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Chemistry 

General Procedure for the Synthesis of Compounds 1a, 1d, 1e, 2a-c, 3a-c, and of the Intermediate 

Compounds 11 and 25-27. 

Triethylamine (2.06 mmol) and benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate 

(PyBOP) (0.49 mmol) were added to a solution of the appropriate acid (7 for 1a, 10[1] for 1d, 18 for 

1e, 10[1] or 21[1] for 2a-c, 18 or 23[1] for 3a-c, 10[1] for 11, and 10[1] or 21[1] for 25-27) (0.41 

mmol) in dry DMF (4 mL) under nitrogen atmosphere. The resulting mixture was stirred for 45 min at 

room temperature; upon activation of the acid, checked by TLC, the corresponding amine (9[1] for 1a, 

14 for 1d, 16 for 1e, 16 or 22[1] for 2a-c, 9[1] or 24[1] for 3a-c, 3-nitrobenzylamine for 11, 3- or 4-

phenylenediamine for 25-27) (0.41 mmol) was added. After 1 h, the reaction was quenched with 

distilled water (50 mL), and the precipitate was filtered and washed with distilled water providing the 

desired pure product.  

N-(3-((2-Amino-6-methylpyrimidin-4-yl)amino)phenyl)-3-((quinolin-4-ylamino)methyl)benzamide (1a). 

Mp: 153-155 °C; recrystallization solvent: acetonitrile; yield: 36%. 1H NMR (DMSO, 400 MHz) δ 2.09 

(s, 3H, CH3), 4.67 (d, 2H, J = 5.6 Hz, CH2), 5.92 (s, 1H, pyrimidine proton), 6.07 (bs, 2H, NH2), 6.40 

(d, 1H, J = 5.2 Hz, quinoline proton), 7.21 (t, 1H, J = 8.0 Hz, benzene proton), 7.32 (d, 1H, J = 8.0 Hz, 

benzene proton), 7.49-7.52 (m, 2H, benzene and quinoline protons), 7.59 (t, 2H, J = 8.4 Hz, benzene 

and quinoline protons), 7.67 (t, 1H, J = 7.2 Hz, quinoline proton), 7.79-7.86 (m, 2H, benzene protons), 

7.99 (s, 2H, benzene protons), 8.14 (bs, 1H, NHCH2), 8.33-8.35 (d, 2H, quinoline protons), 9.03 (bs, 

1H, NH), 10.15 (bs, 1H, CONH) ppm. 

N-(3-(((2-Amino-6-methylpyrimidin-4-yl)amino)methyl)phenyl)-3-(quinolin-4-ylamino)benzamide (1d). 

Mp: 260-262 °C; recrystallization solvent: methanol; yield: 18%. 1H NMR (DMSO, 400 MHz) δ 2.01 

(s, 3H, CH3), 4.47 (d, 2H, J = 5.6 Hz, CH2), 5.62-5.65 (m, 1H, pyrimidine proton), 5.82 (s, 2H, NH2), 
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7.04-7.09 (m, 2H, benzene proton), 7.19-7.21 (m, 1H, benzene proton), 7.27-7.31 (m, 1H, benzene 

proton), 7.54-7.67 (m, 3H, benzene and quinoline protons), 7.70-7.76 (m, 4H, benzene and quinoline 

protons) 7.89-7.94 (m, 2H, benzene and quinoline protons), 8.40-8.42 (m, 1H, quinoline proton), 8.51-

8.52 (bs, 1H, NH), 9.15 (bs, 1H, NH), 10.29 (bs, 1H, CONH) ppm. 

3-((2-amino-6-methylpyrimidin-4-yl)amino)-N-(3-(quinolin-4-ylamino)phenyl)benzamide (1e). Mp: 

227-229 °C; recrystallization solvent: acetonitrile/methanol; yield: 46%. 1H NMR (DMSO, 400 MHz) δ 

2.16 (s, 3H, CH3), 6.00 (s, 1H, pyrimidine proton), 6.67 (s, 2H, NH2), 6.98-7.01 (m, 1H, benzene 

proton), 7.16-7.19 (m, 1H, benzene proton), 7.46-7.47 (m, 2H, benzene and quinoline protons), 7.58-

7.67 (m, 3H, benzene and quinoline protons), 7.85-7.87 (m, 1H, benzene proton), 7.95-8.05 (m, 3H, 

benzene and quinoline protons), 8.14-8.19 (m, 1H, quinoline proton), 8.52-8.58 (m, 2H, benzene and 

quinoline protons), 9.70 (bs, 1H, NH), 9.85 (bs, 1H, NH),10.42 (bs, 1H, CONH) ppm. 

3-(Quinolin-4-ylamino)-N-(4-(quinolin-4-ylamino)phenyl)benzamide (2a). Mp: 235-237 °C; 

recrystallization solvent: acetonitrile/methanol; yield: 17%. 1H NMR (DMSO, 400 MHz) δ 6.84 (d, 1H, 

J = 5.6 Hz, benzene proton), 7.06 (d, 1H, J = 5.2 Hz, benzene proton), 7.39–7.42 (m, 2H, benzene 

protons), 7.59-7.63 (m, 4H, quinoline and benzene protons), 7.76-7.77 (m, 3H, quinoline and benzene 

protons), 7.88-7.98 (m, 5H, quinoline protons), 8.45-8.54 (m, 4H, quinoline protons), 9.52-9.58 (bs, 

2H, NH), 10.42 (bs, 1H, CONH) ppm. 

3-(Quinolin-4-ylamino)-N-(3-(quinolin-4-ylamino)phenyl)benzamide (2b). Mp: 292-295 °C; 

recrystallization solvent: methanol; yield: 24%. 1H NMR (DMSO, 400 MHz) δ 7.02-7.13 (m, 3H, 

benzene protons), 7.39 (t, 1H, J = 8.0 Hz, benzene proton), 7.55-7.59 (m, 5H, benzene and quinoline 

protons), 7.69-7.78 (m, 3H, benzene and quinoline protons), 7.88-7.99 (m, 4H, benzene and quinoline 

protons), 8.45-8.52 (m, 4H, quinoline protons), 9.02 (bs, 1H, NH), 9.15 (bs, 1H, NH), 10.35 (bs, 1H, 

CONH) ppm. 
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4-(Quinolin-4-ylamino)-N-(3-(quinolin-4-ylamino)phenyl)benzamide (2c). Mp: >300 °C; 

recrystallization solvent: methanol; yield: 22%. 1H NMR (DMSO, 400 MHz) δ 7.04 (d, 1H, J = 4.4 Hz, 

benzene proton), 7.10 (d, 1H, J = 8.0 Hz, benzene proton), 7.22 (d, 1H, J = 4.4 Hz, benzene proton), 

7.35–7.37 (m, 1H, benzene proton), 7.45-7.59 (m, 5H, benzene and quinoline protons) 7.61-7.69 (m, 

2H, benzene and quinoline protons), 7.88-7.98 (m, 3H, benzene and quinoline protons), 8.02 (d, 2H, J = 

8.0 Hz, quinoline protons), 8.38 (d, 1H, J = 8.8 Hz, quinoline proton), 8.43 (d, 1H, J = 8.0 Hz, 

quinoline proton), 8.50 (d, 1H, J = 4.8 Hz, quinoline proton), 8.59 (d, 1H, J = 4.8 Hz, quinoline 

proton), 9.04 (bs, 1H, NH), 9.31 (bs, 1H, NH), 10.23 (s, 1H, CONH) ppm. 

