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Simple Summary: Most women with ovarian cancer are diagnosed after they develop symptoms—
identifying symptomatic women earlier has the potential to improve outcomes. Tools, ranging from simple
symptom checklists to diagnostic prediction models that incorporate tests and risk factors, have been
developed to help identify women at increased risk of undiagnosed ovarian cancer. In this review,
we systematically identified studies evaluating these tools and then compared the reported diagnostic
performance of tools. All included studies had some quality concerns and most tools had only been
evaluated in a single study. However, four tools were evaluated in multiple studies and showed moderate
diagnostic performance, with relatively little difference in performance between tools. While encouraging,
further large and well-conducted studies are needed to ensure these tools are acceptable to patients and
clinicians, are cost-effective and facilitate the early diagnosis of ovarian cancer.

Abstract: In the absence of effective ovarian cancer screening programs, most women are diagnosed
following the onset of symptoms. Symptom-based tools, including symptom checklists and risk
prediction models, have been developed to aid detection. The aim of this systematic review was to
identify and compare the diagnostic performance of these tools. We searched MEDLINE, EMBASE
and Cochrane CENTRAL, without language restriction, for relevant studies published between
1 January 2000 and 3 March 2020. We identified 1625 unique records and included 16 studies,
evaluating 21 distinct tools in a range of settings. Fourteen tools included only symptoms; seven also
included risk factors or blood tests. Four tools were externally validated—the Goff Symptom Index
(sensitivity: 56.9–83.3%; specificity: 48.3–98.9%), a modified Goff Symptom Index (sensitivity: 71.6%;
specificity: 88.5%), the Society of Gynaecologic Oncologists consensus criteria (sensitivity: 65.3–71.5%;
specificity: 82.9–93.9%) and the QCancer Ovarian model (10% risk threshold—sensitivity: 64.1%;
specificity: 90.1%). Study heterogeneity precluded meta-analysis. Given the moderate accuracy of
several tools on external validation, they could be of use in helping to select women for ovarian
cancer investigations. However, further research is needed to assess the impact of these tools on the
timely detection of ovarian cancer and on patient survival.

Keywords: ovarian cancer; symptoms; early detection; risk assessment; diagnostic prediction model;
triage tool; ovarian cancer symptoms
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1. Introduction

Ovarian cancer is the eighth most common cancer to affect women worldwide, accounting for
over 384,000 deaths in 2018 [1]. Outcomes are strongly linked to stage at diagnosis, with five-year
survivals of 90% and 4% for UK women diagnosed at stages I and IV, respectively [2]. Given this,
large ovarian cancer screening trials have been conducted, but these have so far failed to demonstrate
a significant reduction in long-term mortality [3,4]. In the absence of effective screening programs,
the majority of ovarian cancers are diagnosed following symptomatic presentation [5,6], and a focus
has been placed on the early detection of symptomatic disease [7].

While once regarded as a ‘silent killer’, many studies have demonstrated that a range of symptoms
are more common in women with ovarian cancer than in control subjects and that symptoms occur at
all stages of the disease [8]. Clinical guidelines in countries around the world recommend that patients
presenting with symptoms of possible ovarian cancer undergo investigation, although debate remains
over which symptoms are indicative of disease and should be included in guidelines [7]. To facilitate
the early detection of symptomatic cancer, researchers have developed a number of symptom-based
checklists for use either when patients first present in the clinical setting or in ‘symptom-triggered
screening’ programs, in which symptoms are proactively solicited [9–11]. More sophisticated tools,
which can take the form of diagnostic prediction models [12], have also been developed to incorporate
test results and ovarian cancer risk factors alongside symptoms, in a bid to improve tool performance.
Several of these tools have been incorporated into clinical computer systems, which, then, automatically
alert the clinician to consider ovarian cancer investigations when relevant symptoms are present or
when the risk of undiagnosed cancer reaches a certain level. However, the relative limitations and
merits of the various available tools remain unclear. In this systematic review, we aimed to identify and
compare the diagnostic performances of symptom-predicated tools for the detection of ovarian cancer.

2. Methods

2.1. Eligibility Criteria and Searches

This review was conducted and is reported in accordance with the Preferred Reporting Items for
Systematic Reviews and Meta-Analysis (PRISMA) guidelines (Table S1); a study protocol was registered
with PROSPERO [CRD42020149879]. We searched MEDLINE, EMBASE and Cochrane CENTRAL
for keywords relating to ovarian cancer, symptoms and prediction/diagnostic tools to identify papers
published between 1 January 2000 and 3 March 2020 (Text S1). The start date was chosen to predate
the publication of key ovarian cancer symptom papers [13,14]. No language restrictions or restrictions
on methodological design were applied. No restrictions were placed on study setting, so studies
conducted in the general population or in primary, secondary, or tertiary care were all eligible for
inclusion. Reference lists of included papers were screened to identify any additional relevant papers.

Studies were included if they (a) described the development and or evaluation of a multivariable
tool designed to identify patients with undiagnosed ovarian cancer and (b) provided the sensitivity and
specificity of the tool or gave sufficient data to allow these metrics to be calculated. For the purposes
of this review, we defined a multivariable tool as a combination of three or more variables used to
detect or predict the risk of undiagnosed ovarian cancer. This broad definition encompasses traditional
multivariable diagnostic prediction models and clinical prediction rules [12,15]. We considered variable
‘checklists’, in which any one variable in the list needed to be present for a positive result, to be a
form of multivariable tool. As the focus of this review was on symptom-based tools, the tool under
investigation had to include at least one symptom for a study to be eligible. No other restrictions were
placed on the type of variable that could be included in a tool. Studies on tools intended to estimate
future risk of developing ovarian cancer rather than the current risk of having an undiagnosed ovarian
cancer were excluded, as were studies on tools that solely provide an indication of the risk of relapse or
recurrence. We excluded studies in which all participants had a pelvic mass—as this represents a highly
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selected high-risk population—and studies undertaken solely in paediatric (<18 years) populations.
Non-primary research studies were also excluded.

