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Abstract: (1) Background: Radiomics use high-throughput mining of medical imaging data to
extract unique information and predict tumor behavior. Currently available clinical prediction
models poorly predict treatment outcomes in pancreatic adenocarcinoma. Therefore, we used
radiomic features of primary pancreatic tumors to develop outcome prediction models and compared
them to traditional clinical models. (2) Methods: We extracted and analyzed radiomic data from
pre-radiation contrast-enhanced CTs of 74 pancreatic cancer patients undergoing stereotactic body
radiotherapy. A panel of over 800 radiomic features was screened to create overall survival and
local-regional recurrence prediction models, which were compared to clinical prediction models and
models combining radiomic and clinical information. (3) Results: A 6-feature radiomic signature
was identified that achieved better overall survival prediction performance than the clinical model
(mean concordance index: 0.66 vs. 0.54 on resampled cross-validation test sets), and the combined
model improved the performance slightly further to 0.68. Similarly, a 7-feature radiomic signature
better predicted recurrence than the clinical model (mean AUC of 0.78 vs. 0.66). (4) Conclusion:
Overall survival and recurrence can be better predicted with models based on radiomic features than
with those based on clinical features for pancreatic cancer.
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1. Introduction

Pancreatic cancer is one of the deadliest cancers, with a one-year survival rate of 20%,
and a five-year survival of only 9% [1]. The typical pancreatic adenocarcinoma treatment paradigm
for those potentially able to undergo a resection is neoadjuvant chemotherapy followed by surgery [2].
When resection is not initially possible after chemotherapy, radiation may be used with the goal of
achieving resectability. While both conventionally fractionated and stereotactic body radiotherapy
(SBRT) techniques were used, SBRT gained traction recently due to its favorable side effect profile
and convenience of short treatment course [3]. Furthermore, the most compelling trait of SBRT is
its suggested superior efficacy, which was shown in the treatment of locally advanced pancreatic
adenocarcinoma [4].
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A major difficulty in effective pancreatic cancer treatment, however, lies in the heterogeneity of
tumors and patients. Unfortunately, the majority of patients do not have any significant reduction
in tumor size on imaging after treatment. However, considerable tumor heterogeneity remains
among these patients. While some post-treatment tumors remain cancerous with residual disease,
others are rid of adenocarcinoma but unchanged in size due to the bulk of the remaining desmoplastic
tissue. Current imaging and clinical evaluation methods struggle to distinguish between these tumor
responses, making it nearly impossible for clinicians to know at the time of treatment completion if the
treatment was successful or if further treatment is necessary. Furthermore, patients also have varying
degrees of tolerance to treatment toxicities. Because treatment response and tolerability remain largely
unpredictable, there exists a significant need for an evidence-based clinical decision support system to
aid physicians in determining the best treatment regimen for each patient.

Radiomics is on the frontier of medical imaging research with clinical use. The radiology/medical
imaging analogue of “genomics” and “proteomics”, radiomics uses the vast amount of medical imaging
data to extract large numbers of quantitative features to provide valuable tumor information beyond
that afforded by the conventional, mostly qualitative image review methods [5-7]. While medical
images are typically used purely as pictures that provide limited insight into size, shape, and pattern
of tumors, radiomic features (such as intensity, shape, texture, or wavelet) could offer additional
information associated with cancer phenotype, as well as the tumor microenvironment that is distinct
and complementary to other pertinent data sources.

Though in its infancy, radiomics has already proven to be helpful in better understanding the
behavior of pancreatic cancer. For example, a 2019 study identified a specific radiomic signature of
pancreatic cancer that correlated with overall survival and local control after treatment with stereotactic
body radiation therapy [8]. Another study in 2018 analyzed texture features of tumors of the pancreatic
head, finding that some features (such as certain filter values and contrast) served as independent
prognostic factors in predicting decreased disease free survival [9]. These studies, and others like them,
illustrate the ability of radiomic data to provide novel behavioral and prognostic information about
individual pancreatic cancers that would not otherwise be discoverable by conventional methods
of evaluation.

