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Abstract: T-type calcium channels (TTCCs) are overexpressed in several cancers. In this review,
we summarize the recent advances and new insights into TTCC biology, tumor progression, and
prognosis biomarker and therapeutic potential in the melanoma field. We describe a novel correlation
between the Cav3.1 isoform and the increased basal autophagy in BRAFV600E-mutant melanomas and
after acquired resistance to BRAF inhibitors. Indeed, TTCC blockers reduce melanoma cell viability
and migration/invasion in vitro and tumor growth in mice xenografts in both BRAF-inhibitor-sensitive
and -resistant scenarios. These studies open a new, promising therapeutic approach for disseminated
melanoma and improved treatment in BRAFi relapsed melanomas, but further validation and clinical
trials are needed for it to become a real therapeutic option.
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1. Introduction

Calcium signaling displays important intracellular messages engaging multiple pathways and
contributing to cellular homeostasis through calcium ions. Calcium is a second messenger that is
involved in physiological functions such as viability, apoptosis, motility, exocytosis and endocytosis,
and gene expression, and plays an important role in tumor growth [1–4]. Calcium channels support
the entry of calcium in favor of concentration gradients across the plasma membrane into the cell,
promoting a calcium influx [5]. These channels can be classified into selective and non-selective
calcium channels. Non-selective calcium ion channels are mostly ligand-gated ion channels that open
in response to a ligand and mediate cation flux. Additionally, store-operated calcium channels (SOCs)
and voltage-gated calcium channels (VGCCs) are considered the two main kinds of selective calcium
channels that mediate calcium influx in response to the depletion of intracellular calcium stores [6].

VGCCs are the most selective channels for calcium ions. VGCCs are heteromultimers assembled
by a main α1-subunit and three auxiliary subunits, α2-δ, β, and γ, which regulate the expression and
biophysical properties of the channels [7]. The α1-subunit is the largest one (190–250 kDa) contributing
to the pore architecture and potential change sensor, in addition to being the main channel regulator,
which determines the type of VGCC [8,9]. The α1-subunit of VGCCs is composed of four domains,
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which have six transmembrane segments (S1–S6) each [10]. The β subunits (β1–4) are cytosolic proteins
that regulate current density, control channel activation/inactivation kinetics, and shift the voltage
dependence and activation in the hyperpolarized direction. On the other side, the γ subunits (γ1–8)
can have an inhibitory effect on calcium currents and can alter the activation/inactivation kinetics of
the calcium channels [7,11–14].

VGCCs are activated and inactivated by plasma membrane depolarization and can be
classified into three different families based on sequence homology and functional properties:
(1) high-voltage-activated L-type channels (Cav1), (2) high-voltage-activated P/Q-type, N-type, and
R-type channels (Cav2), and (3) low-voltage-activated T-type channels (Cav3). Three different genes
that encode T-type calcium channels (TTCCs) have been described, including CACNA1G, CACNA1H,
and CACNA1I, which encode for the main α-pore forming subunits Cav3.1, Cav3.2, and Cav3.3,
respectively [15]. The diverse isoforms are differentiating due to their electrophysiological and
pharmacological properties (Table 1). TTCCs are the only calcium low-voltage channels described
to date, due to the fact that they require small depolarization to open. Further, they have a window
current, as they can open but not inactivate completely, resulting in significant calcium entry at
membrane potentials near rest [8,16,17].

Table 1. T-type calcium channel (TTCC) expression and cellular function in melanoma. ND:
not determined.

Cellular Functions of TTCCs Cav3.1 Cav3.2 Cav3.3

Molecular Information Human: 2377aa, O43497, chr. 17q22, CACNA1G Human: 2353aa, O95180, chr. 16p13.3,
CACNA1H

Human: 2251aa, AAM67414, chr.
22q13.1, CACNA1I

Threshold mV −70 −70 −70

mRNA + + +

Protein IHC IHC ND

Functional Channels + + +

Prognosis in Melanoma Negative Negative ND

Expression Levels

↑mRNA expression in melanoma cell lines and
biopsies compared with melanocytes [18]

↑mRNA expression in melanoma cell lines
and biopsies compared with melanocytes

[18]

