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Abstract: Identifying MRI-based radiomics features capable to assess response to systemic treatment
in multiple myeloma (MM) patients. Retrospective analysis of whole-body MR-image data in 67
consecutive stage III MM patients (40 men; mean age, 60.4 years). Bone marrow involvement
was evaluated using a standardized MR-imaging protocol consisting of T1w-, short-tau inversion
recovery- (STIR-) and diffusion-weighted-imaging (DWI) sequences. Ninety-two radiomics features
were evaluated, both in focally and diffusely involved bone marrow. Volumes of interest (VOI)
were used. Response to treatment was classified according to International Myeloma Working
Group (IMWG) criteria in complete response (CR), very-good and/or partial response (VGPR + PR),
and non-response (stable disease (SD) and progressive disease (PD)). According to the IMWG-criteria,
response categories were CR (n = 35), VGPR + PR (n = 19), and non-responders (n = 13). On apparent
diffusion coefficient (ADC)-maps, gray-level small size matrix small area emphasis (Gray Level Size
Zone (GLSZM) small area emphasis (SAE)) significantly correlated with CR (p < 0.001), whereas
GLSZM non-uniformity normalized (NUN) significantly (p < 0.008) with VGPR/PR in focal medullary
lesions (FL), whereas in diffuse involvement, 1st order root mean squared significantly (p < 0.001)
correlated with CR, whereas for VGPR/PR Log (gray-level run-length matrix (GLRLM) Short Run
High Gray Level Emphasis) proved significant (p < 0.003). On T1w, GLRLM NUN significantly
(p < 0.002) correlated with CR in FL, whereas gray-level co-occurrence matric (GLCM) informational
measure of correlation (Imc1) significantly (p < 0.04) correlated with VGPR/PR. For diffuse myeloma
involvement, neighboring gray-tone difference matrix (NGTDM) contrast and 1st order skewness
were significantly associated with CR and VGPR/PR (p < 0.001 for both). On STIR-images, CR
correlated with gray-level co-occurrence matrix (GLCM) Informational Measure of Correlation (IMC)
1 (p < 0.001) in FL and 1st order mean absolute deviation in diffusely involved bone marrow (p < 0.001).
VGPR/PR correlated at best in FL with GSZLM size zone NUN (p < 0.019) and in all other involved
medullary areas with GLSZM large area low gray level emphasis (p < 0.001). GLSZM large area
low gray level emphasis also significantly correlated with the degree of bone marrow infiltration
assessed histologically (p = 0.006). GLCM IMC 1 proved significant throughout T1w/STIR sequences,
whereas GLSZM NUN in STIR and ADC. MRI-based texture features proved significant to assess
clinical and hematological response (CR, VPGR, and PR) in multiple myeloma patients undergoing
systemic treatment.
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1. Introduction

Multiple myeloma is a malignant hematologic disease of the mature B-cells with a still unfavorable
prognosis despite significant advances in treatment [1,2]. It primarily involves the bone marrow where
an increasing tumor burden with tumor-associated osteoclast activation and osteoblasts inhibition
results in bone destruction called “myeloma bone disease” putting the patients at risk for fracture [3,4].
Bone marrow involvement takes different appearances ranging from diffuse to focal infiltration or a
blend of both [5]. The degree of myeloma cell infiltration varies considerably particularly in the diffuse
form impacting signal intensity on various MRI sequences [6]. By comparison to other malignant
diseases, multiple myeloma can be generally well monitored by quantifying paraproteins (M-protein)
in serum and urine. However, some myelomas are non-secretory or hypo-secretory and are therefore
difficult to manage both in the primary diagnosis, as well as during therapy [7]. Imaging of multiple
myeloma was initially applied for classification according to the Durie & Salmon criteria published in
1975 focusing on bone destruction as a surrogate for the myeloma cell burden in addition to diagnosing
complications, such as fractures or detecting potential causes for neurologic symptoms [8,9]. With the
advent of whole-body MRI, imaging concentrated increasingly on the assessment of medullary and
extra-medullary involvement [10]. Whereas, primarily detection and surveillance of focal-nodular
medullary lesions seems to be more easily done, in case of diffuse bone marrow involvement,
signal intensity changes vary considerably and overlap with those of normal bone marrow patient
thus illustrating inter-individual variability, which is primarily influenced by the patient’s age [11].
Both qualitative MRI-monitoring using ancillary sequences like T1-weighted (T1w) and T2w and
quantitative monitoring using functional image data derived from diffusion-weighted-imaging (DWI)
have been therefore, recommended [12]. However, their interpretation is challenging as signal intensity
changes are subject to temporal variability and are dependent also on the amount of red and yellow
marrow and treatment-related shifts between these two components [11]. An alternative to the classical
MRI approach for monitoring myeloma response to treatment could be represented by texture analysis
applied throughout all used sequences. This technique has gained increased attention in the last
years being used as a complementary quantitative tool for tumor characterization and evaluation of
response [13–15].

