign tumors of the breast were excluded from the study.

Clinical, pathological and follow-up data (up to ten years) were retrieved from patients’ charts
and from the Munich Cancer Registry. Patient characteristics are displayed in Table 6. In terms of
clinical and pathological characteristics and tumor biology, the collective represents the reality of the
wide BC spectrum.

Histopathological subtype (no specific type (NST) vs. non-NST), tumor grading (G1-3) according
to the Elston and Ellis criteria (1993) [4,38,39], and staging using the TNM-System [40] (T for tumor size,
N for the lymph node status and M for metastasis) were determined by a gynecological pathologist.
As tumor grading could only be obtained in about 70% of all patients, the results have to be regarded
with limited reliability. HER2-positivity is defined by the DAKO Scoring system (DAKO, HER2 FISH
pharmDx™ Kit, Agilent Technologies, Waldbronn, Germany). As HER2 status was not determined
routinely in Germany before 2001, it was retrospectively assessed. HER2 status was determined as
recommended in the national guidelines, i.e., by DAKO Score and FISH analysis in cases of DAKO 2+.

Endpoints regarding the survival data were defined as follows: OS = overall survival, period
of time from the date of surgery until the date of death or date of last follow-up; PFS = progression
free survival, period of time until local recurrence or metastasis were diagnosed and DDFS = distant
disease free survival: period of time until metastasis was diagnosed.
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Table 6. Patients’ characteristics.

Patients‘ Characteristics Median SD

Age 58.2 13.3

N %

Histological subtype
NST 126 53.6

Non-NST 96 40.9
NA 13 5.5

Intrinsic surrogate subtype
Luminal A-like 103 43.8
Luminal B-like 73 31.1

HER2-positive, luminal 17 7.2
HER2-positive, non-luminal 7 3.0

TNBC 31 13.2
NA 4 1.7

Grading
Grade 1 17 7.2
Grade 2 90 38.3
Grade 3 55 23.4

NA 73 31.1

Lymph node involvement (pN)
pN0 128 54.5
pN1 87 37.0
pN2 10 4.3
NA 10 4.3

Tumor size (pT)
pT1 (≤2 cm) 160 68.1
pT2 (2–5 cm) 68 28.9
pT3 (>5 cm) 1 0.4

pT4 (with infiltration in the epidermis or the thoracic wall) 5 2.1
NA 1 0.4

HER2 status
Positive 24 10.2

Negative 208 88.5
NA 3 1.3

ER status
Positive 192 81.7

Negative 43 18.3

PR status
Positive 141 60.0

Negative 94 40.0

NST = no special type, NA = not available, ER = estrogen receptor, PR = progesterone receptor, HER2 = human
epidermal growth factor receptor 2, TNBC = triple negative breast cancer.

4.2. Immunohistochemistry

Paraffine-embedded breast cancer tissue samples were analyzed by immunohistochemistry.
The samples were fixed in neutral buffered formalin and embedded in paraffin after surgery.
For histopathological investigations, tissue sections (3 µm) were deparaffinized in Roticlear (Carl Roth
GmbH + Co. KG) for 20 min and then the endogenous peroxidase was inactivated with 3% hydrogen
peroxide (VWR International GmbH) in methanol. The slides were rehydrated in a descending gradient
of ethanol (100%, 75% and 50%) and prepared for epitope retrieval in a pressure cooker for 5 min in
sodium citrate buffer (0.1 mol/L citric acid, 0.1 mol/L sodium citrate, pH 6.0). After washing in distilled
water and phosphate-buffered saline (PBS), all tissue slides were blocked using a blocking solution
(Reagent 1; ZytoChem Plus HRP Polymer System (Mouse/Rabbit); Zytomed Systems GmbH, Berlin,
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Germany) for 5 min at room temperature (RT) in order to block non-specific binding of the primary
antibodies. Then, a specific procedure followed for each Galectin: the slides were incubated with
Gal-7 primary antibody (rabbit, polyclonal; Abcam, ab10482) at a final concentration of 2.5 µg/mL
in PBS Dulbecco (Biochrom GmbH) for 16 h at 4 ◦C. Gal-8 primary antibody (rabbit, monoclonal,
Abcam, ab109519) was used for incubation at a final concentration of 3.3 µg/mL in PBS for 1 h at RT.
Afterwards, the staining specimens were incubated in post block reagent (Reagent 2) and HRP-polymer
(Reagent 3) containing secondary antibodies (anti-mouse/-rabbit) and peroxidase according to the
manufacturer’s protocol. These antibodies are part of the provided Reagent 3, exact concentrations
are not specified by the manufacturer. (Reagent 2 and 3, ZytoChem Plus HRP Polymer System,
Mouse/Rabbit). All slides were washed in PBS after every incubation step. The slides were then
stained with 3,3′-diaminobenzidine chromogen (DAB; Dako, Glostrup, Denmark) for visualization
and counterstained in Mayer acidic hematoxylin. After dehydrating in an ascending ethanol gradient
and Roticlear they were cover slipped with Roti-Mount (Carl Roth GmbH + Co. KG). Appropriate
tissue slides were used as positive controls (sigma tissue for Gal-7 and placenta for Gal-8). To obtain
expression results, the semiquantitative immunoreactive score (IRS, Remmele and Stegner 1987 [41]
was performed using a Leitz Diaplan microscope (Leitz, Wetzlar, Germany). The score was optically
obtained by multiplying the predominant staining intensity (0: none; 1: low; 2: moderate; 3: strong)
and the percentage of positively stained cancer cells (0 = 0%, 1= 1–10%, 2 = 11–50%, 3 = 51%–80%, and
4 = 81%–100% stained cells). The IRS was determined separately in the cytoplasm and the nucleus of
the cancer cells. The staining of other cells, like immune cells, was not included in the IRS. Images
were taken with a CCD color camera (JVC, Victor Company of Japan, Japan).