↑mRNA expression in melanoma cell
lines and biopsies compared with

melanocytes [18]

Hypoxia ↑mRNA expression (M16, JG, M28) [19] Hypoxia ↑mRNA expression [19] ↑mRNA expression in BRAFV600E
melanoma [20]

↑ immunoexpression from normal skin to naevi
to melanoma biopsies (tumor progression) [21]

↑ immunoexpression from normal skin to
naevi to melanoma biopsies (tumor

progression) [21]

↑ immunoexpression in primary melanoma
tumors with Breslow thickness >1 mm [21]

↑ immunoexpression in primary melanoma
tumors with Breslow thickness >1 mm [21]

↑ immunoexpression positively correlates with
BRAFV600E protein expression and LC3 [21]

↑ immunoexpression positively correlates
with Glut1 and Ki-67 [21]

↑mRNA expression and immunoexpression in
BRAFV600E melanoma [20]

↑mRNA expression and immunoexpression in
BRAF inhibitor-resistant melanoma [22]

↑mRNA expression during acquisition of
Vemurafenib resistance in melanoma [22]

↓mRNA expression after TTCC blocker
treatment in sensitive and Vemurafenib-resistant

melanoma [22]

Cellular function

TTCC blocker or molecular knockdown of Cav3.1
expression arrest cells in G1 phase and decreases

cell viability in melanoma cells [18,19,22]

TTCC blocker or molecular knockdown of
Cav3.2 expression arrest cells in G1 phase
and decreases cell viability in melanoma

cells [18,19,22]

TTCC blocker arrests cells in G1 phase
and decreases cell viability in

melanoma cells [18,19,22]

TTCC blocker or molecular knockdown of Cav3.1
expression impairs migration/invasion rates in

BRAFV600E-mutant melanoma cells [20]

TTCC blocker or molecular knockdown of
Cav3.2 expression impairs
migration/invasion rates in

BRAFV600E-mutant melanoma cells [20]

TTCC blocker impairs
migration/invasion rates in

BRAFV600E-mutant melanoma cells
[20]

TTCC blocker reduces tumor growth in vivo [5]
TTCC blocker reduces cell viability and

inhibit migration/invasion rates in
Vemurafenib-resistant melanoma cells [20]

TTCC blocker reduces cell viability
and inhibit migration/invasion rates in
Vemurafenib-resistant melanoma cells

[20]

TTCC blocker reduce cell viability and inhibit
migration/invasion rates in Vemurafenib-resistant

melanoma cells [20]

TTCC blocker reduce tumor growth
in vivo [22]

TTCC blocker reduce tumor growth
in vivo [22]

Relative to Autophagy

TTCC blocker or molecular knockdown of Cav3.1
blocks autophagy flux in all melanoma cells

[19,20,22]

TTCC blocker or molecular knockdown of
Cav3.2 blocks autophagy flux in all

melanoma cells [19,20,22]

TTCC blockade inhibits autophagy
flux in all melanoma cells [19,20,22]

TTCC blocker inhibit autophagy flux in
Vemurafenib-resistant melanoma cells [22]

TTCC blocker inhibit autophagy flux in
Vemurafenib-resistant melanoma cells [22]

TTCC blocker inhibit autophagy flux
in Vemurafenib-resistant melanoma

cells [22]
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2. T-Type Calcium Cannels in Cancer

VGCCs have been reported as promising candidates in targeted-cancer therapy [23]. Among
VGCCs, TTCCs have been suggested as potential targets because of their upregulation in diverse tumor
cells. Indeed, they are involved into the progression and prognosis of various cancers [14,24,25].

To date, it has been suggested that TTCC expression and isoforms are heterogeneous, depending on
the stage of tumor development and cancer type. TTCCs, the Cav3.1 and Cav3.2 isoforms in particular,
have been found to be overexpressed in prostate [26,27], breast [28–30], ovarian [31,32], colon [33] and
esophageal [34] cancers, retinoblastoma [29], glioblastoma [35], hepatocellular carcinoma [36], and
melanoma [18]. The Cav3.3 isoform has been reported to be increased in ovarian and esophageal
cancer, hepatocellular carcinoma, and melanoma [14]. Consequently, the pharmacological inhibition of
channels function or the molecular knockdown of TTCC expression is able to decrease proliferation
and cell viability and increase apoptosis and arrest cells in the G1 phase in specific cancer types [14].