3-((2-Amino-6-methylpyrimidin-4-yl)amino)-N-(4-((2-amino-6-methylpyrimidin-4-

yl)amino)phenyl)benzamide (3a). Mp: 218-220 °C; recrystallization solvent: acetonitrile/methanol; 

yield: 88%. 1H NMR (DMSO, 400 MHz) δ 2.14 (s, 6H, 2 × CH3), 6.05 (d, 2H, pyrimidine protons), 

6.49 (bs, 2H, NH2), 6.77 (bs, 2H, NH2), 7.41 (t, 1H, J = 8.4 Hz, benzene proton), 7.57 (d. 1H, J = 6.8 

Hz, benzene proton), 7.73 (s, 4H, benzene protons), 8.01 (s, 1H, benzene proton), 8.16 ( d, 1H, J = 7.6 

Hz, benzene proton), 9.71 (bs, 1H, NH), 9.81 (bs, 1H, NH), 10.26 (s, 1H, CONH) ppm. 

3-((2-Amino-6-methylpyrimidin-4-yl)amino)-N-(3-((2-amino-6-methylpyrimidin-4-

yl)amino)phenyl)benzamide (3b). Mp: 105-107 °C; recrystallization solvent: toluene; yield: 64%. 1H 

NMR (DMSO, 400 MHz) δ 2.14 (s, 6H, 2 × CH3), 5.97 (s, 1H, pyrimidine proton), 5.99 (s, 1H, 

pyrimidine proton), 6.43 (bs, 2H, NH2), 6.49 (bs, 2H, NH2), 7.25 (t, 1H, J = 7.6 Hz, benzene proton), 

7.38-7.45 (m, 2H, benzene protons), 7.54 (d, 1H, J = 8.0 Hz, benzene proton), 7.60 (d, 1H, J = 7.6 Hz, 

benzene proton), 7.94 (s, 1H, benzene proton), 8.03 (s, 1H, benzene proton), 8.17-8.19 (d, 1H, J = 7.2 

Hz, benzene proton), 9.42 (bs, 1H, NH), 9.46 (bs, 1H, NH), 10.18 (s, 1H, CONH) ppm. 

4-((2-Amino-6-methylpyrimidin-4-yl)amino)-N-(3-((2-amino-6-methylpyrimidin-4-

yl)amino)phenyl)benzamide (3c). Mp: 292-294 °C; recrystallization solvent: methanol; yield: 41%. 1H 

NMR (DMSO, 400 MHz) δ 2.09 (s, 3H, CH3), 2.12 (s, 3H, CH3), 5.94 (s, 1H, pyrimidine proton), 5.96 
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(s, 1H, pyrimidine proton), 6.97 (bs, 2H, NH2), 6.26 (bs, 2H, NH2), 6.97-7.02 (m, 1H, benzene proton), 

7.19-7.23 (s, 1H, benzene proton), 7.35-7.41 (m, 1H, benzene proton), 7.87-7.92 (s, 4H, benzene 

protons), 8.01 (s, 1H, benzene proton), 9.02 (bs, 1H, NH), 9.37 (bs, 1H, NH), 9.96 (bs, 1H, CONH) 

ppm. 

N-(3-Nitrobenzyl)-3-(quinolin-4-ylamino)benzamide (11). Mp: 195-198 °C; recrystallization solvent: 

acetonitrile/methanol; yield: 45%. 1H NMR (DMSO, 400 MHz) 4.56 (d, 2H, J = 4.4 Hz, CH2), 7.43-

7.55 (m, 3H, benzene protons), 7.94-8.01 (m, 5H, benzene and quinoline protons), 8.16-8.23 (m, 2H, 

benzene and quinoline protons), 8.59-8.61 (m, 2H, benzene and quinoline protons), 8.69 (d, 1H, J = 8.8 

Hz, quinoline proton), 8.79 (d, 1H, J = 4.0 Hz, quinoline proton), 8.96 (s, 1H, CONH), 9.08 (bs, 1H, 

NH) ppm. 

N-(4-Aminophenyl)-3-(quinolin-4-ylamino)benzamide (25). Mp: 150-152 °C; recrystallization solvent: 

acetonitrile; yield: 98%; 1H NMR (DMSO-d6, 400 MHz, δ; ppm) δ 5.05 (bs, 2H, NH2), 6.55 (d, 2H, J= 

8.0 Hz, benzene protons), 7.02 (d, 1H, J= 4.0 Hz, quinoline proton), 7.37 (d, 2H, , J= 8.0 Hz, benzene 

protons), 7.55 (m, 3H, benzene protons), 7.70 – 7.77 (m, 2H, benzene and quinoline protons), 7.91 (s, 

2H, quinoline protons), 8.41 (d, 1H, J= 16.0 Hz, quinoline proton), 8.50 (d, 1H, J= 4.0 Hz, quinoline 

proton), 9.13 (bs, 1H, NH), 9.92 (bs, 1H, NH) ppm. 

N-(3-Aminophenyl)-3-(quinolin-4-ylamino)benzamide (26). Mp: 132-134 °C; recrystallization solvent: 

toluene; yield: 89%. 1H NMR (DMSO, 400 MHz) δ 6.32 (d, 1H, J = 8.4 Hz, benzene proton), 6.86 (d, 

1H, J = 8.4 Hz, benzene proton), 6.95-7.02 (m, 2H, benzene and quinoline protons), 7.10-7.13 (m, 1H, 

benzene proton), 7.59-7.68 (m, 3H, benzene and quinoline protons), 7.75-7.84 (m, 2H, benzene and 

quinoline protons), 7.93-7.95 (m, 2H, benzene protons), 8.50-8.54 (m, 2H, quinoline protons), 9.70 (bs, 

1H, NH), 10.00 (s, 1H, CONH) ppm. 