The intention of this study was to assess the potential role of texture analysis applied on MRI-image
data for response evaluation by comparison with serologic (M-protein) data.

2. Material and Methods

2.1. Patient Characteristics

This was a retrospective study which was approved by our institutional review board and
registered under the number 302/2019BO2. Patients were identified by a patient chart search at our
institution between January 2014 and December 2018. The following patients were eligible: adults with
histologically and hematologically proven stage III multiple myeloma (according to the Durie & Salmon
criteria) requiring treatment, as well as having been staged by whole-body MRI [9]. The exclusion
criteria were patients with other malignancies or hematologic disorders; contraindications to MRI,
such as claustrophobia, implanted pacemakers and patients examined by using another MR imaging
protocol. Sixty-seven consecutive patients (40 men and 27 women; median age, 60.4 years; age range,
42.3–78.6 years) were evaluated which meet the inclusion criteria of baseline whole-body MRI and
standard hematologic monitoring in a 3 months cycle. No patient received radiation therapy at or
adjacent to the skeletal site that was monitored by MRI. Patients were diagnosed with IgG κ (n = 31),
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IgA κ (n = 8), IgG λ (n = 10), IgA λ (n = 11), light-chain myeloma (n = 7), and non-secretory myeloma
(n = 0).

For primary therapy, 19 patients received Bortezomib/Cyclophosphamide/Dexamethasone,
25 patients Bortezomib/Leneladomide/Dexamethasone, 9 patients Bortezomib/Lineladomide/

Dexamethasone + Elotuzumab, 8 patients Bortezomib/Doxorubicin/Dexamethasone, and 6 patients
Isatuximab/Lenalidomide/Carfilzomib/Dexamethasone.

Forty-nine of 67 patients underwent autologous stem cell transplantation.
Mean follow-up interval was 11.6 months (range, 3.4–25.1 months).

2.2. Whole-Body DWI Protocol Design

Examinations have been performed on a 1.5 T MR scanner (Magnetom Avanto, Siemens
Healthineers) both at baseline (before treatment onset) and after treatment using a minimum of
three sequences (T1w-, STIR-, and DWI) (details are available in Supplemental Materials).

2.3. Image Analysis

Focal lesions, as well as diffuse myeloma manifestations, in the skeleton were segmented by
volumes of interest (VOI) (Figures 1 and 2). A standardized spherical VOI of 3.8 mL was placed in
the wing of ilium to correlate bone marrow biopsy and thus response criteria to diffuse bone marrow
texture analysis.
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Figure 1. Exemplary case in a 66-year-old female myeloma patient prior to treatment, stage IIIa
(according to the Durie & Salmon criteria). The focal myeloma lesion in the left greater trochanter is
segmented on T1w and STIR sequence, as well as on apparent diffusion coefficient (ADC) maps.
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Figure 2. Sixty-six-year-old female patient from Figure 1 demonstrating complete response to systemic
therapy with bortezomib, lenalidomide, and dexamethasone according to the International Myeloma
Working Group (IMWG). However, the focal lesion in the left greater trochanter is still showing a
heterogenous signaling pattern in all three sequences.
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Texture feature analysis was performed using the pyradiomics library. Only original order features
were included, filtered features (i.e., wavelets, square root) were not included due to the small sample
size. Altogether, 92 features were extracted and used for texture analysis (refer to Table S1).