In silico data also supports this hypothesis. For instance, a microarray database (Oncomine)
and bioinformatic analysis, performed by Phan and colleagues, indicated that both the up- and
downregulation of TTCCs could be involved in a cancer’s molecular signature [23]. Such a study
supports the complexity of calcium signaling, which needs further investigation in order to strongly
associate VGCC expression within cancer progression. In addition, the aberrant hypermethylation of
the CACNA1G gene (Cav3.1) can modulate TTCC expression. It has been found in various human
primary tumors (colorectal, pancreatic, hepatic, and gastric cancer, as well as in acute myeloid leukemia),
causing a drastic reduction in Cav3.1 levels. The inactivation of CACNA1G in particular neoplasms
suggests that it may play a role as a tumor suppressor gene in such tumors [37–40].

3. Expression of T-type Calcium Channels in Melanoma

Cutaneous melanoma is a malignant skin cancer that arises from transformed melanocytes de
novo or from congenital or acquired melanocytic nevi [41]. Melanoma is the most dangerous form of
skin cancer, and its incidence is steadily increasing worldwide. Since melanoma can be diagnosed
in young and middle-aged adults [42,43], it causes unbalanced mortality in that population, being
responsible of one of the highest rates of loss of potential life for adult-onset cancers [44]. Melanoma
cells have a high ability of local invasion and metastasis, even when arising from very small-volume
tumors [45]. Once in advanced stages, the prognosis of melanoma is still poor, despite being the subject
of intense research groups and numerous clinical trials that have increased therapeutic options, such
as certain targeted and immunotherapies [46].

Available evidence indicates that calcium signaling plays an important role in melanoma cell
viability and motility [47,48]. In 2012, it was reported for the first time that TTCCs were highly
expressed in melanoma cells compared with melanocytes. Likewise, it was shown that TTCC expression
was functional using calcium imaging techniques, which measure changes in the concentration of
intracellular calcium flux through the membrane-permeable fluorescent dye Fura-2, which has the
ability to bind to calcium [18].

Afterwards, using human biopsies, Maiques and colleagues were able to study the expression of
TTCCs, comparing normal skin, melanocytic nevi, and melanoma tumors, with the aim of establishing a
correlation between tumor progression and disease-free survival. By immunohistochemistry techniques,
they described a progressive increase in the expression of TTCCs from normal skin to common nevi,
dysplastic nevi, and primary and metastatic melanoma samples, but with differences in the distribution
of TTCC isoforms (Table 1; Figure 1A). Particularly, Cav3.2 expression was significantly higher in
metastatic melanoma than in primary melanoma, while Cav3.1 expression was increased in all samples
of melanoma (both primary and metastatic). Moreover, a positive correlation was indicated between
Breslow thickness-an important clinicopathological prognostic factor in primary melanomas-and the
expression of TTCCs (Cav3.1 and Cav3.2) (Figure 1A) [21]. Additionally, the same study analyzed
the presence of Cav3.1 and Cav3.2 isoforms in the four main primary cutaneous melanoma subtypes
(superficial spreading malignant melanoma (SSMM), nodular melanoma (NM), acral lentiginous
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melanoma (ALM), and lentigo maligna melanoma (LMM)). Whilst the expression of Cav3.1 was not
significantly different between the primary melanoma subtypes, the expression of Cav3.2 was higher
in NM and ALM, suggesting a possible contribution of Breslow thickness [21].Cancers 2020, 12, x 5 of 14 
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Figure 1. Cav3.1 and Cav3.2 T-type calcium channel (TTCC) expression during the progression of
melanoma and depending on genetic profile. (A) Increased expression of Cav3.1 and Cav3.2 during
melanoma progression (Clark model) and after acquisition of resistance to BRAF inhibitors (the last
in the case of BRAFV600E melanoma). (B) Expression of Cav3.1 in primary and metastatic melanoma
depending on genetic profile (BRAFV600E vs. non-BRAF-mutant melanoma).