2.2. Study Selection

The online Rayyan software was used to facilitate abstract screening and study selection [16].
Following removal of duplicates, two reviewers (G.F. and V.H.) independently screened titles and
abstracts against eligibility criteria. Potentially eligible papers identified at the screening stage were
obtained and the full texts were independently examined against eligibility criteria by two reviewers
(G.F. and V.H.). Any disagreements were resolved by consensus.

2.3. Data Extraction and Synthesis

Data extraction was performed by one reviewer (G.F.) and checked against full-text papers
by a second reviewer (V.H.) to ensure accuracy. Using a predeveloped template, information was
extracted on study characteristics (year of publication and location), study design (methodology,
population, data source and outcome definition), tools (variables and tool development methods),
and tool performance metrics (sensitivity, specificity and other diagnostic metrics). Where a study
evaluated multiple tools, data relating to each tool were extracted separately.

Sensitivity and specificity were used to compare tool accuracy. For diagnostic prediction models,
area under the receiver operator characteristic curve (AUC) was used to compare discrimination (the
ability of a tool to identify those with a condition from those without a condition) and calibration
(agreement between estimated and observed outcomes). Due to the marked heterogeneity of included
studies in terms of the study designs, populations, variable definitions, outcome definitions and
use of different tool thresholds, and the failure of multiple studies to report numbers of patients
with true positive/true negative/false positive/false negative results, we were unable to perform any
meta-analyses. Instead, performance characteristics were summarised in tabular form and using
a narrative synthesis approach. When synthesising data, we paid particular attention to several
study and tool characteristics. First, the source of participant recruitment. For example, whether
controls were recruited from the general population or after entry into healthcare, as symptoms may
be more common in clinical controls than population controls, which could influence measures of
tool sensitivity and specificity [17]. Second, whether the measures of tool accuracy were obtained
directly from the patient sample in which the tool was developed (apparent performance), by applying
internal validation methods, such as splitting the sample into development and validation sets or using
cross-validation techniques (internal validation), or from a separate analysis in a distinct population
(external validation) [12]. Tools usually exhibit poorer diagnostic performance in external validation
studies than when evaluated in the original development sample, and external validation of tools
is recommended before they are used in clinical practice [12]. Third, we considered whether tools
consisted solely of symptoms or symptoms in addition to other variables, as this is likely to impact the
clinical utility of the tool.

2.4. Risk of Bias Assessment

The Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool was used to assess
the risk of bias and applicability of the included studies [18]. QUADAS-2 includes signalling questions
(intended to identify areas of potential bias or concern over study applicability) covering four domains:
(1) patient selection, (2) index test(s), (3) reference standard and (4) flow and timing. Each domain was
rated as having “high”, “low” or “unclear” (where insufficient information is provided) risk of bias.
Domains 1–3 were also rated for applicability as “high”, “low” or “unclear” concern. Two reviewers
(G.F. and V.H.) independently assessed each study using QUADAS-2. Ratings were compared and
disagreements were resolved by consensus.
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3. Results

3.1. Study Selection

In total, 2331 records were identified from database searches, of which 708 were duplicates.
Two additional records were identified from examination of reference lists. A total of 1625 titles and
abstracts were screened, and 35 full-text papers were examined. Sixteen studies met the eligibility
criteria and were included (Figure 1).
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Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) flow diagram
illustrating the study selection process.

3.2. Study Characteristics

The characteristics of the included studies are summarised in Table 1 and additional exclusion criteria
are detailed in Supplementary Material Table S2. Three studies were population-based [19–21], five studies
were based in a primary care setting [14,22–25], four studies were entirely hospital-based [26–29] and four
studies were hospital-based but also recruited controls from screening studies [30–33]. All population-
and hospital-based studies were of case-control design. Two of the studies that recruited from the
hospital setting included a proportion of controls with benign ovarian pathology [26,28]. Three of the
five primary care studies were of cohort design [22–24], and the remaining two were of case-control
design [14,25]. The studies used a variety of data sources for variables, including pre-existing routinely
collected primary care data (n = 6), information from surveys or patient interviews (n = 11) and blood
samples (n = 4). Study sizes varied markedly, with 75–1,908,467 participants and 24–1885 women with
ovarian cancer per study. While all studies used ovarian cancer as an outcome, how this was defined
differed, with some only including invasive epithelial cancer or specifically stating that they excluded
borderline tumours [19–21,26–29], and others apparently including both invasive and borderline epithelial
tumours or all ovarian cancers [14,22–25,30–33]. One study included ovarian cancer alongside other
common cancers in a composite outcome, but tool performance characteristics for each cancer were given
separately [23]. Seven studies developed entirely new tools [14,19,22,23,25,30,33], six modified existing
tools [26–29,31,32] and eight externally validated existing tools [20,21,24,26–29,33].
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Table 1. Study characteristics.