2.4. Standard of Reference

Response categories were defined according to the International Myeloma Working Group (IMWG)
based on the M-protein level in serum and urine indicating paraproteinemia and paraproteinuria.
Responders were classified into complete response (35/54) and near complete response and very good
partial response (13/54) + partial response (6/54). Non-responders were composed of stable (3/13) and
progressive disease (10/13). Therapy response was not evenly distributed with 54 responders and
13 non-responders.

In a subgroup of patients (33/67) and at 55/107 time points, radiomics parameters were also
correlated with the degree of myeloma cell infiltration of the bone marrow.

2.5. Laboratory Data

For each patient, the levels of serum and urine M-protein were determined at the time of diagnosis
and at follow-up during and after anti-myeloma treatment. The latter was used for assessment of
disease response including immunofixation for confirmation of complete tumor response. At our
institution, the normal values for hematologic parameters determined by the laboratory are IgG,
700–1600 mg/dL; IgA, 70–400 mg/dL; IgM, 40–230 mg/dL; serum light chains λ, 8.1–33.0 mg/L; and light
chains κ, 3.6–15.9.

2.6. Statistical Analysis

Continuous variables are presented as median and 95% CI, categorical variables are given by
number and percentages. Binary logistic regression analysis was used in all cases (n = 67) to identify
variables significantly associated with complete response (CR), VGPR (very good partial response),
or partial response (PR), defined according to the IMWG guidelines. Prior regression analysis log
transformation was performed in all structural parameters. In the case of negative values, the following
adjustment equation was used:

logadj.(y.) = log(y) − log(ymin) + 1

In order to perform a trend analysis, baseline variables were established using the first MRI
measurement in each subgroup. All significant variables were analyzed in a second step using
Wilcoxon matched-pairs signed rank test. Finally, the predictive values of all identified parameters
were evaluated by examining the area under the receiver-operator characteristic (ROC) curve using a
confidence interval of 95%. All tests were considered statistically significant when p < 0.05. Statistical
analyses were computed using SigmaStat, version 21 (SPSS).

3. Results

3.1. Identification of MRI-Features (ADC) Associated with Hematological Outcomes (CR, PR, or VGPR)

In order to identify MRI textural features significantly correlated with complete response (CR)
and response to treatment (PR, VGPR), binary logistic regression was used for all 92 textural features.
Significant variables were analyzed then, using a Wilcoxon matched-pairs signed rank test, in a second
step. In patients achieving complete remission (CR), Log (Gray Level Size Zone Matrix (GLSZM) Small
Area Emphasis) quantified in areas of focal MM involvement correlated significantly (baseline 0.1, 95%
CI: 0–0.14 vs. CR 0.14, 95% CI: 0.09–0.21; p < 0.001). In areas with diffuse bone marrow infiltration, Log
(1st order Root Mean Squared) significantly correlated with CR (baseline 2.7, 95% CI: 2.25–3.01 vs. CR
2.51, 95% CI: 2.1–2.89; p < 0.001).
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In focal lesions of patients achieving PR or VGPR, Logadj. (GLSZM Size Zone Non Uniformity
Normalized) was found significantly elevated compared to baseline (baseline 1.1, 95% CI: 0.63–1.26 vs.
PR/VGPR 1.22, 95% CI: 1–1.55; p = 0.0089), whereas in areas of diffuse involvement, Log (GLRLM Short
RunHigh Gray Level Emphasis) was shown to significantly decrease over baseline in patients reaching
PR or VGPR during treatment (baseline 2.54, 95% CI: 1.75–3.24 vs. PR/VGPR 2.27, 95% CI: 1.33–2.64;
p = 0.003). The correlative values of all identified texture variables were evaluated by examining the
area under the receiver-operator characteristic (ROC) curve (Figure 3A–D).
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Figure 3. Box plots on the left presenting the statistically significant textural features on ADC
images both in focal (A,B) and diffuse marrow involvement (C,D) both for patients experiencing
complete response (A,C) and very good partial response/partial response(B,D). The receiver-operator
characteristic (ROC) analysis on the right illustrates the area under the curve (AUC), corresponding
p-value and confidence interval for the log of the analyzed texture feature. GLRLM = gray-level
run-length matrix.