It is well known that the most prevalent genetic hallmark of cutaneous melanoma is the presence of
BRAF (BRAFV600E/K, 40–50%) or NRAS (NRASQ61, 20%) mutations, which are mutually exclusive [49].
Recently, the expression of TTCCs was investigated in different melanoma cell lines and human biopsies
according to their genetic profile [20]. Melanoma cell lines that harbored BRAFV600E mutation showed
higher mRNA levels of the Cav3.1 and Cav3.3 isoforms compared with melanoma cells with NRAS
mutation, whereas no significant differences were observed regarding Cav3.2 mRNA levels. Extending it
to clinical settings, a cohort of primary and metastatic melanoma human biopsies bearing BRAFV600E/K

gene mutation showed a higher immunoexpression of Cav3.1 compared with a BRAF wild-type
melanoma cohort (Table 1; Figure 1B) [20].

4. The Role of T-Type Calcium Channels in Melanoma

The concentration and tight regulation of calcium is essential for the communication of the
extracellular medium, with different cellular compartments involved in calcium homeostasis during
processes such as cell cycle, proliferation, apoptosis, and migration. TTCCs can regulate a variety of
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calcium-dependent cellular processes to support malignant growth, including proliferation, motility,
survival, and differentiation.

4.1. Cell Proliferation and Apoptosis

Cell proliferation is a complex mechanism orchestrated by several proteins and might be regulated
by calcium signaling in different parts of the cell. TTCCs seem to be especially suitable for promoting
cell cycle progression due to its rapid activation after weak depolarization. This feature allows for
transient increases in cytosolic calcium in non-excitable cells that seem to favor mitotic progression
by the direct binding of calcium to intracellular effectors such as calmodulin (CaM). VGCCs also
participate in the progression of cancer by generating calcium wave oscillations, such as those provided
by TTCCs, which favor the progression of the cell cycle [3]. Initial results showed that TTCC expression
plays a crucial role in melanoma cell viability and in the induction of cell cycle progression (Figure 2).
TTCC knockdown experiments of Cav3.1 and Cav3.2 genes have induced cell cycle arrest at the G1 and
S phases. Specifically, the Cav3.1 isoform has been associated with slow cycling and upregulation under
environmentally stressful conditions, such as hypoxia. It has also been shown that Cav3.2 expression
correlates with high proliferation rates in melanoma cells [18]. In the same way, by immunodetection
of different proteins involved in the progression and development of melanoma, it was determined
that the Cav3.2 isoform was associated with Glut1 expression-a marker of hypoxia-as well as with
cyclin D1 and Ki-67-two markers of proliferation [21].
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Figure 2. TTCCs play a significant role in cellular proliferation, apoptosis, migration, autophagy,
and acquisition of BRAFi resistance in melanoma. The figure represents the relationships identified
in different studies between TTCC expression and autophagy, and the effects of TTCC blockers in
melanoma cells.

Consequently, the inhibition of TTCCs affects their functionality; therefore, the cellular functions
involved are compromised. Mibefradil was the first selective pharmacological TTCC inhibitor approved
by the FDA; it was marketed by Roche as Posicor® for the treatment of hypertension, but was later
withdrawn due to drug-drug interactions [50]. However, Mibefradil has been recently re-approved,
under the condition of “orphan medication,” so that its efficacy for the treatment of pancreatic
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cancer, glioblastoma multiforme, and ovarian cancer can be investigated (clinicaltrials.gov). Similarly,
Pimozide-an antipsychotic drug-is also a strong inhibitor of TTCCs that inhibits tumor cell proliferation
and decreases cell migration in hepatocellular carcinoma [51], prostate cancer [52], breast cancer [53],
and melanoma [54].

