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For many decades, basic and preclinical cancer research has been based on the use of established,
commercially available cell lines, originally derived from patients’ samples but adapted to grow
indefinitely in artificial culture conditions, and on xenograft models developed by injection of these
cells in immunocompromised animals. These models have been extremely useful for shedding light
on cancer cell biology; however, in a number of cases, they have proved to be unsuitable for biomarker
discovery, drug screening, and therapeutic preclinical testing [1].

The effort to find preclinical models able to better predict the clinical outcome led to the generation
of patient-derived cancer models, obtained either by propagating fresh tumor tissues in experimental
animals, e.g., patient-derived xenograft models (PDXs); deriving 3D structures from human cancer
tissues, i.e., organoids; or maintaining tumor cells under in vitro 2D tissue culture conditions for a
short period.

PDXs have been successfully derived from a variety of solid or hematologic primary and
metastatic cancers [2,3] by applying different procedures. Cancer samples can be subcutaneously
or orthotopically xenografted to recapitulate microenvironmental interactions within patients.
In particular, acute eukemias and other bone-marrow-resident disorders readily undergo orthotopic
engraftment after tail-vein or intraosseous injection. PDXs well recapitulate the genetic, transcriptional,
and histological features of the original tumors [4]. The genetic stability of the PDX model through
successive mouse-to-mouse passages in vivo has been questioned [5], but more recent works have
shown their genomic fidelity with respect to the originating patient tumors [6]. Moreover, they proved
to have high predictive power in biomarker discovery and drug testing, for both molecular compounds
and chemotherapy [7–9]. Compared to genetically engineered mouse models (GEMMs), which similarly
proved to successfully predict clinical efficacy [10], PDX establishment is simpler and faster. However,
the main advantage of GEMMs is their proficient immune system. The next-generation forms of PDXs
are humanized models, in which selected immune components are introduced in mice in an effort to
generate a (partially) competent human immune system [11,12].

Concerning in vitro derivatives, several groups have elaborated specific protocols for cell isolation
and 3D or 2D cultures from various tumor types, and their genotype-driven responses have been
confirmed in vivo in matched PDXs [13,14]. For their simplicity and low cost, 2D models are widely
used for high-throughput screenings, even if they are usually limited by low proliferative capacity
in culture. Three-dimensional cultures better mimic the physical features and the architecture of the
original (solid) tumors, even if they lack the stroma component [15]. Novel techniques, however,
have been recently proposed in order to obtain cancer organoids containing fibroblasts and immune
cells [16,17].

All these patient-derived experimental models should be considered complementary and not
alternative, as every model system is imperfect and suitable in its own way.

This Special Issue aims at improving our understanding of the possibilities and limitations of
patient-derived cancer models by including works not only from investigators using these models but
also from those who are engaged in developing novel models, e.g., those for cancer immunology studies.
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