N-(3-Aminophenyl)-4-(quinolin-4-ylamino)benzamide (27). Mp: 145-147 °C; recrystallization solvent: 

acetonitrile; yield: 55%. 1H NMR (DMSO, 400 MHz) δ 5.03 (bs, 2H, NH2), 6.45 (d, 1H, J = 8.0 Hz, 
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benzene proton), 7.29-7.42 (m, 3H, benzene and quinoline protons), 7.38 (d, 1H, J = 8.0 Hz, benzene 

proton), 7.57-7.71 (m, 4H, benzene and quinoline protons), 7.95-7.99 (m, 3H, benzene and quinoline 

protons), 8.09 (d, 1H, J = 16.0 Hz, quinoline proton), 8.62 (d, 1H, J = 4.0 Hz, quinoline proton), 9.10 

(bs, 1H, NH), 9.89 (bs, 1H, CONH) ppm. 

Synthesis of N-(3-((2-amino-6-methylpyrimidin-4-yl)amino)phenyl)-2-(3-(quinolin-4-

ylamino)phenyl)acetamide (1b). The acid 8 (0.18 mmol, 0.05 g), N-ethyl-N'-(3,3-

dimethylaminopropyl)carbodiimide hydrochloride (0.27 mmol, 0.05 g), triethylamine (0.36 mmol, 0.05 

mL) and anhydrous dichloromethane (7 mL) were left under stirring for 1 h at room temperature. Then 

the amine 9[1] (0.18 mmol, 0.039 g) in anhydrous tetrahydrofuran (1 mL) was added. After 48 h the 

reaction was quenched by the addition of water (20 mL), saturated aqueous sodium chloride solution 

(10 mL) and then extracted with ethyl acetate (3 × 20 mL). The combined organic layers were dried 

over sodium sulphate, filtered and concentrated in vacuo. The crude residue was purified by column 

chromatography on silica gel eluting with ethyl acetate/methanol 2:1 obtaining the pure compound 1b. 

Mp: 163-165 °C; recrystallization solvent: acetonitrile; yield: 40%. 1H NMR (DMSO, 400 MHz) δ 2.03 

(s, 3H, CH3), 3.76 (s, 2H, CH2), 5.98 (s, 1H, pyrimidine proton), 6.08 (s, 2H, NH2), 7.01 (s, 1H, 

quinoline proton), 7.24-7.32 (m, 5H, benzene and quinoline protons), 7.42-7.45 (m, 2H, benzene and 

quinoline protons), 7.69-7.72 (t, 1H, benzene proton), 7.78-7.80 (t, 1H, benzene proton), 7.98-7.99 (d, 

1H, benzene proton), 8.08 (s, 1H, benzene proton), 8.31-8.35 (m, 2H, quinoline protons), 9.13 (bs, 2H, 

NH), 10.22 (s, 1H, CONH) ppm. 

General Procedure for the Synthesis of 1c and of the Intermediate Compounds 6, 15, 17, and 19. 

The opportune chloroderivative (4-chloro-6-methylpyrimidin-2-amine for 1c and 17, 4-chloroquinoline 

for 6, 15, and 19) (1.2 mmol), the appropriate amine (13 for 1c, ethyl 2-(3-aminophenyl)acetate for 6, 

3-nitroaniline for 15, ethyl 3-aminobenzoate for 17, and 3-aminobenzyl alcohol for 19) (1.2 mmol) and 

a catalytic amount (2 drops) of aqueous 37% HCl were refluxed in ethanol (for 6, 15, and 17) or in n-



S7 

butanol (for 1c and 19) (7 mL) for 1 h. After cooling, half of the alcohol was distilled out, the obtained 

solid was filtered and washed twice with a 1:1 mixture of diethyl ether and petroleum ether (5 mL) 

obtaining the desired product pure as a hydrochloride salt.  

N-(3-((2-amino-6-methylpyrimidin-4-yl)amino)benzyl)-3-(quinolin-4-ylamino)benzamide (1c). Mp: 

183-185 °C; recrystallization solvent: acetonitrile/methanol; yield: 28%. 1H NMR (DMSO, 400 MHz) 

δ 2.05 (s, 3H, CH3), 4.47 (d, 2H, J = 4.4 Hz, CH2), 5.87 (s, 1H, pyrimidine proton), 6.07 (s , 2H, NH2), 

6.89 (d, 1H, J = 6.4 Hz, quinoline proton), 7.00 (d, 1H, J = 4.4 Hz, benzene proton), 7.11 (t, 1H, J = 7.2 

Hz, benzene proton), 7.54-7.56 (m, 4H, benzene and quinoline protons), 7.69-7.73 (m, 3H, benzene and 

quinoline protons), 7.89-7.92 (m, 2H, benzene and quinoline protons), 8.39 (d, 1H, J = 8.8 Hz, 

quinoline proton), 8.49 (d, 1H, J = 4.0 Hz, quinoline proton), 9.00 (s, 1H, CONH), 9.11 (bs, 2H, NH) 

ppm. 

Ethyl 2-(3-(quinolin-4-ylamino)phenyl)acetate (6). Mp: 159-161 °C; recrystallization solvent: 

acetonitrile; yield: 70%; 1H NMR (CDCl3 400 MHz, δ; ppm) δ 1.29 (t, 3H, J = 7.2 Hz, -COCH2CH3), 

3.65 (s, 2H, CH2), 4.13 (q, 2H, J = 7.6 Hz, -COCH2CH3), 6.69 (d, 1H, J = 6.0 Hz, benzene proton), 

7.23 (d, 1H, J = 6.8 Hz, benzene proton), 7.37-7.54 (m, 4H, benzene and quinoline protons), 7.65 (t, 

1H, J = 7.6 Hz, quinoline proton), 8.00 (s, 1H, quinoline proton), 8.15 (d, 1H, J = 8.0 Hz, quinoline 

proton), 8.95 (d, 1H, J = 6.8 Hz, quinoline proton), 10.64 (bs, 1H, NH), 14.81 (bs, 1H, quinoline 

hydrochloride proton) ppm. 

N-(3-Nitrophenyl)quinolin-4-amine (15). Mp: 258-260 °C; recrystallization solvent: methanol; yield: 

90%. 1H NMR (DMSO, 400 MHz) δ 7.07 (d, 1H, J = 6.8 Hz, quinoline proton), 7.86 (t, 2H, J = 4.0 Hz, 

benzene protons), 8.00 (d, 1H, J = 8.4 Hz, benzene proton), 8.04-8.14 (m, 2H, benzene and quinoline 

protons), 8.23-8.25 (m, 1H, quinoline proton), 8.36-8.37 (m, 1H, quinoline proton), 8.63 (d, 1H, J = 6.8 

Hz, quinoline proton), 8.80 (d, 1H, J = 8.4 Hz, quinoline proton), 11.08 (bs, 1H, NH) ppm. 
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Ethyl 3-((2-amino-6-methylpyrimidin-4-yl)amino)benzoate (17). Mp: 195-197 °C; recrystallization 

solvent: acetonitrile/methanol; yield: 70%. 1H NMR (DMSO, 400 MHz) δ 1.34 (t, 3H, CH2CH3), 2.30 

(s, 3H, CH3), 4.35 (q, 2H, CH2CH3), 6.21 (s, 1H, pyrimidine proton), 7.52-7.56 (m, 1H, benzene 

proton), 7.73-7.75 (m, 1H, benzene proton), 8.06 (s, 1H, benzene proton), 8.35 (s, 1H, benzene proton), 

10.85 (bs, 1H, NH), 12.92 (bs, 1H, pyrimidine hydrochloride proton) ppm. 