In a follow-up study, Das and colleagues showed that TTCC blockers of clinical use (Mibefradil
and Pimozide) had a dual effect on cell viability. They clearly decreased BrdU incorporation in
melanoma cells compared with untreated cells, and a halt in cell proliferation was indicated, but a
remarkable increase in apoptotic cell death was also observed (an increase in propidium iodide (PI)
staining cells and the percentage of cells in the sub-G1 phase) (Figure 2). Further, it was determined
that the apoptotic death of melanoma cells was partially dependent on caspase cascade activation,
through the appearance of a cleavage fragment of effector caspase-3 after TTCC blocker treatment [19].
An in-depth analysis of the death process induced by TTCC blockers revealed that the apoptotic
pathway was preceded by endoplasmic reticulum (ER) stress and the subsequent inhibition of basal
macroautophagy, which is constitutively active in melanoma cells (Table 1) [19,21,55,56]. TTCCs have
been suggested to couple the calcium influx to ER calcium storage [57]. It has been shown that TTCC
blockers induce ER stress with an upregulation of unfolded protein response (UPR) markers (chaperone
GRP78, transcription factor XBP-1, and GADD153) as an anti-tumoral strategy in melanoma cells [19].

4.2. Autophagy

Autophagy is a catabolic process that helps to maintain cellular homeostasis, so that cells
can degrade and recycle damaged organelles and proteins through catabolism [58]. The crosstalk
between calcium and autophagy has a central role in cellular homeostasis and survival during several
physiologic and pathologic conditions [59]. Autophagy is constitutively induced in melanoma cells
and is a housekeeping process involved in tumor progression and melanoma metastasis [19,56,60,61].

Our group was the first to show that the Cav3.1 isoform is upregulated in both melanoma cell lines
and biopsies from BRAFV600E-mutant melanomas, which was accompanied by increased levels of LC3II
protein-important for the autophagic process-compared with NRAS-mutant melanomas [20]. In line
with this, we described a significant correlation between the presence of BRAFV600E-mutant protein with
Cav3.1 expression and a positive link to LC3II protein in a cohort of primary and metastatic melanomas
(Table 1; Figure 2) [21]. These results reinforce the basal autophagy present in melanoma, which is
enhanced in BRAFV600E-mutant melanoma cells and related to the upregulation of the Cav3.1 isoform.

TTCC blockers inhibit autophagy and induce cell death in all melanoma cells, regardless of the
specific mutation present [19,20]. Recently, our group performed in vivo xenograft mouse models with
subcutaneous injections of melanoma cell lines, with a further administration of Mibefradil daily via
oral gavage for 2 w. We showed that TTCC blocker treatment significantly reduces tumor growth and
induces apoptosis via an autophagy blockade in xenograft melanoma models (Table 1) [22].

Mitophagy is an essential process that maintains mitochondrial quality and number, thus limiting
cellular degeneration. Along with apoptosis, mitophagy participates in cellular fate decisions by
eliminating damaged mitochondria. A variety of mitochondrial parameters (structure, membrane
potential, own machinery, etc.) are important regulators of the mitochondrial capacity for calcium
uptake due to their close apposition with the ER [62]. Mitochondrial calcium is rapidly balanced by an
equivalent calcium outflow from the organelle, which depends on the exchange of sodium, but only
up to a cytosolic concentration called the “mitochondrial set point.” TTCCs have to satisfy both the
maintenance of a sustained influx of calcium into the cell and the direct part of this calcium towards the
mitochondria. Gouriou and colleagues have shown that cytosolic calcium elevations were paralleled
by mitochondrial calcium elevations, which were also increased by TTCCs overexpression [63].

Autophagy-mediated degradation of ER fragments or ER-phagy contributes to the removal of
aberrant protein products from the lumen or ER membrane. The ER acts as a dynamic intracellular
calcium reservoir, controlling cytosolic calcium levels [64]. It has been shown that disruptions in the
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cellular energy levels, the redox state, or calcium concentrations reduce the protein folding capacity of
the ER, and lead to the accumulation and aggregation of unfolded proteins, resulting in ER stress [65].