We are at the advent of uncovering the vast potential of radiomics in providing data-based clinical
decision support. In order for radiomics to be a useful clinical decision tool, however, we must first
better understand how radiomic data can be used to predict tumor behavior and patient outcomes.
Studies such as the aforementioned 2018 Yun et al. study show that radiomic features can be just as
useful as clinical features, such as positive lymph node metastasis, in predicting outcomes. However,
there is currently a lack of studies that illustrate how radiomic data can provide information and
prediction models beyond what our existing prediction models can. In our study, we aimed to
use radiomic features of primary pancreatic tumors, in combination with pertinent clinical data,
to develop outcome prediction models for pancreatic cancer superior to those using clinical features
alone. Specifically, we sought to use radiomic features to predict the overall survival and incidence
of local-regional failure of borderline resectable and locally advanced pancreatic cancer patients
undergoing stereotactic body radiation therapy (SBRT) following neoadjuvant chemotherapy as a
proof-of-concept to determine if such features could outperform currently available clinical information.
The incidence of local-regional failure was chosen as an endpoint in addition to overall survival as we
consider this currently to be the best surrogate for residual local-regional disease after definitive or
neoadjuvant chemoradiotherapy and, as such, an endpoint for which current clinical criteria remains
of poor utility.

2. Results

Of the 74 patients analyzed in this study, 41 (55.4%) did not have positive lymph nodes, while 33
(44.6%) did. The majority (79.7%) of the patients’ tumors were located in the head of the pancreas,
while the remaining 20.3% were in the neck, tail, body, or uncinate. Forty-five (60.8%) of the patients
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were male, and 29 (39.2%) were female. Of the patients studied, 61 (82.4%) received concurrent
chemotherapy with either infusional 5-flourouracil, capecitabine, or nelfinavir, whereas 13 (17.6%) did
not receive concurrent chemotherapy. Further information on patient and tumor characteristics can be
found in Table 1. With unsupervised clustering, the 74 patients were clustered into four clusters with
the radiomic expression patterns and compared against patient clinical parameters (Figure 1). Most of
the studied clinical parameters including N stage (p = 0.981), T stage (p = 0.569), gender (p = 0.796),
and tumor location (site) (p = 0.628) were not significantly associated with patient clusters; only the
resection status was associated (p = 0.049).
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Figure 1. Radiomic heatmap of the studied pancreatic cancer patients. Clinical parameter legend:
For N stage, 0 = NO and 1 = N1; For T stage, 0 = T2, 1 = T3, and 2 = T4; For gender, 0 = female and
1 = male; For Site, 0 = head, 1 = neck, 2 = tail, 3 = body, and 4 = uncinated; For resection, 0 = no
and 1 = yes.
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Table 1. Patient and treatment characteristics.

Characteristic Number of Patients (Percentage)
Gender
Male 45 (60.8%)
Female 29 (39.2%)

Median age (range)

Dk 62 (34-86)
Tumor site in pancreas
Head 59 (79.7%)
Neck 3 (4.1%)
Tail 3 (4.1%)
Body 6 (8.1%)
Uncinate 3 (4.1%)
N stage
0 41 (55.4%)
1 33 (44.6%)
T stage
2 5 (6.8%)
3 44 (59.5%)
4 25 (33.8%)
Use of SBRT @
Definitive 51 (68.9%)
Neoadjuvant 23 (31.1%)
Concurrent chemotherapy
None 13 (17.6%)
Infusional 5-FU P 4 (5.4%)
Capecitabine 11 (14.9%)
Nelfinavir 46 (62.2%)
Survival
Alive 5 (6.8%)
Deceased 69 (93.2%)
Median overall survival (months (95% CI €))
From diagnosis 15 (14-17)
From SBRT 11 (10-14)
Days since diagnosis (alive patients) 116-1776
Median days to death (recorded deaths) 452.5

2 SBRT—stereotactic body radiation therapy; ? 5-FU—5-fluorouracil; © CI—confidence interval.

For overall survival, a 6-feature radiomic signature was identified to have the best prediction
and was used for the radiomic model. Figure 2 shows the univariate CI of these six radiomic features
along with the five clinical features used in our study, all calculated on the whole study population.
Comparing the performance of the clinical model, the radiomic model, and the combined model,
a mean CI of 0.54, 0.66, and 0.68 was achieved on the 1500 resampled cross-validation test datasets,
respectively (Figure 3). The radiomic signature was better at predicting the overall survival than
the clinical features. Further combining radiomic and clinical features slightly improved the model
performance beyond the radiomic model. Average Kaplan-Meier survival curves comparing the high-
and low-risk patients stratified using the median average risk score are shown in Figure 4 to compare
the clinical, the radiomic, and the combined model, respectively. The clinical model was unable to
predict survival risk with p = 0.42 for the log-rank test, while the radiomic and the combined models
successfully predicted it with p values < 0.0001.
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Figure 2. Forest plot of the univariate analysis of the 6 radiomic features chosen for overall survival
prediction as well as that of the 5 clinical parameters. The univariate CIs are shown with the 95%
confidence interval.
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Figure 3. Concordance indices of the survival prediction on the testing datasets achieved using the
clinical model, the radiomic model, and the combined model.
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Figure 4. Average Kaplan-Meier survival curves of high- and low-risk patients with pancreatic
adenocarcinoima, as predicted by the clinical model (a), the radiomic model (b), and the combined
model (c), on the test datasets.