Author, Date,
Country

Design Objective
Primary

Outcome

Candidate
Variable Data

Sources
Participants Study SampleCase

Control Cohort Develop New
Tool

Modify Existing
Tool

Externally
Validate Existing

Tool

Population based

Lurie, 2009, USA • •

Primary
invasive
ovarian

carcinoma

In-person patient
interviews using a
structured survey

Cases: Women aged 19–88 years
histologically-confirmed primary

invasive ovarian carcinoma
(1993–2007)

Controls: Aged ≥ 18 years, Hawaii
resident ≥ 1 year, randomly selected

from statutory state survey
Frequency-matched to cases (1:1) by

age, ethnicity, interview time

Cases: 432
Controls: 491

Rossing, 2010, USA • •

Primary
invasive

epithelial OC
a

In-person
interviews

Cases: Residents in western
Washington State, aged 35–74 years,
diagnosed with a primary invasive
epithelial ovarian tumour (January

2002–December 2005)
Controls: Selected by random digit
dialling with stratified sampling in

5-year age categories, 1-year calendar
intervals and two (urban vs. suburban

or rural) county strata

Cases: 594
Controls: 1313

Jordan, 2010,
Australia • •

Invasive
epithelial OC Patient survey

Cases: Aged 20–79 years with
suspected OC, subsequently

diagnosed with invasive epithelial OC
(January 2002–June 2005)

Controls: Frequency-matched based
on age (5-year groups) and state of

residence identified from electoral roll
[34]

Cases: 1215
Controls: 1456

Primary care population

Hamilton, 2009,
England • •

Primary OC,
including
borderline

Researcher-coded
GP records

Cases: Aged ≥ 40 years with primary
OC diagnosed between 2000 and 2007
Controls: Matched on age, sex and GP

practice

Cases: 212
Controls: 1060

Hippisley-Cox,
2012, England and

Wales
• • OC (NOS) QResearch

database [35]

Aged 30–84 years, registered with GP
practices between 1 January 2000 and

30 September 2010

Development
(2/3)—1,158,723 women

with 976 OCs
Validation (1/3)—608,862

women with 538 OCs
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Table 1. Cont.

Author, Date,
Country

Design Objective
Primary

Outcome

Candidate
Variable Data

Sources
Participants Study SampleCase

Control Cohort Develop New
Tool

Modify Existing
Tool

Externally
Validate Existing

Tool

Hippisley-Cox,
2013, England and

Wales
• •

OC (NOS) and
10 other
cancers

QResearch
database [35]

Aged 25–89 years, registered with GP
practices between 1 January 2000 and

1 April 2012

Development
(2/3)—1,240,864 women

with 1279 OCs
Validation (1/3)—667,603

women with 606 OCs

Grewal, 2013,
England • •

Primary OC,
including
borderline

Researcher-coded
GP records

Cases: Aged ≥ 40 years with primary
OC diagnosed between 2000 and 2007
Controls: Matched on age, sex and GP

practice

Cases: 212
Controls: 1060

Collins, 2013, UK • • OC (NOS) THIN database
[36]

Women aged 30–84 years registered
with GP practices between 1 January

2000 and 30 June 2008

1,054,818 women with 735
cancers

Hospital + screening populations

Goff, 2007, USA • •
OC, including

borderline Patient survey

Cases: Women with a pelvic mass
recruited in secondary care prior to

OC diagnosis
Controls: (a) Healthy ‘high-risk’ b

women enrolled in a screening study
[37], (b) women who presented for

pelvic/abdominal US

Development
Cases: 74

Controls: 243
Validation
Cases: 75

Controls: 245

Andersen, 2008,
USA • • OC (NOS) Patient survey,

blood sample

Cases: Women with a pelvic mass,
recruited prior to OC diagnosis

Controls: Healthy ‘high risk’ b women
enrolled in a screening study [37]

Cases: 75
Controls: 254

Andersen, 2010,
USA • • OC (NOS) Patient survey,

blood sample

Cases: Women with a pelvic mass
recruited in secondary care prior to

OC diagnosis
Controls: Healthy ‘high risk’ b women

enrolled in a screening study [37],
frequency matched to cases on age

(</>50 years)

Cases: 74
Controls: 137

Lim, 2012, UK • • •
OC, including

borderline

(a) Survey,
(b) telephone

interview,
(c) GP notes

Cases: Women aged 50–79 years with
primary OC recruited prior to

diagnosis (February 2006–February
2008)

Controls: Screening trial participants
[38], frequency matched on year of
birth and agreement to a telephone

interview

Cases: 194 c

Controls: 268 c
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Table 1. Cont.

Author, Date,
Country

Design Objective
Primary

Outcome

Candidate
Variable Data

Sources
Participants Study SampleCase

Control Cohort Develop New
Tool

Modify Existing
Tool

Externally
Validate Existing

Tool

Hospital based population

Kim, 2009, Korea • • •
Epithelial OC

(NOS)
Patient survey,
blood sample

Cases: OC diagnosis
Controls: Women with benign ovarian

cysts recruited prior to surgery and
those undergoing routine pap smear

Cases: 116
Controls: 209 (Benign: 74,

Pap smear: 135)

Macuks, 2011,
Latvia • • •

Epithelial OC
(NOS)

Patient survey,
blood sample

Cases: Women with epithelial OC
recruited prior to surgery/diagnosis

Controls: Age-matched ‘healthy
women’ attending a gynaecology

outpatient clinic d

Cases: 24
Controls: 31 d

Shetty, 2015, India • • •
OC, excluding

borderline Patient survey

Cases: Women admitted to hospital
for investigation and subsequently

diagnosed with OC
Controls: (a) Women with benign

ovarian pathology; (b) those
undergoing a ‘gynaecological

check-up’

Cases: 74
Controls: 218 (benign: 144,
gynaecological check-up:

74)