4.3. Migration and Invasion

Cell migration is a process whereby cancer cells escape the primary tumor and invade other
tissues to develop metastases. Maiques and co-workers assessed the effect of TTCC blockers on the
migration and invasion of melanoma cells using wound-healing, single-cell, and transwell assays [66].
We showed that TTCC blockers reduce the migration rates and invasive potential of BRAFV600E-mutant
melanoma cells due to autophagy inhibition, with no significant effect in NRAS-mutant melanoma
cells (Table 1; Figure 2) [20,66]. Melanoma cell invasion and subsequent metastasis are hallmarks of
melanoma dissemination [67]. Snail1 is a transcription factor that induces epithelial-mesenchymal
transition (EMT) [68], and it has been shown to be crucial during melanoma cell motility and
invasiveness [20,69,70]. Moreover, Snail1 expression was higher in BRAFV600E-mutant melanomas
compared with BRAF wild-type melanoma cells and biopsies, and its expression decreases upon
an autophagy blockade by TTCC blockers. Consequently, we stated that Snail1 could be essential
during a metastatic cascade of melanomas with BRAF mutation [20]. All the effects produced by
pharmacological blockers of TTCCs related with the induction of apoptosis, the blockade of autophagy,
and the reduction of migration/invasion processes in melanoma cells were mimicked by TTCC gene
silencing (Figure 2) [19,20].

4.4. Tumor Progression and Prognostic Marker

Several studies emphasize the expression of TTCCs not only as a marker of tumor progression, but
also as a prognostic marker. Indeed, in silico analysis of the database from The Cancer Genome Atlas
(TCGA) indicated that disease-free survival (DFS) and overall survival (OS) were inversely correlated
with the increased expression of Cav3.2, and DFS was also inversely correlated with overexpression of
Cav3.1 (Figure 2). All results indicate that the expression of these two TTCC isoforms correlates with
the tumor progression of melanoma and that their overexpression in the primary tumor may be an
indicator of poor prognosis [21].

5. T-Type Calcium Channels and BRAF Inhibitor Resistance in Melanoma

A high frequency of activation of several mechanisms in cancer cells underlying the development
of resistance under pharmacological treatment (chemotherapy, target therapy or immunotherapeutic
agents) has been widely described. As mentioned, a high percentage of melanoma cases (40–60%)
present BRAFV600 mutation (V600E or V600K) [71]. Vemurafenib was the first BRAFV600E drug inhibitor
(BRAFi) approved for the treatment of advanced melanoma. However, progressive disease after a
short period of administration was one of the main issues (common to other BRAF inhibitors, such
as Dabrafenib), leading to the development of secondary resistance [72]. A number of molecular
mechanisms underlying this resistant phenotype have already been elucidated, by reactivation of
the MAPK and/or the PI3K-Akt pathways [73–76]. Therefore, a deeper characterization of resistance
mechanisms to BRAFi remains essential for determining new-generation therapeutic strategies [77–79].

An increasing number of studies have shown a clear link between calcium channel expression and
sensitivity to therapeutic drugs. Many calcium channels are involved in quimioresistance acquisition
in a large variety of cancers [80]. To date, in addition to our group results, there are no studies
about TTCCs and melanoma treatment resistance acquisition. Our team is the first to propose that
overexpression of TTCC Cav3.1 could be a key mechanism in the acquisition of BRAFi resistance in
melanoma cells. In this context, we set out to study the modulation of TTCCs and/or the inhibition
of autophagy as a possible therapy for Vemurafenib-resistant melanoma. In fact, our group recently
demonstrated that chronic exposure to Vemurafenib-induced drug resistance in BRAFV600E-mutant
melanoma cells was due to a Vemurafenib-promoting autophagic process, a mechanism that contributes
to BRAFi resistance in melanoma cells [22,81–83]. In addition, Barceló and colleagues showed that
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both Vemurafenib-resistant BRAFV600E-mutant melanoma cells and biopsies from human melanoma
relapsing under BRAFi expressed higher levels of the Cav3.1 isoform and the LC3 protein compared with
their parental Vemurafenib-sensitive cell line or pre-treatment melanoma tumors, respectively (Table 1;
Figures 1A and 2). In silico analysis reinforced this observation, indicating that Cav3.1 enrichment and
enhanced basal autophagy influence the arising intrinsic mechanism of BRAFi resistance in melanoma.
Furthermore, in the same study, we determined that a TTCC blocker (Mibefradil) decreases cell viability
and induces apoptosis as well as impairs migration and invasion rates in Vemurafenib-resistant
melanoma cells due to autophagy inhibition (Table 1; Figure 2). In addition, oral administration of
Mibefradil in SCID mice models reduced tumor growth in resistant melanoma cells and induced
apoptosis via a blockade of autophagy [22]. These results suggest that the inhibition of autophagy,
induced indirectly through TTCC blockers, could be a therapeutic tool to drive apoptosis and to reduce
migration and invasion rates in BRAFi melanoma-resistant cells. It therefore could be a new therapy
against the secondary resistance of melanoma arising after chronic treatment with Vemurafenib.