3.2. Identification of MRI-Features (T1w) Associated with Hematological Response Categories (CR, PR,
or VGPR)

MRI textural features which were significantly associated with a complete remission (CR)
and response (PR, VGPR) on T1w-images were likewise identified using binary logistic regression
analysis. In patients achieving complete response (CR), Logadj. (GLRLM Run Length Non Uniformity
Normalized) was significantly elevated in focal lesions (baseline 0.1, 95% CI: 0.01–0.15 vs. CR 0.12, 95%
CI: 0.046–0.177; p = 0.03), whereas in areas of diffuse bone marrow infiltration, Log (Ngtdm Contrast)
was shown to be significantly associated with CR (baseline 0.43, 95% CI: 0.27–0.52 vs. CR 0.43 95%
CI: 0.28–0.7; p < 0.001).

In focal lesions, Logadj. (Glcm Imc1) was significantly elevated compared to baseline (baseline
0.1, 95% CI: 0.01–0.15 vs. PR/VGPR 0.122, 95% CI: 0.05–0.177; p = 0.048) in patients achieving PR or
VGPR Whereas in areas of diffuse bone marrow involvement, Log (1st order Skewness) was shown to
significantly decrease in patients responding to treatment (baseline 0.46, 95% CI: 0.28–0.67 vs. PR/VGPR
0.41, 95% CI: 0.13–0.53; p < 0.001). The predictive values of all identified texture variables were
evaluated by examining the area under the receiver-operator characteristic (ROC) curve (Figure 4A–D).
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Figure 4. Box plots presenting the statistically significant textural features on T1-weighted images both
in focal (A,B) and diffuse marrow involvement (C,D) both for patients experiencing complete response
(A,C) and very good partial response/partial response (B,D). The ROC analysis on the right illustrates
the AUC, corresponding p-value and confidence interval for the log of the analyzed texture feature.

3.3. Identification of MRI-Features (T2w) Associated with Clinical Outcomes (CR, PR, or VGPR)

MRI textural features which were significantly associated with complete response (CR) and response
(PR, VGPR) on T2w-images are shown in Figure 5. In patients with CR, Logadj. (Glcm Imc1) was
significantly elevated in focal lesions (baseline 0.09, 95% CI: 0.04–0.16 vs. CR 0.13, 95% CI: 0.08–0.198;
p < 0.001) compared to baseline, whereas in areas with diffuse bone marrow involvement, Log (1st order
Mean Absolute Deviation) was shown to be significantly associated with CR (baseline 1.1, 95% CI:
0.41–1.44 vs. CR 0.66 95% CI: 0.24–1.18; p < 0.001). In patients achieving PR or VGPR Logadj. (GLSZM
Size Zone Non Uniformity Normalized) proved significantly elevated compared to baseline (baseline
0.12, 95% CI: 0.001–0.25 vs. PR/VGPR 0.17, 95% CI: 0.08–0.34; p = 0.014) in focal lesions, whereas in areas
with diffuse bone marrow involvement, Log (GLSZM Large Area Low Gray Level Emphasis) showed a
significantly decrease in patients reaching PR or VGPR (baseline 4.9, 95% CI: 3.67–6.26 vs. PR/VGPR 5.75,
95% CI: 4.55–7.1; p < 0.001) after treatment. The ROC analyses are given in Figure 4A–D.
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Figure 5. Box plots presenting the statistically significant textural features on STIR images both in focal
(A,B) and diffuse marrow involvement (C,D) both for patients experiencing complete response (A,C)
and very good partial response/partial response (B,C). The ROC analysis on the right illustrates the
AUC, corresponding p-value and confidence interval for the log of the analyzed texture feature.
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3.4. Correlation of MRI-Features with Biopsy Confirmed Degree of Myeloma Cell Infiltration