Jain, 2018, India • • •
OC, excluding

borderline
Patient survey,
blood sample

Cases: Women undergoing surgery for
a pelvic mass, subsequently diagnosed

with ovarian cancer
Controls: First-degree healthy

relatives of cases

Cases: 45
Controls: 90

a Data collected on borderline tumours but not included in their tool performance evaluation. b Women with high-risk family histories consistent with a possible BRCA1/2 mutation in their
families, participating in the Ovarian Cancer Early Detection Study (OCEDS) [37]. c Numbers varied by study component: questionnaire (191 cases, 268 controls), telephone interview (111
cases, 125 controls) and GP notes (171 cases, 227 controls). d Controls with benign gynaecological disease were also included in study but are excluded from the review, as performance was
examined separately to healthy controls and no overall specificity measure was given. Study design and Objectives denoted by “•”. Abbreviations: OC = Ovarian cancer; NOS = Not
otherwise specified; GP = General practice; US = Ultrasound.
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3.3. Risk of Bias

The main potential sources of bias were identified in the “patient selection” and the “index test”
domains (Figure 2). As the case-control design can lead to overestimation of test performance [18],
13 studies were flagged as being at high risk of bias for patient selection. Key potential sources of
bias identified for studies in the “index test” domain included failing to pre-define the tool threshold
and retrospectively administering the tool after the outcome had been determined, e.g., questioning
participants after the ovarian cancer diagnosis had been made. The risk of bias was generally judged
as low for the “reference standard” and “flow and timing” domains. However, all primary care studies
were flagged as being at high risk of bias in the “reference standard” domain as they relied on general
practitioner (GP) records to identify ovarian cancer diagnoses, supplemented in two studies by death
registration data [22,23] rather than hospital or cancer registry histological diagnoses. Concern over
the applicability of studies was judged as low, save for the “reference standard” domain of one study
which used a composite cancer outcome [23].
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4. Tool Variables

The studies evaluated a total of 21 distinct tools, of which five were diagnostic prediction models
developed using appropriate statistical methods from which variable weights were derived [12].
We grouped variables included in the tools into four categories: (1) patient demographics, (2) personal
and family medical history, (3) symptoms and (4) test results (Table 2). By definition, all tools included
symptoms, with 14 including only symptoms. Four tools incorporated demographics, two incorporated
personal and family medical history and six incorporated test results. Five symptoms (abdominal
pain, pelvic pain, distension, bloating and appetite loss) were included in more than half (≥11) of the
tools and a further six symptoms (feeling full quickly, difficulty eating, postmenopausal bleeding,
urinary frequency, palpable abdominal mass/lump and rectal bleeding) were included in at least a
quarter (≥6) of the tools. Six tools were based on an existing tool—the Goff Symptom Index (SI)—which
was modified to include additional symptom or test result variables. Specifications of each tool,
including how variables were defined, are included in the Supplementary Material Table S3.
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Table 2. Variables included in the final tools.

Tool (Study,
Year) Demographics Personal/Family

History Symptoms Test Results

A
ge

O
ther

PM
H

FH

A
bdo.Pain

Pelvic
Pain

Increase
A

bdo.Size
/D

istens.

B
loat.

A
ppetite

Loss

Feeling
Full

D
iffi

culty
Eating

W
eightLoss

Postm
en.B

leeding

R
ectalB

leeding

Palpable
A

bdo.M
ass/lum

p

U
rinary

Freq.

O
ther

H
b

C
A

125

H
E4

Symptom checklists

Goff SI (Goff,
2007) • • • • • •

Modified Goff SI 1
(Kim, 2009) • • • • • • • Urinary urgency

Lurie 7-SI (Lurie,
2009 • • • • • • •

Bowel symptoms, difficulty
emptying bladder, dysuria,

fatigue, abnormal vaginal bleed.

Lurie 5-SI (Lurie,
2009) • • • • •

Difficulty emptying bladder,
dysuria, abnormal vaginal bleed.

Lurie 4-SI (Lurie,
2009) • • • • Abnormal vaginal bleed.

Lurie 3-SI (Lurie,
2009) • • Abnormal vaginal bleed.

Hamilton SI
(Hamilton, 2009) • • • • • • •

SGO consensus
criteria * (Rossing,

2010)
• • • • • Urinary urgency

Lim SI 1 (Lim,
2012) • • • • • • • •

Lim SI 2 (Lim,
2012) • • • • • Vaginal discharge

Hippisley-Cox SI
(Hippisley-Cox,

2012)
• • • • • •
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Table 2. Cont.

Tool (Study,
Year) Demographics Personal/Family

History Symptoms Test Results

Modified Goff SI 2
(Shetty, 2015) • • • • • • • • • Urinary urgency

A
ge

O
ther

PM
H

FH

A
bdo.Pain

Pelvic
Pain

Increase
A

bdo.Size
/D

istens.

B
loat.

A
ppetite

Loss

Feeling
Full

D
iffi

culty
Eating

W
eightLoss

Postm
en.B

leeding

R
ectalB

leeding

Palpable
A

bdo.M
ass/lum

p

U
rinary

Freq.

O
ther

H
b

C
A

125

H
E4

Augmented symptom checklists

Goff SI + CA125
(Andersen, 2008) • • • • • • •

Goff SI + HE4
(Andersen, 2010) • • • • • • •

Goff SI + HE4 +
CA125 (Andersen,

2010)
• • • • • • • •

Goff SI + CA125 +
menopause

(Macuks, 2011)
Menopause • • • • • • •

Prediction models

QCancer Ovarian
(Hippisley-Cox,

2012)
• OC • • • • • • •

QCancer Female
(Hippisley-Cox,

2013)
•

Townsend
score,

smoking,
alcohol,

BMI

T2DM,
COPD,

endomet.
hyperplasia
or polyp,
chronic

pancreatitis

OC, GI
cancer,
breast
cancer

• • • • • •

Difficulty swallowing,
heartburn/indigestion, blood in

urine, blood in vomit, blood
when cough, irregular menstrual
bleeding, vaginal bleeding after

sex, breast lump, breast skin
tethering or nipple discharge,

breast pain, lump in neck, night
sweats, venous

thromboembolism, CIBH,
constipation, cough,

unexplained bruising

•
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Table 2. Cont.