(3-(Quinolin-4-ylamino)phenyl)methanol (19). Mp: 211-213 °C; recrystallization solvent: 

acetonitrile/methanol; yield: 68%. 1H NMR (DMSO, 400 MHz) δ 4.51 (m, 2H, CH2), 5.35 (bs, 1H, 

OH), 6.90-6.93 (m, 1H, benzene proton), 7.05-7.09 (m, 1H, benzene proton), 7.20-7.25 (m, 1H, 

benzene proton), 7.33-7.37 (m, 2H, benzene and quinoline protons), 7.49-7.53 (m, 1H, quinoline 

proton), 7.63-7.69 (m, 1H, quinoline proton), 7.81-7.87 (m, 1H, quinoline proton), 8.37-8.44 (m, 2H, 

quinoline protons), 8.96 (bs, 1H, NH) ppm. 

Synthesis of 6-Methyl-N4-(3-((3-(quinolin-4-ylamino)benzyl)amino)phenyl)pyrimidine-2,4-

diamine (1f). The aldehyde 20 (0.81 mmol, 0.20 g) and the amine 9[1] (0.80 mmol, 0.17 g) were 

stirred in anhydrous dichloroethane (5 mL) for 5 min. Afterwards, sodium triacetoxyborohydride (0.70 

mmol, 0.22 g) was added and the resulting mixture was refluxed for 10 h. The reaction was quenched 

with 10 mL of water and extracted with dichloromethane (3 × 20 mL). The organic layer was washed 

with saturated sodium chloride (20 mL) and dried with sodium sulfate. Upon evaporation of the 

solvent, the crude product was purified by column chromatography on silica gel eluting with ethyl 

acetate/methanol 5:1 giving the pure compound 1f. Mp: 98-100 °C; recrystallization solvent: toluene; 

yield: 50%. 1H NMR (DMSO, 400 MHz) δ 2.04 (s, 3H, CH3), 4.31 (d, 2H, J = 5.2 Hz, CH2), 5.84 (s, 

1H, pyrimidine proton), 5.96 (bs, 2H, NH2), 6.18-6.34 (m, 2H, benzene protons), 6.85-6.88 (m, 2H, 

benzene protons), 6.92-6.94 (d, 2H, benzene and quinoline proton), 7.14 (d, 1H, J = 6.8 Hz, benzene 

proton), 7.20 (d, 1H, J = 8.0 Hz, benzene proton), 7.35-7.38 (m, 2H, benzene proton and NH), 7.52 (t, 
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1H, J = 7.6 Hz, quinoline proton), 7.68 (t, 1H, J = 8.0 Hz, quinoline proton), 7.85 (d, 1H, J = 8.4 Hz, 

quinoline proton), 8.34-8.38 (m, 2H, quinoline protons), 8.70 (bs, 1H, NH), 8.95 (bs, 1H, NH) ppm. 

General Procedure for the Synthesis of 4a-c. 

Triethylamine (2.21 mmol) and benzylchloroformate (1.48 mmol) were added to a solution of the 

appropriate N-(3- or 4-aminophenyl)-3- or 4-(quinolin-4-ylamino)benzamide (25 for 4a, 26 for 4b, and 

27 for 4c) (0.21 mmol) in anhydrous THF (2 mL). The mixture was left under stirring for 2 h at room 

temperature and then was quenched by the addition of water (20 mL). The mixture was subsequently 

extracted with dichloromethane (3 × 20 mL) and washed with saturated sodium chloride solution (3 × 

20 mL). The organic layer was dried over sodium sulphate, filtered and concentrated in vacuo. The 

crude product has been purified by column chromatography on silica gel eluting with ethyl 

acetate/methanol 50:1 giving the desired pure compound. 

Benzyl (4-(3-(quinolin-4-ylamino)benzamido)phenyl)carbamate (4a). Mp: 262-264 °C; recrystallization 

solvent: methanol; yield: 75%. 1H NMR (DMSO, 400 MHz) δ 5.15 (s, 2H, CH2), 7.04 (d, 1H, J = 4.8 

Hz, quinoline proton), 7.35-7.49 (m, 7H, benzene protons), 7.53-7.61 (m, 3H, benzene protons), 7.66-

7.77 (m, 4H, benzene and quinoline protons), 7.82-7.94 (m, 2H, benzene and quinoline protons), 8.40 

(d, 1H, J = 8.4 Hz, quinoline proton), 8.51 (d, 1H, J = 8.4 Hz, quinoline proton), 9.12 (bs, 1H, NH), 

9.76 (bs, 1H, CONH), 10.22 (bs, 1H, CONH) ppm. 

Benzyl (3-(3-(quinolin-4-ylamino)benzamido)phenyl)carbamate (4b). Mp: 250-252 °C; recrystallization 

solvent: methanol; yield: 43%. 1H NMR (DMSO, 400 MHz) δ 5.16 (s, 2H, CH2), 7.06 (d, 1H, J = 10.4 

Hz, quinoline proton), 7.14-7.26 (m, 2H, benzene and quinoline protons), 7.31-7.45 (m, 6H, benzene 

and quinoline protons), 7.55-7.58 (m, 3H, benzene and quinoline protons), 7.66-7.74 (m, 2H, benzene 

and quinoline protons), 7.90-7.95 (m, 2H, benzene protons) , 8.02 (s, 1H, benzene proton), 8.42 (d, 1H, 

J = 8.4 Hz, quinoline proton), 8.52 (d, 1H, J = 8.4 Hz, quinoline proton), 9.14 (bs, 1H, NH), 9.80 (bs, 

1H, CONH), 10.28 (bs, 1H, CONH) ppm. 
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Benzyl (3-(4-(quinolin-4-ylamino)benzamido)phenyl)carbamate (4c). Mp: 220-222 °C; recrystallization 

solvent: acetonitrile/methanol; yield: 27%. 1H NMR (DMSO, 400 MHz) δ 5.17 (s, 2H, CH2), 6.99 (d, 

1H, J = 10.4 Hz, quinoline proton), 7.14-7.58 (m, 11H, benzene and quinoline protons), 7.77-7.81 (m, 

1H, quinoline proton), 7.87-8.11 (m, 4H, benzene and quinoline protons), 8.39 (d, 1H, J = 8.4 Hz, 

quinoline proton), 8.58 (d, 1H, J = 8.4 Hz, quinoline proton), 9.30 (bs, 1H, NH), 9.87 (bs, 1H, CONH), 

10.17 (bs, 1H, CONH) ppm. 