For local-regional recurrence, a 7-feature radiomic signature achieved the best prediction. Table 2
lists these features with their FDR-adjusted p values from the univariate ANOVA analysis on the
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whole study population. Figure 5 compares the performance of the clinical, the radiomic, and the
combined model using the area under the receiver operating characteristic curve (AUC) achieved on
the 1500 resampled cross-validation test datasets. Mean AUC of 0.66, 0.78, and 0.77 was achieved by
the three models, respectively. Again the radiomic signature dominated the recurrence prediction,
and the radiomic model outperformed the clinical model. A plot of the area under the precision-recall
curve (AUPRC) results is also presented in the Supplementary Figure S1 to compare the three models,
with mean AUPRCs of 0.51, 0.67 and 0.69, respectively.

Table 2. Radiomic features selected for the recurrence prediction model and their corresponding
univariate FDR-adjusted p values.

Feature FDR-Adjusted p Value
wavelet HLH_glszm_SmallAreaEmphasis 0.004
wavelet_HLL _firstorder_Kurtosis 0.050
wavelet HHH_gldm_DependenceNonUniformityNormalized 0.098
wavelet HHL_gldm_SmallDependenceHighGrayLevelEmphasis 0.029
wavelet_HHH_firstorder_Skewness 0.166
wavelet_LLL_glcm_Correlation 0.152
wavelet HHL_glrlm_ShortRunHighGrayLevelEmphasis 0.028
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Figure 5. Area under the receiver operating characteristic curve of the recurrence prediction using the
clinical model, the radiomic model, and the combined model.

3. Discussion

In this study, we extracted and analyzed radiomic data from the CT simulation scans of 74 borderline
resectable and locally advanced pancreatic cancer patients to develop better outcome prediction models.
All images were acquired on a single scanner with the same acquisition protocol including acquisition
technical parameters and the contrast injection protocol. This aspect of imaging data homogeneity
helped reduce the radiomics data uncertainty.
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For pancreatic cancer, contrast-enhanced CT is the most important diagnostic and monitoring
imaging modality, routinely used in the entire patient management course for workup and follow-up.
These available images provide an environment ideal for machine learning and data-based science.
Radiomic data harvested from the imaging promises to provide valuable patient- and tumor-specific
heterogeneity information, which can better inform longitudinal changes in tumor features and behavior.
Radiomics thus holds the potential to be a robust source of information used for evidence-based clinical
decision making.

We used radiomics to identify signatures that are superior to clinical features in predicting overall
survival and local-regional recurrence.

A recent retrospective case-control study also used radiomic data from CT scans to assess
pancreatic cancer [10]. The study identified patients with pancreatic ductal adenocarcinoma and
compared the radiomic features of their pancreases to those of healthy renal donors. The researchers
extracted 478 radiomic features, forty of which they used to differentiate the healthy and cancerous
pancreases. Using radiomic features alone, the researchers were able to correctly identify all
60 cases of adenocarcinoma, and only mislabeled one healthy pancreas as cancerous. This study,
like ours, shows the ability of radiomics alone to provide key information about pancreatic tissue.
However, while the analysis demonstrated the usefulness of radiomics in the diagnosis of pancreatic
cancer, it did not delve into its ability to predict prognosis.

A later study published in 2019 also used radiomics to analyze pancreatic adenocarcinoma
tumors [8]. This study focused on prognosis prediction. Researchers identified a specific combined
clinical-radiomic signature that correlated with overall survival and local control of pancreatic carcinoma
after treatment with SBRT (p = 0.05 and 0.004, respectively). Like our study, this study illustrated
how specific radiomic features may relate to prognosis. However, this study did not address whether
the model performance was driven by the clinical or the radiomic factors included in the models.
In addition, only a small panel of radiomic features, 41 texture features, were investigated in this study,
and the study applied a random data split into training and validation datasets without performing
cross-validation or resampling to assess the possible overfitting uncertainty of the results.

A 2018 study analyzed the ability of both radiomic and clinical data to predict overall survival [9].
They found that the presence of lymph node metastasis was an independent factor associated with
disease free survival (hazard ratio = 1.957 to 2.181, depending on the filter applied). They also found
that various radiomic features, such as contrast, independently correlated with disease free survival
(HR = 0.4665). While the study demonstrated the capability of correlating both clinical features and
individual radiomic features with survival, it did not compare the two. This is a notable difference
from our study, which found that the combined radiomic and clinical data could better predict survival
than the clinical data alone, and the superior performance was primarily due to the contribution of the
radiomic signature.