Tool (Study,
Year) Demographics Personal/Family

History Symptoms Test Results

A
ge

O
ther

PM
H

FH

A
bdo.Pain

Pelvic
Pain

Increase
A

bdo.Size
/D

istens.

B
loat.

A
ppetite

Loss

Feeling
Full

D
iffi

culty
Eating

W
eightLoss

Postm
en.B

leeding

R
ectalB

leeding

Palpable
A

bdo.M
ass/lum

p

U
rinary

Freq.

O
ther

H
b

C
A

125

H
E4

OC Score A
(Grewal, 2013) • • • • • • •

OC Score B
(Grewal, 2013) • • • • • • •

OC Score C
(Grewal, 2013) • • • • • • • •

* Consensus statement released by the Society of Gynaecologic Oncologists (SGO), the Gynaecologic Cancer Foundation and the American Cancer Society. The presence of a variable
within a model is denoted by “•”. The terms used to describe a given symptom varied subtly between studies—full details of each tool, including symptom terminology and duration and
frequency criteria, are included in Supplementary Material Table S3. Abbreviations: PMH = past medical history; FH = family history; Abdo. = abdominal; Distens. = distension; Bloat. =
bloating; Postmen. = postmenopausal; bleed. = bleeding; Freq. = frequency; Hb = haemoglobin; CA125 = cancer antigen 125; HE4 = human epididymis protein 4; SI = symptom index; OC
= ovarian cancer; BMI = body mass index; endomet. = endometrial; T2DM = type 2 diabetes mellites; COPD = chronic obstructive pulmonary disease; GI = gastrointestinal; CIBH =
change in bowel habit.
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4.1. Evaluation of Tool Performance

The diagnostic performance of the included tools is summarised in Table 3. Measures of diagnostic
performance for the majority of the tools were obtained directly from the patient sample with which
the tool was developed (apparent performance) or by applying internal validation methods, such as
splitting the sample into development and validation sets (internal validation), with only four tools—the
Society of Gynaecologic Oncology (SGO) consensus criteria, Goff SI, QCancer Ovarian, Modified
Goff SI 1—undergoing independent validation with an external dataset. Although the Goff SI in
combination with CA125 was evaluated in several studies, the CA125 thresholds used varied markedly,
so no studies were considered to have externally validated the same combination. There was overlap
in evaluation of tools between healthcare settings, but no tool evaluated in primary care was evaluated
in another setting or vice versa.

The most widely studied tool was the Goff SI, which was evaluated in nine studies [20,21,26,27,29–33],
but two of these used data from subsets of women in the original tool development study [31,32].
Apparent deviations from the original Goff SI in how variables were defined were noted in several studies
(Table S4). The Goff SI was the only tool to be externally validated in groups of women recruited from
more than one setting.

4.2. Tool Diagnostic Accuracy

4.2.1. Hospital Setting

All but two tools evaluated in hospital populations incorporated the Goff SI. Two of these underwent
external evaluation—the original Goff SI and a modified version incorporating additional symptoms
(Modified Goff SI 1). The Goff SI, which was externally validated in six studies, demonstrated sensitivities
which ranged from 56.9% to 83.3% (an outlier result) and specificities from 48.3% (an outlier result) to
98.9%. A modified version of the Goff SI (Modified Goff SI 1) demonstrated a sensitivity of 71.6% and a
specificity of 88.5% in a single external validation study.

Augmenting symptom checklists with baseline risk factors and test results generally led to a reduction
in sensitivity and an increase in specificity, or vice versa, depending on the threshold used. For example,
the addition of the serum ovarian cancer biomarker CA125 to the Goff SI by Anderson et al. (2008) led to a
reduction in tool sensitivity—if both variables were required to be abnormal for a positive tool result—or
in tool specificity—if only one was required to be abnormal for a positive tool result [31].

4.2.2. Population Setting

In women recruited from the population setting, two symptom checklists were externally validated
side by side—the Goff SI and the SGO consensus criteria. While the sensitivities and specificities of the
tools differed between the studies, within each study, they were similar, with an in-study maximum
difference in sensitivity of 3.4% and specificity of 2.4% between the tools.

4.2.3. Primary Care

A single tool (QCancer Ovarian), which took the form of a prediction model and combined
symptom variables with demographics, family history and routine blood test results, underwent
external validation in a primary care setting. When the threshold for abnormality was set to include
the 5% of women at the highest predicted risk, QCancer Ovarian had a sensitivity of 43.8% and
a specificity of 95%, while when the threshold was set to include women at the 10% highest risk,
the sensitivity increased to 64.1% but the specificity fell to 90.1%. Several scores, developed by Grewal
et al., demonstrated higher sensitivities and specificities than QCancer Ovarian at the 5% risk threshold
(OC Score B ≥ 4) and 10% risk threshold (OC Score C ≥ 4), but diagnostic accuracy measures were
derived from the same dataset used in score development.
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Table 3. Tool diagnostic accuracy.