Synthesis of the Intermediate Ethyl 3-((Quinolin-4-ylamino)methyl)benzoate (5). 4-

Chloroquinoline (1.50 mmol, 0.25 g), ethyl 3-(aminomethyl)benzoate (0.74 mmol, 0.15 g) and sodium 

acetate (4.10 mmol, 0.33 g) were refluxed in distilled water for 5 h. After cooling, the reaction was 

extracted with ethyl acetate (3 × 15 mL). The organic layer was washed with saturated sodium chloride 

solution (15 mL), dried over sodium sulphate, filtered and concentrated in vacuo. The crude residue has 

been purified by column chromatography on silica gel eluting with ethyl acetate/methanol 15:1 

obtaining the pure compound 5. Mp: 188-190 °C; recrystallization solvent: acetonitrile/methanol; yield: 

25%. 1H NMR (DMSO, 400 MHz) δ 1.29 (t, 3H, J = 7.2 Hz, COCH2CH3), 4.13 (m, 4H, J = 7.6 Hz, 

COCH2CH3 and CH2), 6.68 (d, 1H, J = 6.0 Hz, benzene proton), 7.25 (d, 1H, J = 6.8 Hz, benzene 

proton), 7.34 - 7.51 (m, 4H, benzene and quinoline protons), 7.62 (t, 1H, J = 7.6 Hz, quinoline proton), 

8.01 (s, 1H, quinoline proton), 8.13 (d, 1H, J = 8.0 Hz, quinoline proton), 8.93 (d, 1H, J = 6.8 Hz, 

quinoline proton), 10.62 (bs, 1H, NH) ppm. 

General Procedure for the Synthesis of Intermediate Compounds 7, 8, and 18. 

A solution of the appropriate ethyl ester (5 for 7, 6 for 8, and 17 for 18) (2.98 mmol) and 2 N potassium 

hydroxyde (11.92 mmol) in ethanol/water mixture (10 mL, 1:1) was stirred overnight at room 

temperature. Subsequently, most of the ethanol was distilled out and pH was adjusted to 5 via the slow 

addition of 2 N hydrochloric acid at 0 °C. The precipitated acid was filtered and washed with diethyl 

ether, yielding the desired pure acidic compound as hydrochloride salt. 
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3-((Quinolin-4-ylamino)methyl)benzoic acid (7). Mp: 180-182 °C; recrystallization solvent: 

acetonitrile/methanol; yield: 30%. 1H NMR (DMSO-d6, 400 MHz) δ 4.87 (s, 2H, CH2), 6.77 (d, 1H, J = 

4.4 Hz, quinoline proton), 7.50-7.52 (m, 1H, benzene proton), 7.68-7.75 (m, 2H, quinoline and benzene 

protons), 7.87-8.01 (m, 4H, quinoline and benzene protons), 8.39 (m, 1H, quinoline proton), 8.51 (d, 

1H, J = 6.8 Hz, quinoline proton), 9.86 (bs, 1H, NH) 14.61 (bs, 1H, COOH), 14.81 (bs, 1H, quinoline 

hydrochloride proton) ppm. 

2-(3-(Quinolin-4-ylamino)phenyl)acetic acid (8). Mp: 116-118 °C; recrystallization solvent: toluene; 

yield: 91%. 1H NMR (DMSO, 400 MHz) δ 3.70 (s, 2H, CH2), 6.79-6.82 (m, 1H, benzene proton), 7.29-

7.41 (m, 3H, benzene protons), 7.49-7.54 (m, 1H, quinoline proton), 7.79-7.84 (m, 1H, quinoline 

proton), 8.01-8.08 (m, 2H, quinoline protons), 8.50-8.53 (m, 1H, quinoline proton), 8.77-8.79 (m, 1H, 

quinoline proton), 10.93 (s, 1H, NH), 12.49 (bs, 1H, COOH), 14.57 (bs, 1H, quinoline hydrochloride 

proton) ppm. 

3-((2-Amino-6-methylpyrimidin-4-yl)amino)benzoic acid (18). Mp: >300 °C; recrystallization solvent: 

methanol; yield: 90%. 1H NMR (DMSO, 400 MHz) δ 2.29 (s, 3H, CH3), 6.19 (s, 1H, pyrimidine 

proton), 7.49-7.55 (m, 1H, benzene proton), 7.71-7.78 (m, 1H, benzene proton), 8.06 (s, 1H, benzene 

proton), 8.24 (s, 1H, benzene proton), 10.74 (bs, 1H, NH,), 12.92 (bs, 1H, pyrimidine hydrochloride 

proton) ppm. 

Synthesis of the Intermediate 6-Methyl-N4-(3-nitrobenzyl)pyrimidine-2,4-diamine 12. 

2-Amino-4-chloro-6-methylpyrimidine (1.74 mmol, 0.25 g), 3-nitrobenzylamine (3.48 mmol, 0.53 g) 

and N,N-diisopropylethylamine (DIPEA) (4.33 mmol, 0.56 g) were dissolved in 6 mL of DMSO. The 

reaction was carried out using microwave (Biotage initiator) at 160 °C for 45 min. The reaction mixture 

was quenched with water (10 mL), extracted with ethyl acetate (3 × 10 mL) and washed with saturated 

sodium chloride solution (15 mL). The organic layer was dried over sodium sulphate, filtered and 

concentrated in vacuo. The crude residue has been purified by column chromatography on silica gel 
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eluting with chloroform/methanol 8:1 obtaining the pure compound 12. Mp: 63-65 °C; recrystallization 

solvent: cyclohexane; yield: 80%. 1H NMR (CDCl3, 400 MHz) δ 2.20 (s, 3H, CH3), 4.95 (s, 2H, J = 5.6 

Hz, CH2), 4.93 (bs, 2H, NH2), 5.69 (s, 1H, pyrimidine proton), 7.52 (t, 1H, J = 8.0 Hz, benzene proton), 

7.67 (d, 1H, J = 7.2 Hz, benzene proton), 8.14 (d, 1H, J = 8.0 Hz, benzene proton), 8.19 (s, 1H, 

benzene proton) ppm. 

General Procedure for the Synthesis of Anilines 13, 14, and 16. 

Two drops of a 37% hydrochloric acid solution were slowly added at 0 °C to a solution of the 

appropriate nitroderivative (11 for 13, 12 for 14, and 15 for 16) (0.67 mmol) and stannous chloride 

dihydrate (3.32 mmol) in ethanol (5 mL). The reaction was refluxed for 5 h. Afterwards, most of the 

ethanol was distilled out and 2 N sodium carbonate solution (20 mL) was added to the mixture 

followed by extraction with ethyl acetate (3 × 30 mL). The collected organic layers were washed with 

brine (3 × 30 mL), dried over sodium sulphate, filtered and concentrated in vacuo. The crude solid was 

subsequently triturated with diethyl ether and filtered again, giving the desired pure compound. 