While radiomics has already had a variety of applications in many different cancers, and been
integrated into routine clinical practice as computer-aided diagnostic tools for some, its usefulness in
pancreatic cancer remains less explored but desperately needed [11]. As an extremely lethal cancer
with the highest mortality rate of all major cancers in the US [12], pancreatic cancer is a critical global
health care problem. Any potential benefit radiomics can provide beyond the current clinical systems
will be meaningful, no matter in the realms of early detection, diagnosis, or treatment decision making.
For the latter, TNM staging is currently at the core. However, it relies heavily on gross anatomy and
pathology, making it a less detailed and more invasive method of evaluation. In contrast, radiomics is
noninvasive and can reveal details of tumor heterogeneity, thus providing more easily accessible and
detailed information that can be longitudinally tracked for superior prediction of treatment outcome.
Our study shows a proof-of-concept in which radiomics exceeds the abilities of its more traditional
counterparts in the understanding and prediction of tumor behavior to better inform and treat patients
with this deadly disease.
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Another application of radiomics not explored by our study is the use of delta-radiomics to assess
treatment response [13]. By comparing the differences in patients’ longitudinal radiomic data as they
progress through treatment, researchers were able to assess treatment response earlier and more reliably
than current methods of assessment, such as trending CA-19-9, in pancreatic cancer [14]. A recent
study performed by Nardone et al. further suggests that the use of radiomics in tracking treatment
response is better accomplished by the analysis of delta-radiomics than of a single radiomic dataset [15].
Thus, the use of delta-radiomics creates a unique potential for physicians to adapt treatment plans to
patients’ treatment response earlier and more accurately than currently possible. Because CT imaging is
routinely used in pancreatic cancer for daily setup during SBRT treatment courses and for longitudinal
follow-up, it will be an interesting future investigation to further extend our findings to evaluate the
additional benefit of delta-radiomics.

The findings of our study are not without limitations. The study was a single institution study with
a relatively small patient number. Due to this limited patient population, we were unable to correlate our
results with other patient factors, such as distant failure, time to recurrence, and response to various other
treatment regimens. The patients were not all treated with a homogenous radiation dose, which may
not have been fully addressed in our study. Also, though the segmentation uncertainty likely plays
an important role in radiomic modeling, our study was not designed to investigate or mitigate such
uncertainties, such as using a novel double manual contouring method described in Nardone et al.’s
work [16]. On the other hand, efforts were made in this study to reduce the uncertainty by post-editing
the clinical tumor contours (GTVs) and excluding the uncertain areas as described in the methods.

The results of our study show promise for the future of radiomics and its ability to provide new,
superior information for evidence-based clinical decision making in pancreatic cancer. While these
results are encouraging, it should be noted that they provide only a preliminary investigation and
require further external validation. In this work, we attempted various ways to maximize the use of the
limited data, such as performing extensive resampling in feature selection and cross-validation steps,
to mitigate potential overfitting and enhance the robustness of our results. On the other hand, part of
our study design still allowed potential for information leak due to the lack of an independent testing
dataset. Specifically, although the holdout set was unseen during the model fitting process, the holdout
data was included in the feature selection steps of the pipeline. Also the data normalization was
performed on the whole dataset, permitting another potential source of information leak. Limitations
withstanding, our proof-of-concept study illustrated the promise of improving pancreatic cancer
prognosis prediction via the synergy of radiomics and clinical models. The results should be validated
via the expansion of the dataset, preferably via a multi-institutional study. Further analysis should
include studies on how radiomic features can predict control patterns and patient resectability, as well
as how radiomic patterns can change longitudinally with various treatment regimens.

4. Materials and Methods

4.1. Patient Selection and Treatment Information

Patient demographic, treatment, and outcome data were collected from electronic medical records
of patients with pancreatic adenocarcinoma between 2007 and 2016. A total of 74 patients were
analyzed in the study. Data were collected for all patients who underwent SBRT at a single academic
medical center. Information gathered included patient’s date of birth, date of diagnosis, gender, tumor
location, TNM stage at diagnosis, dates of radiation delivery, and any systemic therapy delivered
concurrently with the respective radiation treatments. The contrast-enhanced CT images used for
SBRT treatment simulation were also collected for radiomic data extraction. All data collection was
approved by the IRB of our institution (Protocols: 728-16-EP and 127-18-EP).