Furthermore, immune cells stained with Gal-7 were analyzed independently of the tumor IRS for
Gal-7 and evaluated using following scoring system: 0 = no immune cells were stained, 1 = <50% and
2 = >50% of the immune cells were stained.

4.3. Immunofluorescence

Paraffine-embedded breast cancer tissue samples were also used for immunofluorescence-analyses.
The samples were fixed in neutral buffered formalin and embedded in paraffin after surgery. After
deparaffinization in Roticlear (Carl Roth GmbH + Co. KG) for 20 min, the slides were rehydrated
in a descending gradient of ethanol (100%, 75% and 50%) and prepared for epitope retrieval in a
pressure cooker for 5 min in sodium citrate buffer (0.1 mol/L citric acid, 0.1 mol/L sodium citrate,
pH 6.0). After washing in distilled water and PBS, all tissue slides were blocked with Ultra V Block
(Thermo scientific) for 15 min. The primary antibodies were diluted in Dako Antibody Diluent
(Dako North America) incubated with the slides for 16 h at 4 degrees. Gal-7 (rabbit, polyclonal;
Abcam, ab10482) was diluted at a final concentration of 2,5 µg/mL and CD68 (mouse, monoclonal,
Sigma AldrichAMAb90874) at a concentration of 0.1 µg/mL. Next, the light in the room was dimmed
and an incubation with the secondary antibodies for 30 min at RT followed. Secondary antibodies:
Goat-Anti Rabbit IgG Cy3 (Dianova/Jackson, 111-165-144) diluted at a concentration of 3 µg/mL and
Goat-Anti-Mouse-AlexaFluor488-IgG (Dianova/Jackson, 115-546-062) at a concentration of 15 µg/mL.
After the slices were dried in the dark, they were cover slipped with mounting medium for fluorescence
with DAPI (Vectashield H-1200). The samples were then analyzed using a Zeiss AxioPhot microscope
with an Axiocam MRm within one day.

4.4. Statistical Analysis

Data analyses were performed with SPSS Statistics 25 (Armonk, NY: IBM Corp.). p-values lower
than 0.05 were considered as statistically significant. Correlations between staining results and ordinal
variables were tested with Spearman’s rank correlation coefficient. Group comparisons regarding the
IRS of galectins between different clinical and pathological subgroups were tested with Kruskal–Wallis
test and displayed as boxplot graphs. Survival times between different groups were compared
by Kaplan–Meier analysis, and differences were tested for significance by Log-Rank (Mantel-Cox),
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Breslow- and Tarone-Ware-tests. Censored cases are cases for which the second event is not recorded
(for example, people still alive at the end of the study). The Kaplan–Meier procedure is a method of
estimating time-to-event models in the presence of censored cases. The Kaplan–Meier model is based
on estimating conditional probabilities at each time point when an event occurs and taking the product
limit of those probabilities to estimate the survival rate at each point in time. Cox-regression analysis
was used to determine the independence of prognostic factors.

Concerning survival analysis dependent on Gal-7 and Gal-8 expression, patients were grouped
into high and low expression. Cut-off points were selected considering the distribution pattern of
IR-scores in the collective. Therefore, the receiver operator curve (ROC curve) was drawn using SPSS
software, which is considered as one of the most reliable methods for cut-off point selection. In this
context, the ROC curve is a plot representing sensitivity on the y-axis and (1-specificity) the x-axis.
Consecutively Youden index, defined as the maximum (sensitivity + specificity−1), was used to find
the optimal cut-off maximizing the sum of sensitivity and specificity (exemplary results of the ROC
curve analysis in Table S5). Furthermore, the medians of Kruskal–Wallis tests were observed and
evaluated in order to find the ideal cutoff. The cytoplasmatic Gal-7 expression was regarded as low
with an IRS 0–6 and as high with an IRS > 6. The cytoplasmatic Gal-8 expression was regarded as low
with an IRS 0–5 and as high with an IRS > 5.

4.5. Ethics Approval and Consent to Participate

This study has been approved by the Ethics Committee of the Ludwig-Maximilian-University
Munich (approval number 048–08). The breast cancer specimens were obtained in clinically indicated
surgeries. When the current study was performed, all diagnostic procedures were completed, and the
patients’ data were anonymized. The ethical principles adopted in the Declaration of Helsinki 1975
have been respected. As per the declaration of our ethics committee, no written informed consent of the
participants or permission to publish is needed given the circumstances described above. Researchers
were blinded from patient data during experimental and statistical analysis.

5. Conclusions

In summary, our results suggest that Gal-7 might be an independent negative prognostic factor in
breast cancer and therapeutic target, especially in HER2-positive breast cancer. Furthermore, Gal-8
was observed to be a positive predictor for overall survival and upregulation should be further
investigated. The role of Gal-7 and Gal-8 should be validated in a BC collective treated with today’s
standard of therapy—even if this might be outdated at the time point of the analysis. Additional
studies are required to detect the signaling pathways in which both Gal-7 and Gal-8 are involved,
as the combination of both markers showed strong prognostic impact. Gal-7 and Gal-8, as well as the
whole group of galectins, seem to be interesting therapeutic and prognostic targets that might help to
improve therapies and outcome for breast cancer patients in the future.
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