N-(3-Aminobenzyl)-3-(quinolin-4-ylamino)benzamide (13). Mp: 213-215 °C; recrystallization solvent: 

acetonitrile/methanol; yield: 62%. 1H NMR (DMSO, 400 MHz) δ 4.34 (d, 2H, J = 4.4 Hz, CH2), 5.02 

(s, 2H, NH2), 6.44-6.56 (m, 3H, benzene protons), 6.95-7.02 (m, 2H, benzene protons), 7.48-7.58 (m, 

3H, benzene and quinoline protons), 7.66-7.73 (m, 2H, benzene and quinoline protons), 7.89-7.91 (m, 

2H, benzene and quinoline protons), 8.39 (d, 1H, J = 8.8 Hz, quinoline proton), 8.49 (d, 1H, J = 4.0 Hz, 

quinoline proton), 8.96 (bs, 1H, CONH), 9.08 (bs, 1H, NH) ppm. 

N4-(3-Aminobenzyl)-6-methylpyrimidine-2,4-diamine (14). Mp: 68-70 °C; recrystallization solvent: 

cyclohexane; yield: 87%. 1H NMR (DMSO-d 6, 400 MHz) δ 2.14 (s, 3H, CH3), 3.91 (bs, 2H, NH2), 

5.18 (bs, 2H, NH2), 5.60 (s, 1H, pyrimidine proton), 6.57-6.66 (m, 3H, benzene protons), 7.08-7.11 (m, 

1H, benzene proton), 8.64 (bs, 1H, NH) ppm. 
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N1-(Quinolin-4-yl)benzene-1,3-diamine (16). Mp: 106-109 °C; recrystallization solvent: toluene; yield: 

92%. 1H NMR (DMSO, 400 MHz) δ 5.18 (bs, 2H, NH2), 6.37 (d, 1H, benzene proton), 6.50 (d, 1H, 

benzene proton), 6.60 (s, 1H, benzene proton), 6.91 (d, 1H, J = 6.8 Hz, benzene proton), 7.05 (t, 1H, J 

= 8.0 Hz, quinoline proton), 7.49 (t, 1H, J = 7.6 Hz, quinoline proton), 7.65 (t, 1H, J = 8.0 Hz, 

quinoline proton), 7.85 (d, 1H, J = 8.4 Hz, quinoline proton), 8.35-8.43 (m, 2H, quinoline protons), 

8.73 (bs, 1H, NH) ppm. 

Synthesis of the Intermediate 3-(Quinolin-4-ylamino)benzaldehyde (20). Manganese dioxide (2.10 

mmol, 0.18 g) was added to a solution of (3-(quinolin-4-ylamino)phenyl)methanol 19 (0.42 mmol, 0.10 

g) in anhydrous THF (2 mL), and the mixture was stirred overnight at 60 °C. The mixture was filtered 

through a pad of celite and concentrated in vacuo. The crude residue has been purified by column 

chromatography on silica gel eluting with ethyl acetate obtaining the pure compound 20. 

Mp: 165-167 °C; recrystallization solvent: acetonitrile; yield: 48%. 1H NMR (DMSO, 400 MHz) δ 6.81 

(d, 1H, J = 6.4 Hz, benzene proton), 7.35-7.47 (m, 3H, benzene protons), 7.54 (t, 1H, J = 8.0 Hz, 

quinoline proton), 7.82 (t, 1H, J = 7.8 Hz, quinoline proton), 8.04-8.15 (m, 3H, NH -and benzene 

protons), 8.52 (d, 1H, J = 7.6 Hz, quinoline proton), 8.79 (d, 1H, J = 8.4 Hz, quinoline proton), 9.88 (s, 

1H, CHO proton) ppm. 
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Table S1. Elemental analysis of the final compounds 1a-f, 2a-c, 3a-c, and 4a-c. 

compd MW 
%, calculated %, found 

C H N C H N 

1a 475.56 70.72 5.30 20.62 70.59 5.25 20.84 

1b 475.56 70.72 5.30 20.62 70.81 5.42 20.45 

1c 475.56 70.72 5.30 20.62 70.95 5.48 20.39 

1d 475.56 70.72 5.30 20.62 70.54 5.22 20.76 

1e 461.53 70.27 5.02 21.24 70.45 5.14 21.02 

1f 447.55 72.46 5.63  72.24 5.46  

2a 481.56 77.32 4.81 14.54 77.18 4.68 14.79 

2b 481.56 77.32 4.81 14.54 77.45 4.87 14.38 

2c 481.56 77.32 4.81 14.54 77.26 4.77 14.63 

3a 441.50 62.57 5.25 28.55 62.33 5.08 28.81 

3b 441.50 62.57 5.25 28.55 62.81 5.40 28.28 

3c 441.50 62.57 5.25 28.55 62.44 5.16 28.77 

4a 488.55 73.76 4.95 11.47 73.90 5.09 11.22 

4b 488.55 73.76 4.95 11.47 73.48 4.79 11.63 

4c 488.55 73.76 4.95 11.47 73.81 5.11 11.19 
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Experimental procedure for Fluorescence Resonance Energy Transfer (FRET) melting assay 

Oligonucleotides labeled at 5’ with FAM (6-carboxyfluorescein) as donor fluorophore and TAMRA (6-

carboxytetramethylrhodamine) at 3’ as the acceptor fluorophore were purchased from STAB VIDA 

(Portugal). Each oligonucleotide was initially diluted to 100 M in water (Molecular Biology Reagent, 

Sigma). Stock solutions of 20 M and subsequent dilutions were made with FRET buffer (60 mM KCl, 

potassium cacodylate, pH 7.4). Tagged oligonucleotides at 0.4 M were annealed by heating at 90-95 °C 

for 10 min, followed by slow cooling to room temperature. Stock solutions of compounds (1 mM) were 

prepared in 10% DMSO. Subsequent dilutions were performed using FRET buffer. Annealed DNA (50 

L) and test compound solutions (50 L) were distributed across 96-well RT-PCR plates (PCR-96-FLT-

C, Axygen, Inc). Fluorescence readings (performed in a 7300 RT-PCR equipment from Applied 

Biosystems) were taken at intervals of 0.5 °C in the range 31–95 °C, with the temperature being 

maintained for 30 seconds prior to each reading. Experiments were performed in triplicate. Final analysis 

of the data was carried out with GraphPad Prism v.5.0 (GraphPad Software Inc., La Jolla, CA, USA). 