All patients were treated with neoadjuvant chemotherapy and were without evidence of disease
progression prior to SBRT. For SBRT, all patients received 25-40 Gy in five fractions with fiducial
markers to localize and track the tumor. Radiation was primarily delivered to the intact pancreas
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tumors alone with a singular exception consisting of a patient who had a Whipple procedure with
a focally identifiable positive margin which was subsequently treated with SBRT. All patients also
underwent further chemotherapy following SBRT completion. Chemotherapy regimens were at the
discretion of the treating medical oncologist. As most patients were treated by community medical
oncologists and were referred to our institution for radiation oncology and surgical evaluation only,
details regarding chemotherapy timing and use of specific chemotherapy regimens were often not
available to our institution.

4.2. Assessment of Patient Outcomes

Following completion of SBRT, patient electronic medical records were assessed including both
clinical notes and results from follow-up imaging until the date patients were either lost to follow-up
or succumbed to their disease.

Overall survival was calculated from time of the SBRT simulation CT scan to date of death. Date of
death was obtained through either documented date of death in the patient’s respective electronic
medical record or through publicly available information from obituaries. Patients who were lost to
follow-up were censored at the time of last follow-up.

To assess disease local-regional recurrence, we used radiological findings from follow-up computed
tomography (CT) scans of the abdomen and pelvis and from magnetic resonance imaging scans of
the abdomen. The scans used were performed after the delivery of radiation therapy. We defined
recurrence as persistence on two consecutive scans, per the Response Evaluation Criteria in Solid
Tumors version 1.1 [17]. The date of failure was then changed to the date of the first scan that
demonstrated evidence of failure.

4.3. Tumor Segmentation and Feature Extraction

For the SBRT simulation CT, all patients underwent a contrast-enhanced free-breathing CT scan
of the abdomen. The scans were acquired using the same protocol for all patients in 2 mm axial slice
thickness with the same Sensation Open CT simulator (Siemens, Erlangen, Germany). To improve
segmentation consistency, using the gross tumor volume of SBRT as a starting point, each tumor was
manually re-segmented using a consistent window/level setting from the contrast-enhanced CT for
this study, excluding any area of uncertainty. From each segmented tumor, 841 radiomic features were
extracted using the radiomics module on 3D Slicer 4.9 and visualized using an interactive visualization
platform [18,19]. A resampled 2 x 2 x 2 mm? voxel size and a bin width of 25 were used for feature
extraction. The features are defined in compliance with feature definitions as described by the Imaging
Biomarker Standardization Initiative (IBSI) and can be divided into original features (105 features) and
wavelet features (736 features) [20]. The original features can be subdivided into 7 classes, including 13
Shape features, 18 First Order statistical features, 23 Gray Level Co-occurrence Matrix (GLCM) features,
14 Gray Level Dependence Matrix (GLDM) features, 16 Gray Level Run Length Matrix (GLRLM)
features, 16 Gray Level Size Zone Matrix (GLSZM) features, and 5 Neighboring Gray Tone Difference
Matrix (NGTDM) features. The wavelet features included all except Shape features calculated on the
filtered images with all 8 combinations of applying either a High or a Low pass filter in each of the
three dimensions. Feature data were normalized over the whole dataset before further data analysis.

4.4. Data Analysis

A heatmap was first generated using unsupervised clustering to investigate the radiomic feature
patterns as well as their relationship with clinical parameters including N stage, T stage, gender, tumor
location (site), and the resection status. The clustering was conducted with average-linkage based on
the Euclidean distance for both features and patients. The associations between patient clusters and
the clinical parameters were tested using a x? test of independence for each parameter. Subsequently,
radiomic features were used to predict the two clinical endpoints, overall survival (calculated from the
date of the SBRT simulation CT) and local-regional recurrence. For both endpoints, the basic workflow
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of the radiomic analysis consists of feature selection steps and modeling/testing steps depicted in
Figure 6. The overall survival prediction was evaluated using the Harrell concordance index (CI),
and the recurrence prediction was evaluated using the AUC and AUPRC [21,22]. For radiomic feature
selection, a 3-step process was performed including a univariate analysis to select the relevant features,
a recursive correlation pruning step to remove redundant features, and a sequential floating forward
method (SFFS) to determine the best feature combination. All data analysis, described with more
details in the following sub-sections, was performed using R (version 3.3.2) [23].