6. T-type Calcium Channels as a Therapeutic Target in Melanoma

Identifying TTCC expression in tumors and characterizing their functionality may introduce
alternative treatments, particularly for patients in which the tumor relapses after standard therapies.

At present, it is possible to arrest cancer cell proliferation and induce cell death by inhibiting TTCCs
on a wide range of cancer cells. Conversely, the use of TTCC pharmacological blockers has proven
effective in reducing the viability of tumor cells grown in vitro [19,20,22,30,31,84] and in preclinical
tumor growth mice models [22,30,31,85,86]. There are a variety of agents that could affect TTCCs with
varying degrees of specificity. As mentioned, the TTCC blocker, Mibefradil, is an FDA “orphan drug”
approved for its efficacy to treat ovarian cancer (2007), pancreatic cancer (2008), and glioblastoma
multiforme (2009) (https://www.accessdata.fda.gov/scripts/opdlisting/oopd/listResult.cfm). Mibefradil
has been recognized as a proliferative inhibitor in many different cell lines, including mononuclear
blood cells [87], leukemia [88], glioblastoma [89], retinoblastoma [90], and tumor cells of the pituitary
gland [91]. Apart from its anti-proliferative properties, Mibefradil has been shown to affect cell motility
and the invasive properties of fibrosarcoma [92].

Melanomas are highly heterogeneous due to their mutational and epigenetic profiles and, when
disseminated, poorly respond to chemotherapy and radiotherapy regimens, so diverse specific targets
involved in melanoma progression are under evaluation. Therefore, the development of innovative
strategies remains critical for increasing available anticancer therapies for melanoma. A number
of publications reporting TTCC expression (especially Cav3.1 and Cav3.2) in melanoma are now
available. These describe the involvement of TTCCs in melanoma progression and as a prognostic
biomarker, Cav3.1 upregulation in BRAFV600E-mutant melanomas, and further involvement in the
acquisition of resistant mechanisms to conventional treatments (Figure 2) [19–22]. It has been shown
that pharmacological inhibitors of TTCCs induce a cell cycle arrest, induce a caspase-dependent
apoptosis, and reduce tumor growth preceded by the activation of ER stress and the subsequent
inhibition of the autophagic flux, constitutively activated in melanoma cells [19,22]. Indeed, Mibefradil
treatment induces cell death and reduces the migration/invasion rates in BRAFV600E-mutant melanoma
cells due to autophagy blockade, as a possible emerging therapeutic strategy against melanoma
progression (Table 1; Figure 2) [20]. In accordance, the inhibition of enhanced autophagy by TTCC
blockers reduce tumor aggressiveness in recurrent Vemurafenib-resistant melanomas, decrease Cav3.1
expression, and avoid the acquisition of resistance to BRAFi treatment in BRAFV600E-mutant melanoma
cells [22,93]. For all described, TTCC blockers could be targetable to deregulate autophagy and may
offer a new mechanism to combat melanoma progression and therapeutic resistance to conventional
anticancer drugs.

https://www.accessdata.fda.gov/scripts/opdlisting/oopd/listResult.cfm
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7. Conclusions

TTCC blockers reduce the viability and tumor growth of melanoma cells, providing a new
target therapy for melanoma treatment. Identifying an enhanced TTCC expression in melanoma and
characterizing their function may introduce additional treatment alternatives, especially for patients
who do not respond to standard therapies or develop resistant tumors. The expression of Cav3.1, with
a positive correlation with autophagy biomarkers related to melanoma progression, prognosis, and
resistance acquisition to BRAFi, can lead to the development of new therapeutic strategies by which
TTCCs are blocked in order to deal with the development and emergence of metastatic melanoma.
Thus, new biochemical compounds that block TTCCs could become valuable partners to impede mid-
and long-term melanoma progression.
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