GLSZM large area low gray level emphasis in T1w sequences measured in the wing of ilium
showed a significant correlation (p = 0.006; r = 0.19) with the degree of bone marrow infiltration by
myeloma cells confirmed by bone marrow biopsy (Figure 6). Bone marrow infiltration confirmed by
biopsy showed a mean infiltration of 32.1% (range, 1–100%; median 25%).
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Figure 6. Correlation between the course of GLSZM large area low gray level emphasis and M-protein
with the degree of bone marrow infiltration GLSZM large area low gray level emphasis in T1w sequences
measured in the wing of ilium showed significant (p = 0.006; r = 0.19) correlation with the degree (%) of
bone marrow infiltration by myeloma cells confirmed by bone marrow biopsy.

4. Discussion

Our results indicate that ten radiomics features quantified on T1w-, ADC- and STIR- images
may be associated with the depth of myeloma response to systemic therapy as classified by the
IMWG response criteria [16]. Statistically significant textural features varied throughout the applied
MR-sequences in a similar fashion as observed with the visual assessment of ancillary imaging findings
in myeloma patients. Hence, on T1w images, the gray-level run-length matrix (GLRLM) non-uniformity
normalized-NUN significantly increased in CR in focal lesions, whereas the neighboring gray-tone
difference matrix (NGTDM) contrast turned out to be significantly associated with CR in areas with
diffuse medullary involvement, where it also significantly increased over baseline. Both features reflect
lower tissue homogeneity following treatment compared to the mean values of the corresponding
baseline cohort. These results presumably reflect lower levels of myeloma cell infiltration with
interspersed yellow marrow accounting for larger ranges of gray values and less similarities of run
lengths throughout the image. In patients experiencing partial or very good partial response (exemplary
case Figures 1 and 2), the levels of gray-level co-occurrence matric (GLCM) informational measure
of correlation (Imc1) increased, whereas the 1st order skewness decreased after treatment. These
two features reflect higher levels of tissue homogeneity in different ways, presumably consistent
with higher degrees of myeloma cell infiltration before and also after treatment compared to the
baseline cohort. Again, these findings may present a plausible explanation for the limited response
in this subgroup. On ADC maps, an increase in gray-level small size matrix small area emphasis
(GLSZM SAE) was significantly associated with CR in focal lesions, whereas a decrease in 1st order
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root mean squared was found in areas of diffuse medullary involvement. Interestingly, these two
features reflect lower ADC-values and a coarser image texture at follow-up, which could also be
explained, e.g., by lower myeloma cellularity and lower tissue homogeneity due to interspersed fatty
marrow, which knowingly exhibits even lower ADC-values compared to the tumor. As a great overlap
is expected between the ADC-values in involved bone marrow and non-involved fatty marrow (both
exhibiting low water proton diffusivity), the features found significantly associated with PR/VGPR
both reflect lesser tissue homogeneity. Hence, GLSZM non-uniformity normalized (NUN) significantly
correlated with VGPR/PR in focal medullary lesions, whereas in diffuse involvement gray-level
run-length matrix (GLRLM) non-uniformity normalized (NUN) proved significant. Interestingly,
this trend changed on STIR sequences with an increase in gray-level co-occurrence matrix (GLCM)
Informational Measure of Correlation (IMC) 1 and a decrease of 1st order mean absolute deviation
proving significantly associated with complete response in both focal and diffuse marrow involvement.
These features indirectly express a higher degree of tissue homogeneity, which may be interpreted as a
consequence of fat saturation, which is inherent to the STIR sequence, thus minimizing the contrast
between neighboring voxels which is otherwise expected in case of intermixed fatty marrow.