All
radiomic
fea

A 4 Feature
Univariate survival model selection on
v 1000-round 2/3
Recursive correlation pruning subsampling

v

Sequential floating forward method (SFFS)

Y Gradient boost machine
Model optimization model fitting with 100-
and training round 3-fold CV inner
¢ loop for tuning and
- 500-round 3-fold CV
Model testing outer loop for testing

Figure 6. Radiomic analysis workflow.
4.4.1. Overall Survival Prediction

For overall survival, the univariate analysis applied the Cox proportional hazard model. The false
discovery rate (FDR)-adjusted p-value from the univariate analysis was used for the first step of
feature selection followed by recursive correlation pruning and SFFS. A 1000 times data resampling
was applied in the feature selection process, each time using randomly resampled 2/3 of the data.
The prediction model used was an ensemble model of Cox proportional hazard models trained by a
gradient boosting machine algorithm in order to optimize the prediction performance measured by CL
The performance of the model was evaluated by nested resampling with an outer loop of 500 times
3-fold cross-validations to evaluate the effect of random sampling on the model performance and an
inner loop of 100 times 3-fold cross-validations to optimize the model hyperparameters. The 1500
(3 x 500) CI values calculated from the outer loop cross-validation test datasets were used to describe
the performance of the prediction model. A workflow schematic is presented in Supplementary
Figure S2 for the nested resampling.

Three models were created for the survival prediction. The clinical model used clinical features
only (gender, T stage, N stage, site, and resection). The radiomic model used radiomic features only,
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following the feature selection and modeling process described above. The combined model combined
all five clinical features with the selected radiomic features. The performance of the three models were
compared using the mean value and the dispersion of the 1500 CI values.

4.4.2. Local-Regional Recurrence Prediction

To select features for recurrence prediction, 2/3 of the total samples were used without replacement.
Except using the ANOVA analysis instead of the Cox hazardous model in the univariate step, the rest
of the feature selection steps were the same as in the overall survival prediction analysis. A 1000 times
resampling was applied in the SFFS step to mitigate overfitting.

The recurrence prediction model also used the gradient boosting machine model and applied
a nested resampling similar to described above for the overall survival prediction. For evaluation,
the 1500 AUC values from the outer cross-validation loops were used. Similar to described above,
three models were compared with the AUC results: the clinical model, the radiomic model, and the
combined model.

5. Conclusions

Radiomic data can be used to better understand tumor behavior and create improved prediction
models. In this study, we compared radiomics-based prediction models with traditional clinical
prediction models to assess their ability in predicting pancreatic cancer outcomes. We identified specific
radiomic signatures that were superior to clinical features in prognosis prediction. These results
encourage further research on how radiomic data can be used to enhance our understanding of other
aspects of tumor behavior and better inform treatment.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/4/1051/s1,
Figure S1: Area under the precision-recall curve (AUPRC) of clinical, radiomic, and combined clinical + radiomic
features; Figure S2: Data resampling and cross-validation in the developed radiomic model workflow.

Author Contributions: Conceptualization, M.B. and D.Z.; methodology, D.Z., M.B., C.Z., Q.D. and C.L,; software,
Q.D. and C.Z;; validation, D.Z., M.B. and C.Z.; formal analysis, Q.D., C.Z., M.B. and D.Z; investigation, D.Z., M.B.,
E.P, M.H. and C.L.; data curation, A K., ].M., K.B.,, G.R., D.Z. and M.B.; writing—original draft preparation, E.P,,
Q.D., C.Z,D.Z. and M.B.; writing—review and editing, All; supervision, M.B. and D.Z.; funding acquisition, M.H.
and D.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded in part by the National Institutes of Health (P50127297).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. American Cancer Society. Survival Rates for Pancreatic Cancer. Available online: https://www.cancer.org/
content/cancer/en/cancer/pancreatic-cancer/detection-diagnosis-staging/survival-rates.html (accessed on
11 May 2019).

2. Van Tienhoven, G.; Versteijne, E.; Suker, M.; Groothuis, K.B.; Busch, O.R.; Bonsing, B.A.; de Hingh, L.H.;
Festen, S.; Patijn, G.A.; de Vos-Geelen, |.; et al. Preoperative chemoradiotherapy versus immediate surgery
for resectable and borderline resectable pancreatic cancer (PREOPANC-1): A randomized, controlled,
multicenter phase III trial (abstract). J. Clin. Oncol. 2018, 36. [CrossRef]

3.  Kim, SK.; Wu, C.-C.; Horowitz, D.P. Stereotactic body radiotherapy for the pancreas: A critical review for
the medical oncologist. |. Gastrointest. Oncol. 2016, 7, 479-486. [CrossRef] [PubMed]