Tool Study
Recruitment Source of Accuracy Estimate

Sensitivity
(95% CI)

Specificity
(95% CI) PPV

AUC
(95% CI)Population

Level 1◦ Care Hospital +
Screening Hospital Apparent

Performance
Internal

Validation
External

Validation

Symptom checklists

Goff SI

Goff, 2007 • •

≥50 yrs:
66.7

<50 yrs: 86.7

≥50 yrs:
90

<50 yrs:
86.7

- -

Andersen, 2008 a
• •

64
(52.1–74.8)

88.2
(83.6–91.9) - -

Kim, 2009 • • 56.9 87.6 - -

Rossing, 2010 • •
67.5

(65.4–69.6)
94.9

(93.9–95.8) 0.77–1.12 b -

Jordan, 2010 • •
68.1

(65.5–70.7) 85.3

0.09 c

(≥55 yrs:
0.21–0.31

<55 yrs: 0.04) d

-

Andersen, 2010 a
• •

63.5
(51.5–74.4)

88.3
(81.7–93.2) - -

Macuks, 2011 • • 83.3 48.3 - -

Jain, 2018 • • 77.8 87.8 - -

Lim, 2012 • • 61.4–75.7 e 89.6–98.9 e - -

Modified Goff SI 1
Kim, 2009 • • 65.5 84.7 - -

Shetty, 2015 • • 71.6 88.5 - -

7-symptom Index Lurie, 2009 • • 85 40 - -

5-symptom Index Lurie, 2009 • • 80 63 - -

4-symptom Index Lurie, 2009 • • 74 77 - -

3-symptom Index Lurie, 2009 • • 54 93 - -

Hamilton SI Hamilton, 2009 • • 85 85 - -

SGO consensus criteria
Rossing, 2010 • •

65.3
(63.1–67.4)

93.9
(92.8–95) 0.63–0.92 b -

Jordan, 2010 • •
71.5

(69–74.1)
82.9

(81–84.8)

0.08 c

(≥55 yrs:
0.18–0.27

<55 yrs: 0.05) d

-

Lim SI 1 Lim, 2012 • • 69.6–91 e 76–91 e - -
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Table 3. Cont.

Tool Study
Recruitment Source of Accuracy Estimate

Sensitivity
(95% CI)

Specificity
(95% CI) PPV

AUC
(95% CI)Population

Level 1◦ Care Hospital +
Screening Hospital Apparent

Performance
Internal

Validation
External

Validation

Lim SI 2 Lim, 2012 • • 67.3–91 e 82.4–94 e - -

Hippisley-Cox SI Hippisley-Cox, 2012 • • 71.9 82.9 0.5 -

Modified Goff SI 2 Shetty, 2015 • • 77 88.5 - -

Augmented symptom checklists

Goff SI or CA125 f Andersen, 2008 • •
89.3

(80.1–95.3)
83.5

(78.3–87.8) - -

Goff SI or CA125 (>35
U/mL) Jain, 2018 • • 97.8 68.9 - -

Goff SI & CA125 (>21
U/mL) Macuks, 2011 • • 79.1 100 - -

Goff SI & CA125 (>35
U/mL) Macuks, 2011 • • 70.8 100 - -

Goff SI & CA125 (>65
U/mL) Macuks, 2011 • • 70.8 100 - -

Goff SI or CA125 f Andersen, 2010 • •
91.9

(83.2–97)
83.2

(75.9–89) - -

Goff SI or HE4 f Andersen, 2010 • •
91.9

(83.2–97)
84.7

(77.5–90.3) - -

Any 1 of 3 (Goff SI or
CA125 or HE4) f Andersen, 2010 • •

94.6
(86.7–98.5)

79.6
(71.8–86) - -

Any 2 of 3 (Goff SI or
CA125 or HE4) f Andersen, 2010 • •

83.8
(73.4–91.3)

98.5
(94.8–99.8) - -

Goff SI & 1 or more of
CA125 or HE4 f Andersen, 2010 • •

58.1
(46.1–69.5)

98.5
(94.8–99.8) - -

Goff SI & CA125 (>25
U/mL) & menopause Macuks, 2011 • • 50 100 - -

Goff SI & CA125 (>35
U/mL) & menopause Macuks, 2011 • • 45.8 100 - -

Goff SI & CA125 (>65
U/mL) & menopause Macuks, 2011 • • 45.8 100 - -

Prediction models
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Table 3. Cont.

Tool Study
Recruitment Source of Accuracy Estimate

Sensitivity
(95% CI)

Specificity
(95% CI) PPV

AUC
(95% CI)Population

Level 1◦ Care Hospital +
Screening Hospital Apparent

Performance
Internal

Validation
External

Validation

QCancer Ovarian (Top
10% risk)

Hippisley-Cox, 2012 • • 63.2 90.8 0.8 084
(0.83–0.86)

Collins, 2013 • • 64.1 90.1 0.5 0.86
(0.84–0.87)

QCancer Ovarian (Top
5% risk)

Hippisley-Cox, 2012 • • 42.2 95.6 1.1 -

Collins, 2013 • • 43.8 95 0.6 -

QCancer Ovarian (Top
1% risk) Hippisley-Cox, 2012 • • 13.9 99.3 2.1 -

QCancer Ovarian (Top
0.5% risk) Hippisley-Cox, 2012 • • 11 99.6 3.2 -

QCancer Ovarian (Top
0.1% risk) Hippisley-Cox, 2012 • • 3.9 99.9 5.5 -

QCancer Female (Top
10% risk) Hippisley-Cox, 2013 • • 61.6 90 0.6 0.84

(0.82–0.86)