The advanced curve-fitting function in GraphPad Prism (nonlinear regression fit) was used for 

calculation of ΔTm values. Only results with fitting r2 values > 0.75 (std error < 0.25) were considered. 

 

Table S2. Synthetic oligonucleotides used in FRET experiments. 

Code Sequence Tm  Topology 

KRAS21R 5’-FAM-AGG GCG GTG TGG GAA GAG GGA-

TAMRA-3’ 

52 °C Parallel 

G4 

Telo21 5’-FAM-GGG TTA GGG TTA GGG TTA GGG-

TAMRA-3’ 

57 °C Hybrid 

G4 
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Table S3. ∆Tm values for F21T and KRAS stabilized by DNMT inhibitors at 5 µM and 10 µM. Py4P 

used as positive control at 1 µM. 

 

 

Comp  

F21T 

∆Tm (ºC) 

(5 µM) 

F21T 

∆Tm (ºC) 

(10 µM) 

KRAS 

∆Tm (ºC) 

(5 µM) 

KRAS 

∆Tm (ºC) 

(10 µM) 

SGI-1027 1.9 7.2 6.7 8.7 

1 8.0 8.3 5.7 12.8 

2 0.6 6.2 1.0 9.6 

2a 0 5.1 0 6.4 

2b 2.8 5.0 1.0 7.7 

2c 1 1.2 0 3.4 

4 2.7 6.9 1 10.4 

4a 0 4.3 2.5 4.6 

4b 3.8 1.5 2.8 2.5 

4c 0.8 1.5 1.0 2.6 

Py4P  21.2  18.8   
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Experimental procedure of kinase inhibitory assays 

The test compound, reference compound or water (control) were mixed with the enzyme (for the exact 

amount see table below) in the appropriate buffer. Thereafter, the reaction was initiated by adding the 

required amount of the appropriate substrate and of ATP, and the mixture is incubated at room 

temperature (variable reaction time, see table below). For control basal measurements, the enzyme was 

omitted from the reaction mixture. Following incubation, the reaction was stopped by adding 13 mM 

EDTA. After 5 min, the proper antibody labelled with europium chelate was added. After 60 more min, 

the fluorescence transfer was measured at ex=337 nm, em=620 nm and em=665 nm using a microplate 

reader (Envision, Perkin Elmer). The enzyme activity was determined by dividing the signal measured 

at 665 nm by that measured at 620 nm (ratio). The results are expressed as a percent inhibition of the 

control enzyme activity. The standard inhibitory reference compound is staurosporine when not 

differently indicated (see table below), which has been tested in each experiment at several 

concentrations to obtain an inhibition curve from which its IC50 value is calculated. 

General information 

• Assay volume and format: 10 µL in 384-well plate 

• Compound addition: [100x] solution in solvent then [5x] solution in water 

• Maximum tolerable DMSO concentration: 1% 
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Table S4. Screening of 2a on a panel of kinases. Percentage of inhibition at 10 µM. 

kinases 

% inhibition 

at 10 µM by 

2a 

Enzyme 

quantity 

(ng)a 

bufferb substrate [s]c [ATP] 

Incuba

tion 

time 

Antibody 
Ref. 

comp.d 

Ref. 

(lit) 

Abl kinase (h) 0 0.4 A Ulight-TK peptide 100 nM 10 μM 30 min 

anti-

phospho-

PT66 

 [2] 

Akt1/PKBalpha 
(h) 

-178 1.2 B 

Ulight-CREBtide 

(CKRREILSRRPS

YRK) 

25 nM 30 μM 60 min 

anti-

phospho-

CREB 

 [3] 

AurA/Aur2 
kinase (h) 

-20 2.36 B 
Ulight-RRRSLLE 

(PLK) 
100 nM 10 μM 15 min 

anti-

phospho-

PLK 

 [4] 

CaMK2alpha 

(h) 
-99 8.1 C 

Ulight-

CGSGSGRPRTSS

FAEG (Crosstide) 

50 nM 10 μM 30 min 

anti-

phospho-

Crosstide 

AIP [5] 

CDC2/CDK1 

(h) (cycB) 
16 3 B 

Ulight-
CFFKNIVTPRTPP

PSQGK-amide 

(MBP) 

100 nM 10 μM 15 min 

anti-

phospho-
MBP 

 [6] 

CHK1 (h) 16 0.6 B 
Ulight-CREBtide 

(CKRREILSRRPS

YRK) 

25 nM 30 μM 30 min 
anti-

phospho-

CREB 

 [7] 

CHK2 (h) -195 1.32 B 
Ulight-CREBtide 

(CKRREILSRRPS

YRK) 

25 nM 30 μM 15 min 
anti-

phospho-

CREB 

 [8] 

c-Met kinase 

(h) 
-54 0.4 

B + 300 

nM poly-
D-Lys 

Ulight-

CAGAGAIETDKE
YYTVKD (JAK1) 

25 nM 10 μM 60 min 

anti-

phospho-
PT66 

 [9] 

EGFR kinase 

(h) 
36 0.0452 

A + 100 

nM poly-

D-Lys 

Ulight-

CAGAGAIETDKE

YYTVKD (JAK1) 

100 nM 10 μM 15 min 

anti-

phospho-

PT66 

PD15303

5 
[10] 

EphA2 kinase 

(h) 
-184 0.2 A Ulight-TK peptide 50 nM 10 μM 30 min 

anti-

phospho-
PT66 

 [11] 

EphA3 kinase 
(h) 

-57 0.56 A Ulight-TK peptide 50 nM 30 μM 60 min 

anti-

phospho-

PT66 

 [12] 

EphB4 kinase 
(h) 

-375 0.05 B Ulight-TK peptide 100 nM 50 μM 90 min 

anti-

phospho-

PT66 

 [13] 

ERK2 (h) 

(P42mapk) 
9 1.38 B 

Ulight-
CFFKNIVTPRTPP

PSQGK-amide 

(MBP) 

100 nM 10 μM 15 min 

anti-

phospho-
MBP 

 [14] 

FGFR1 kinase 
(h) 

-220 0.252 B 

Ulight-

CAGAGAIETDKE

YYTVKD (JAK1) 

100 nM 
100 
μM 

60 min 

anti-

phospho-

PT66 

 [15] 

FGFR2 kinase 

(h) 
1 0.0075 

B + 50 

nM poly-

D-Lys 

Ulight-

CAGAGAIETDKE

YYTVKD (JAK1) 

25 nM 10 μM 15 min 

anti-

phospho-

PT66 

 [16] 

FGFR3 kinase 

(h) 
-272 0.7 A 

Ulight-
CAGAGAIETDKE

YYTVKD (JAK1) 

100 nM 10 μM 90 min 
anti-

phospho-

PT66 

 [17] 

GSK3beta (h) -72 21.9 B 

Ulight-

CFFKNIVTPRTPP
PSQGK-amide 

(MBP) 