4. Zhong, J.; Patel, K.; Switchenko, J.; Cassidy, R.; Hall, W.A.; Gillespie, T.; Patel, PR.; Kooby, D.; Landry, J.
Outcomes for patients with locally advanced pancreatic adenocarcinoma treated with stereotactic body
radiation therapy versus conventionally fractionated radiation. Cancer 2017, 123, 3486-3493. [CrossRef]

5. Aerts, H.J.; Velazquez, ER,; Leijenaar, R.T.; Parmar, C.; Grossmann, P; Carvalho, S.; Bussink, J;
Monshouwer, R.; Haibe-Kains, B.; Rietveld, D.; et al. Decoding tumour phenotype by noninvasive
imaging using a quantitative radiomics approach. Nat. Commun. 2014, 5, 4006. [CrossRef]

6.  Gillies, R.; Kinahan, P,; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology
2016, 278, 563-577. [CrossRef]


http://www.mdpi.com/2072-6694/12/4/1051/s1
https://www.cancer.org/content/cancer/en/cancer/pancreatic-cancer/detection-diagnosis-staging/survival-rates.html
https://www.cancer.org/content/cancer/en/cancer/pancreatic-cancer/detection-diagnosis-staging/survival-rates.html
http://dx.doi.org/10.1200/JCO.2018.36.18_suppl.LBA4002
http://dx.doi.org/10.21037/jgo.2015.10.01
http://www.ncbi.nlm.nih.gov/pubmed/27284482
http://dx.doi.org/10.1002/cncr.30706
http://dx.doi.org/10.1038/ncomms5006
http://dx.doi.org/10.1148/radiol.2015151169

Cancers 2020, 12, 1051 12 of 12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Lambin, P.; Leijenaar, R.T.; Deist, T.M.; Peerlings, J.; De Jong, E.E.; Van Timmeren, J.E.; Sanduleanu, S.;
LaRue, R.; Even, AJ.; Jochems, A.; et al. Radiomics: The bridge between medical imaging and personalized
medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749-762. [CrossRef] [PubMed]

Cozzi, L.; Comito, T.; Fogliata, A.; Franzese, C.; Franceschini, D.; Bonifacio, C.; Tozzi, A.; Di Brina, L.;
Clerici, E.; Tomatis, S.; et al. Computed tomography based radiomic signature as predictive of survival and
local control after stereotactic body radiation therapy in pancreatic carcinoma. PLoS ONE 2019, 14, e0210758.
[CrossRef] [PubMed]

Yun, G.; Kim, Y.H; Lee, YJ.; Kim, B.; Hwang, ].-H.; Choi, D.]J. Tumor heterogeneity of pancreas head cancer
assessed by CT texture analysis: Association with survival outcomes after curative resection. Sci. Rep. 2018,
8,7226. [CrossRef] [PubMed]

Chu, L.C,; Park, S.; Kawamoto, S.; Fouladi, D.F,; Shayesteh, S.; Zinreich, E.S.; Graves, J.S.; Horton, K.M.;
Hruban, R.H.; Yuille, A.L,; et al. Utility of CT Radiomics Features in Differentiation of Pancreatic Ductal
Adenocarcinoma from Normal Pancreatic Tissue. Am. . Roentgenol. 2019, 213, 349-357. [CrossRef] [PubMed]
Liang, M.; Tang, W.; Xu, D.M,; Jirapatnakul, A.; Reeves, A.P.; Henschke, C.I.; Yankelevitz, D.F. Low-Dose
CT Screening for Lung Cancer: Computer-aided Detection of Missed Lung Cancers. Radiology 2016, 281,
279-288. [CrossRef] [PubMed]

Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer |. Clin. 2019, 69, 7-34. [CrossRef]
[PubMed]

Fave, X.; Zhang, L.; Yang, J.; Mackin, D.; Balter, P.; Gomez, D.; Followill, D.; Jones, A.K.; Stingo, EC.;
Liao, Z.; et al. Delta-radiomics features for the prediction of patient outcomes in non-small cell lung cancer.
Sci. Rep. 2017, 7, 588. [CrossRef] [PubMed]

Nasief, H.; Hall, W.; Zheng, C.; Tsai, S.; Wang, L.; Erickson, B.; Li, X.A. Improving Treatment Response
Prediction for Chemoradiation Therapy of Pancreatic Cancer Using a Combination of Delta-Radiomics and
the Clinical Biomarker CA19-9. Front. Oncol. 2020, 9, 1464. [CrossRef] [PubMed]

Nardone, V.; Reginelli, A.; Guida, C.; Belfiore, M.P,; Biondi, M.; Mormile, M.; Buonamici, F.B.; Di Giorgio, E.;
Spadafora, M.; Tini, P,; et al. Delta-radiomics increases multicentre reproducibility: A phantom study. Med.
Oncol. 2020, 37, 38. [CrossRef] [PubMed]