OC Score A (Score ≥ 3) Grewal, 2013 • • 58.5 97.3 -
0.89

OC Score A (Score ≥ 4) Grewal, 2013 • • 57.6 97.3 -

OC Score B (Score ≥ 3) Grewal, 2013 • • 75 90.1 -
0.89

OC Score B (Score ≥ 4) Grewal, 2013 • • 58.9 97.3 -

OC Score C (Score ≥ 3) Grewal, 2013 • • 85.4 85.1 -
0.88

OC Score C (Score ≥ 4) Grewal, 2013 • • 72.6 91.3 -
a Study used a subset of patients from Goff, 2007. b Calculated using external data from screening studies. [39,40]. c Calculated using external Australian population-level data. d

Calculated using external data from US and UK screening studies and Australian population-level data. [41,42]. e Sensitivity and specificity varied by data collection method (questionnaire,
telephone interview, GP notes). f Biomarker level (CA125, HE4) dichotomised at 95th percentile in control group—levels above that deemed abnormal. The Recruitment setting and the
source of accuracy estimate are denoted by “•”. Abbreviations: OC = ovarian cancer; CI = confidence interval; AUC = area under the receiver operator characteristic curve; PPV = positive
predictive values; yrs = years.
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Discrimination was reported for five tools (Table 3), all of which had similar AUCs within the
‘good’ range (0.84–0.89), with QCancer Ovarian exhibiting an AUC of 0.86 on external validation.
Tool calibration was assessed for QCancer tools by graphically comparing the predicted cancer risk at
two years with the observed risk by predicted risk deciles [22–24]. Authors reported good calibration
on internal validation. On external validation, QCancer Ovarian had reasonable calibration but
overpredicted risk, particularly in older women [24].

4.2.4. Positive Predictive Values

The three cohort studies conducted in primary care reported positive predictive values (PPV) for
QCancer tools at a range of thresholds (Table 3). The PPVs at any given risk threshold were similar—for
example, values ranged from 0.5 to 0.8% when the threshold was set to identify the 10% of women at
highest risk. Two case control studies (Rossing et al. and Jordan et al.) used external disease prevalence
figures from screening studies and available population-level statistics to estimate the PPVs of the Goff

SI and SGO consensus criteria—if they were to be used in general populations. The tools had similar
estimated PPVs within each study, but PPVs were higher in Rossing et al. (0.63–1.12%) than in Jordan
et al. (<55 years: 0.04–0.05%, ≥55 years: 0.18–0.31%).

5. Discussion

To our knowledge, this is the first systematic review to compare the diagnostic performance
of existing symptom-based tools for ovarian cancer detection. We identified 21 symptom-based
tools designed to help identify women with undiagnosed ovarian cancer. These tools comprised
simple symptom checklists, checklists which included both symptoms and tests and more complex
diagnostic prediction models which incorporated symptoms, test results and baseline risk factors.
While the diagnostic performances of most tools were evaluated solely within the study development
datasets, four tools were independently externally validated, with one being validated in multiple
population settings. Externally validated tools demonstrated similar moderate diagnostic performances.
Our findings should inform future studies evaluating the clinical impact of validated symptom-based
tools when implemented in clinical practice.

5.1. Study Strengths and Limitations

The main strengths of this study were its systematic approach, broad search strategy and liberal
eligibility criteria, which enabled us to identify and compare the performances of a wide variety of tools.
However, the identified studies were extremely heterogeneous in their designs, populations, variable
definitions, outcome definitions and thresholds, which ultimately precluded any meaningful meta-analyses.
For example, although the Goff SI was evaluated in nine studies, there was overlap between the participants
in three studies, control groups ranged from apparently healthy general population participants to hospital
gynaecology patients (with or without benign pathology), ovarian cancer definitions differed and deviations
in the parameters of the SI itself, in terms of symptom duration and frequency criteria, were noted in
several studies. While meta-analysis was not deemed appropriate, our results demonstrate how the Goff SI
performs under different conditions. An additional limitation was that all included studies were at high
risk of bias in at least one QUADAS-2 domain, which limits the conclusions that can be drawn.

5.2. Comparison of Tools

Although all tools were symptom-based and designed to help identify women with ovarian cancer,
they varied markedly in the symptoms they included. This mirrors discrepancies in the literature and
within national guidelines as to which symptoms are associated with the disease and probably reflects
differences in study methodologies and study populations [7]. Despite this, the symptoms with the
highest positive likelihood ratios for ovarian cancer in a recent systematic review (distension, bloating,
abdominal or pelvic pain) were incorporated into the majority of tools [8]. The more cancer-associated
symptoms that are included in a checklist, the higher the sensitivity of the tool is likely to be, but at the
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cost of reducing specificity, as demonstrated by several of the included studies [19,26,33]. This was
cited by Goff et al. as a rationale for not including urinary symptoms in the Goff SI [30]. Ultimately,
variation in which additional symptoms a tool includes may have limited impact on tool performance;
on external validation, two studies reported similar diagnostic accuracy metrics for the Goff SI and the
SGO criteria (which differed on several symptoms), and on internal validation, Lim et al. concluded
that changing several of the symptoms made relatively little difference to tool diagnostic accuracy [33].

In multiple studies, symptom checklists were augmented by ovarian cancer biomarkers with
the aim of improving tool diagnostic accuracy. This approach naturally led to a reduction in tool
specificity (where either symptoms or an abnormal test resulted in a positive tool) or sensitivity
(where symptoms and an abnormal test were needed for a positive tool). If ovarian cancer biomarkers
are to be included alongside symptoms within tools, this loss of performance could be avoided by
incorporating them within prediction models, as per the inclusion of anaemia in QCancer Ovarian.
As the prediction model threshold can be set at a desired risk level, biomarkers, such as CA125 and
HE4, could be incorporated without harming tool performance. However, this would require women
to have specialist ovarian cancer markers performed in order for the tool to be used, which significantly
limits clinical utility. A more practical approach would be to incorporate tools within a two-step
pathway in which symptom-based tools (which do not include specialist test variables) are used to
help select higher-risk women for specialist ovarian cancer tests.