100 nM 10 μM 90 min 

anti-

phospho-

MBP 

 [18] 

HGK (h) 

(MAP4K4) 
-247 19.5 B 

Ulight-
FLGFTYVAP 

(P70S6K) 

50 nM 1 μM 90 min 
anti-

phospho-

P70S6K 

 [19] 

IKKalpha (h) 70 11.2 B 
Ulight-IkappaB-

alpha 
100 nM 5 μM 30 min 

anti-
phospho-

IkappaB-

alpha 

 [20] 
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IRAK4 (h) -214 16.72 B 

Ulight-

FLGFTYVAP 

(P70S6K) 

100 nM 2.5 μM 90 min 

anti-

phospho-

P70S6K 

 [21] 

IRK (h) (InsR) 86 0.0156 B 
Ulight-Poly 

GAT[EAY(1:1:1)]n 
50 nM 30 μM 10 min 

anti-

phospho-

PT66 

 [22] 

JAK3 (h) -100 0.204 B 
Ulight-

CAGAGAIETDKE

YYTVKD (JAK1) 

100 nM 0.5 μM 60 min 
anti-

phospho-

PT66 

 [23] 

JNK1 (h) -91 6.8 B 

Ulight-
CFFKNIVTPRTPP

PSQGK-amide 

(MBP) 

100 nM 10 μM 60 min 

anti-

phospho-
MBP 

 [24] 

KDR kinase (h) 
(VEGFR2) 

-281 0.88 B 

Ulight-

CAGAGAIETDKE

YYTVKD (JAK1) 

100 nM 25 μM 60 min 

anti-

phospho-

PT66 

 [25] 

Lck kinase (h) 23 1 B 
Ulight-Poly 

GAT[EAY(1:1:1)]n 
25 nM 10 μM 10 min 

anti-

phospho-

PT66 

 [2] 

MAPKAPK2 

(h) 
-1011 2.44 B 

Ulight-CREBtide 
(CKRREILSRRPS

YRK) 

25 nM 1 μM 15 min 
anti-

phospho-

CREB 

 [26] 

MARK1 (h) -209 11.6 B 
Ulight-RRRSLLE 

(PLK) 
50 nM 1 μM 30 min 

anti-

phospho-
PLK 

 [27] 

MNK2 (h) -6 5 B 

Ulight-CREBtide 

(CKRREILSRRPS
YRK) 

25 nM 
100 

μM 
90 min 

anti-

phospho-
CREB 

 [28] 

MST4 kinase 
(h) 

-567 5.2 B 

Ulight-

CRFARKGSLRQK

NV (PKC) 

50 nM 10 μM 30 min 

anti-

phophohist

one H3 

 [29] 

NEK2 (h) -72 2.728 B 

Ulight-

FLGFTYVAP 

(P70S6K) 

50 nM 10 μM 60 min 

anti-

phospho-

P70S6K 

 [30] 

p38alpha  

kinase (h) 
-64 6 B 

Ulight-

CFFKNIVTPRTPP

PSQGK-amide 

(MBP) 

100 nM 
100 

μM 
30 min 

anti-

phospho-
MBP 

SB20219

0 
[31] 

PAK2 (h) -150 17.6 B 
Ulight-RRRSLLE 

(PLK) 
50 nM 50 μM 60 min 

anti-

phospho-

PLK 

 [32] 

PAK4 (h) -17 20 B 
Ulight-RRRSLLE 

(PLK) 
50 nM 1 μM 30 min 

anti-

phospho-

PLK 

 [33] 

PDK1 (h) -169 50 B 
Ulight-

FLGFTYVAP 

(P70S6K) 

400 nM 10 μM 90 min 
anti-

phospho-

P70S6K 

 [34] 

Pim2 kinase (h) -51 6.36 B 
Ulight-CREBtide 

(CKRREILSRRPS

YRK) 

25 nM 3 μM 60 min 
anti-

phospho-

CREB 

 [35] 

PKA (h) 26 0.005 A 
Ulight-PLK (Ser 

137) 
50 nM 1 μM 10 min 

anti-

phospho-

PLK 

 [36] 

PKCbeta 2 (h) 79 0.06 B 

Ulight-CREBtide 

(CKRREILSRRPS
YRK) 

25 nM 30 μM 15 min 

anti-

phospho-
CREB 

 [37] 

PLK1 (h) -214 9.6 B 

Ulight-

FLGFTYVAP 

(P70S6K) 

40 nM 5 μM 60 min 

anti-

phospho-

P70S6K 

 [38] 

RAF-1 kinase 

(h) 
79 5 B 

Ulight-

ARTKQTARKSTG

GKAPRKQLAGC
G (histone H3) 

50 nM 10 μM 
180 

min 

anti-
phospho-

histone H3 

 [39] 

ROCK1 (h) -61 8.2 B 
Ulight-RRRSLLE 

(PLK) 
50 nM 1 μM 30 min 

anti-

phospho-
PLK 

 [40] 

SGK1 (h) 28 3.45 A 
Ulight-RRRSLLE 

(PLK) 
50 nM 10 μM 30 min 

anti-

phospho-

PLK 

 [41] 
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SIK (h) 22 9 B 

Ulight-CREBtide 

(CKRREILSRRPS

YRK) 

25 nM 30 μM 90 min 

anti-

phospho-

CREB 

Ro-
318220 

[42] 

Src kinase (h) 94 0.06 B 
Ulight-Poly 

GAT[EAY(1:1:1)]n 
5 nM 5 μM 10 min 

anti-

phospho-

PT66 

 [43] 

TAOK2 

(TAO1) (h) 
-203 12.8 B 

Ulight-
FLGFTYVAP 

(P70S6K) 

40 nM 5 μM 60 min 
anti-

phospho-

P70S6K 

 [44] 

TRKA (h) 98 0.86 B 
Ulight-Poly 

GAT[EAY(1:1:1)]n 
5 nM 

100 

μM 
10 min 

anti-
phospho-

PT66 

 [45] 

aAmount of enzyme (expressed in nanograms) in 10 μL reaction volume; bBuffer composition: A: 40 mM 

Hepes/ Tris (pH 7.4), 0.8 mM EGTA/Tris, 8 mM MgCl2, 3.6 mM DTT, 0.008% Tween 20; B: 40 mM 

Hepes/ Tris (pH 7.4), 0.8 mM EGTA/Tris, 8 mM MgCl2, 1.6 mM DTT, 0.008% Tween 20; C: 40 mM 

Hepes/Tris (pH 7.4), 0.8 mM EGTA/Tris, 8 mM MgCl2, 2.5 mM CaCl2, 1.6 mM DTT, 0.008% Tween 

20, and 5 µg/ml calmodulin; csubstrate concentration; dOnly when different from staurosporine. 
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Whole original Western Blots 
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