Of note, GLSZM large area low gray level emphasis significantly correlated with the degree
of bone marrow infiltration assessed histologically by bone marrow biopsy (Figure 6). Exemplarily
highlighted in the treatment course of two patients (Figure 7) alternating between progression and
response, which is also reflected by our textural analysis.
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Figure 7. Longitudinal course of GLSZM large area low gray level emphasis and correlation with
M-protein based response categories to anti-myeloma treatment. VGPR = very good partial response;
PD = progressive disease; PR = partial response.

The temporal course of GLSZM large area low gray level emphasis in T1w sequences measured in
the wing of ilium is demonstrated parallel to the response categories in two exemplarily patients.

Imaging markers may provide additional prognostic value in myeloma patients undergoing
systemic treatment. By now, MRI has evolved as the favored imaging technique with respect to
visualization and characterization of bone marrow changes [17,18]. For a long time, bone marrow
MR-imaging was based on visual (qualitative) assessment of signal intensity levels on T1w- and
T2-w scans alone [19]. However, the great inter-individual signal variability impedes this approach
particularly in lower degrees of marrow infiltration. Moreover, a great overlap between normal and
abnormal bone marrow signal was reported, limiting MRI-specificity [19]. Notably, age and treatment
have considerable impact on the medullary appearance generating equivocal findings which could not
be entirely differentiated up to now [11]. Diffuse medullary involvement accounts for one of the most
challenging aspects in myeloma monitoring due to lower cell counts compared to the nodular focal
lesions [20]. Moulopoulos et al. found diffuse marrow involvement was more frequently associated
with high-risk cytogenetics and a worse prognosis [20].
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Quantification of water proton diffusivity (DWI) on corresponding ADC-maps has been praised
as an alternative to qualitative visual assessment and promising results have been published on this
topic but mainly addressing short-term monitoring and focal lesions [21,22]. However, when DWI is
applied, great overlap in ADC-values were found both in baseline setting in lower degrees of medullary
involvement, as well as while undergoing therapy, where with receding tumor infiltration ADC values
continued to strongly decrease due to emerging fatty marrow [23].

A potential increase in accuracy of MR image interpretation could be facilitated by radiomics
features which may quantify structural characteristics of bone marrow changes. Giles et al.
demonstrated that whole-body DWI was reliable for treatment response evaluation in myeloma
patients [24]. The histogram metrics of 1st order features quantified in this study showed significant
differences identifying CR in diffuse involvement in myeloma patients. Other reports proposed
prognostic factors related to changes induced by systemic treatment on ADC-values early or at
mid-term [22,23]. Histogram-based prediction of response in myeloma patients has also been
applied on 18F-Fluordesoxyglucose (18F-FDG) Positron emission tomography (FDG-PET) image data
using machine learning, indicating quantitative heterogeneity may reduce the error of the predicted
progression [25].

Our study has some limitations. First, the cohort was retrospectively evaluated and composed of
heterogeneous myeloma subtypes, as well as magnitude of M-protein. Second, patients underwent
different treatment regimens which are not comparable. Third, there were only few non-responders in
our cohort evaluating prognosis based on radiomics data in this subgroup non-assessable. Fourth, due
to the small number of patients in this series and the fact that all subjects were examined on only one
scanner, technical data reproducibility should be confirmed in larger patient multi-center studies.

5. Conclusions

In conclusion, MRI-based textural features proved to correlate well with the clinical and
hematological response (CR, VPGR, and PR) in multiple myeloma undergoing systemic treatment and
may therefore be implemented as a complementary prognosis evaluation tool in assessing myeloma
patients’ prognosis. One textural feature (GLSZM large area low gray level emphasis) correlated also
with the degree of bone marrow infiltration confirmed by biopsy.
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