Variation in the reported sensitivity and specificity of the most widely evaluated tool, the Goff SI,
was noted between studies. This variation is likely to be due, in part, to the marked differences in
study design, populations and outcome definitions which precluded meta-analysis across these studies.
Despite these differences, in 5 of the 6 external validation studies (including two large population-based
studies), the Goff SI had a sensitivity in excess of 60%, and in all but the smallest study, which included
only 24 ovarian cancers and 31 controls, its specificity exceeded 85%. The sensitivities and specificities
of the two other externally validated symptom checklists—the SGO consensus criteria and the
modified Goff SI 1—were similar, as were those of the only externally validated diagnostic prediction
model—QCancer Ovarian (applying a 10% risk threshold). Given the similarity in performance of
the various existing validated tools, future research efforts may be better directed at evaluating the
impact of using available tools in practice rather than developing further tools consisting of different
symptom combinations.

5.3. Clinical Relevance

Two distinct uses for tools were identified by the authors of the included studies: (1) assessment
of women presenting symptomatically in the standard clinical setting to identify those at higher risk
of undiagnosed cancer and to inform decision making and further investigation, and (2) proactive
‘symptom-triggered screening’ programs in which women are actively screened using the tool,
with further testing for ovarian cancer occurring if the tool is positive. Several of the tools identified in
this review are already available for use within the standard clinical setting in the form of electronic
clinical decision support tools (eCDSTs). QCancer tools are integrated within some UK general
practice IT systems and alert the clinician if the risk of ovarian cancer in an individual reaches a
certain level, prompting them to consider ovarian cancer as a possible diagnosis. eCDSTs have been
shown to improve practitioner performance and patient care, but there are multiple barriers to their
implementation and they do not always lead to improved outcomes [43,44]. Therefore, even if eCDSTs
are deemed to have acceptable diagnostic accuracy, their cost-effectiveness, acceptability to patients
and clinicians and their impact on timely ovarian cancer detection and survival need to be evaluated.
Currently, a large, clustered, randomised control trial is seeking to help to address this by investigating
the clinical impact of implementing a suite of electronic cancer risk assessment tools (including an
electronic version of the Hamilton ovarian SI) in UK general practice [45]. Studies have also sought to
evaluate the impact of using tools as part of ‘symptom-triggered screening’ programs, but none have
taken the form of randomised control trials—the gold standard approach—and so findings should
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be interpreted with caution. In one study, 5000 women were approached in primary care clinics and
screened for symptoms using the Goff SI, with further investigations performed if the Goff SI was
positive [11]. However, conclusions were limited as only two ovarian cancers were identified in the
study window. The Diagnosing Ovarian and Endometrial Cancer Early (DOvEE) trial also employs a
proactive symptom-triggered testing approach, supported by media campaigns, in which women can
self-refer and are screened for range of symptoms prior to study inclusion. Although the final DOvEE
results are yet to be published, a pilot study reported that participants had lower tumour burden and
more resectable disease than women diagnosed via the standard clinical pathway [9].

When considering the clinical utility of a tool, it is important to assess the proportion of women
who are ‘tool-positive’ who ultimately have ovarian cancer, i.e., the PPV. Primary care cohort studies
indicated that between 1 in 200 and 1 in 100 women who were QCancer tool-positive (5% or 10%
risk) had the disease. Although these figures may appear low, evidence indicates that patients would
opt for cancer testing at PPVs of 1% [46]. Further, having a positive tool result in the clinical setting
does not necessarily mean that further investigation will automatically occur, as there may be a clear
alternative cause for the symptoms—the tool is simply intended as a diagnostic aid to highlight the
risk of ovarian cancer to the clinician. In addition, the most common follow-up tests—CA125 and
transvaginal ultrasound—are relatively non-invasive, and CA125 is known to perform well when
used in a symptomatic primary care population [47], although invasive investigations/surgery may
ultimately be needed to determine whether ovarian cancer is present. In proactive symptom-triggered
screening programs, the tool is more than just a diagnostic aid—it is the initial screening step which
will dictate whether further ovarian cancer tests take place. The two population studies reporting
PPVs relied on external ovarian cancer prevalence figures, but their PPV estimates were similar to that
reported in the pilot DOvEE study (0.76% in women ≥ 50 years) [9]. Further research is needed to
help determine whether, given this PPV, follow-up testing in proactive symptom-triggered testing
programs is acceptable to women and improves outcomes. The definitive diagnosis of ovarian cancer
often involves invasive procedures/surgery, which has contributed to patient morbidity in key ovarian
cancer screening trials [3,39]. Although initial findings indicate that proactive symptom triggered
testing approaches lead to minimal unnecessary surgery [9,11], large trials are needed to confirm
that the implementation of symptom-based tools in clinical practice does not lead to significant
excess morbidity.

6. Conclusions

Over 20 symptom-based tools have been developed in different populations to help assess women
for ovarian cancer, but the majority have not been validated. Four symptom-based tools—the Goff SI,
a modified version of the Goff symptom Index, SGO consensus criteria and QCancer Ovarian—have
undergone independent external validation and exhibit similar sensitivities and specificities. These tools
could have an important role to play in the detection of ovarian cancer, but further large well-conducted
studies are needed to assess their cost-effectiveness, their acceptability, their effect on the timeliness of
ovarian cancer diagnosis and their impact on clinical outcomes, including patient survival.
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