Nardone, V.; Tini, P; Pastina, P.; Botta, C.; Reginelli, A.; Carbone, S.F,; Giannicola, R.; Calabrese, G.; Tebala, C.;
Guida, C.; et al. Radiomics predicts survival of patients with advanced non-small cell lung cancer undergoing
PD-1 blockade using Nivolumab. Oncol. Lett. 2019, 19, 1559-1566. [CrossRef] [PubMed]

Baine, M.J; Sleightholm, R.; Lin, C. Incidence and Patterns of Locoregional Failure after Stereotactic Body
Radiation Therapy for Pancreatic Adenocarcinoma. Pr. Radiat. Oncol. 2018, 9, e29-e37. [CrossRef] [PubMed]
Van Griethuysen, J.J.; Fedorov, A.Y.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G;
Fillion-Robin, J.-C.; Pieper, S.; Aerts, H.].W.L. Computational Radiomics System to Decode the Radiographic
Phenotype. Cancer Res. 2017, 77, e104-e107. [CrossRef] [PubMed]

Yu, L.; Jiang, H.; Yu, H.; Zhang, C.; McAllister, J.; Zheng, D. iVAR: Interactive visual analytics of radiomics
features from large-scale medical images. In Proceedings of the 2017 IEEE International Conference on Big
Data (Big Data), Boston, MA, USA, 11-14 December 2017; pp. 3916-3923.

Zwanenburg, A.; Abdalah, M.; Apte, A.; Ashrafinia, S.; Beukinga, J.; Bogowicz, M.; Dinh, C.; Gotz, M.;
Hatt, M.; Leijenaar, R.; et al. PO-0981: Results from the Image Biomarker Standardisation Initiative. Radiother.
Oncol. 2018, 127, S543-S544. [CrossRef]

Harrell, EE., Jr.; Califf, R M.; Pryor, D.B.; Lee, K.L.; Rosati, R.A. Evaluating the yield of medical tests. JAMA
1982, 247, 2543-2546. [CrossRef] [PubMed]

Bradley, A. The use of the area under the ROC curve in the evaluation of machine learning algorithms.
Pattern Recognit. 1997, 30, 1145-1159. [CrossRef]

Anonymous. The R Project for Statistical Computing. Available online: http://www.r-project.org/ (accessed on
13 February 2012).

@ © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1038/nrclinonc.2017.141
http://www.ncbi.nlm.nih.gov/pubmed/28975929
http://dx.doi.org/10.1371/journal.pone.0210758
http://www.ncbi.nlm.nih.gov/pubmed/30657785
http://dx.doi.org/10.1038/s41598-018-25627-x
http://www.ncbi.nlm.nih.gov/pubmed/29740111
http://dx.doi.org/10.2214/AJR.18.20901
http://www.ncbi.nlm.nih.gov/pubmed/31012758
http://dx.doi.org/10.1148/radiol.2016150063
http://www.ncbi.nlm.nih.gov/pubmed/27019363
http://dx.doi.org/10.3322/caac.21551
http://www.ncbi.nlm.nih.gov/pubmed/30620402
http://dx.doi.org/10.1038/s41598-017-00665-z
http://www.ncbi.nlm.nih.gov/pubmed/28373718
http://dx.doi.org/10.3389/fonc.2019.01464
http://www.ncbi.nlm.nih.gov/pubmed/31970088
http://dx.doi.org/10.1007/s12032-020-01359-9
http://www.ncbi.nlm.nih.gov/pubmed/32236847
http://dx.doi.org/10.3892/ol.2019.11220
http://www.ncbi.nlm.nih.gov/pubmed/31966081
http://dx.doi.org/10.1016/j.prro.2018.06.006
http://www.ncbi.nlm.nih.gov/pubmed/30612720
http://dx.doi.org/10.1158/0008-5472.CAN-17-0339
http://www.ncbi.nlm.nih.gov/pubmed/29092951
http://dx.doi.org/10.1016/S0167-8140(18)31291-X
http://dx.doi.org/10.1001/jama.1982.03320430047030
http://www.ncbi.nlm.nih.gov/pubmed/7069920
http://dx.doi.org/10.1016/S0031-3203(96)00142-2
http://www.r-project.org/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Discussion 
	Materials and Methods 
	Patient Selection and Treatment Information 
	Assessment of Patient Outcomes 
	Tumor Segmentation and Feature Extraction 
	Data Analysis 
	Overall Survival Prediction 
	Local-Regional Recurrence Prediction 


	Conclusions 
	References

