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Simple Summary: Triple-Negative breast cancer (TNBC) is the most aggressive form of breast
cancer in women. Targeted therapies for the treatment of this disease are severely lacking. Through
mechanistic studies of the key component of Hippo signaling pathway, Transcriptional co-activator
with PDZ-binding motif (TAZ), we aimed to uncover novel regulators that may be used as targeted
therapies for this disease. Using an siRNA target deubiquitinating enzymes screen, we identified
ubiquitin-specific peptidase 1 (USP1) as a novel TAZ deubiquitinating enzyme. We found that USP1
interacts with TAZ and loss of USP1 reduces cell proliferation in a partially TAZ-dependent manner.
Furthermore, we demonstrated that USP1 and TAZ expression are positively correlated in TNBC
patients. This research found a newly defined regulatory mechanism of TAZ that could be used as a
therapeutic approach for breast cancer.

Abstract: The Hippo signaling pathway is an evolutionarily conserved pathway that was initially
discovered in Drosophila melanogaster and was later found to have mammalian orthologues. The key
effector proteins in this pathway, YAP/TAZ, are often dysregulated in cancer, leading to a high degree
of cell proliferation, migration, metastasis and cancer stem cell populations. Due to these malignant
phenotypes it is important to understand the regulation of YAP/TAZ at the protein level. Using an
siRNA library screen of deubiquitinating enzymes (DUBs), we identified ubiquitin specific peptidase
1 (USP1) as a novel TAZ (WWTR1) regulator. We demonstrated that USP1 interacts with TAZ and
increases TAZ protein stability. Conversely, loss of function of USP1 reduces TAZ protein levels
through increased poly-ubiquitination, causing a decrease in cell proliferation and migration of breast
cancer cells. Moreover, we showed a strong positive correlation between USP1 and TAZ in breast
cancer patients. Our findings facilitate the attainment of better understanding of the crosstalk between
these pathways and may lead to potential therapeutic interventions for breast cancer patients.
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1. Introduction

Breast cancer (BC) is the leading cause of cancer incidence and the second leading cause of
cancer-related mortality in women in the United States [1,2]. BC is a heterogeneous disease that can be
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classified into at least four major molecular subtypes based on gene expression profiles: luminal A,
luminal B, HER2-enriched and basal-like triple negative breast cancer (TNBC) [3]. Basal-like breast
cancers are associated with aggressive pathological features and poor clinical outcomes [4].

Despite the extensive advancements in targeted therapies for breast cancer, the effective treatment
of basal-like breast cancers remains a major challenge [5]. The current standard of care for basal-like
breast cancers is restricted to conventional chemotherapy, as they do not respond to endocrine
treatments or targeted therapies [6]. To achieve better treatment of these neoplasia’s new targets must
be identified.

The Hippo signaling effector proteins YAP/TAZ are associated with multiple cancer types and
are specifically amplified or upregulated in TNBC [7–10]. Due to the fact that there are no germline
mutations present in the YAP/TAZ chromosomal regions, the mechanism through which these proteins
are increased in TNBCs needs to be better understood [11,12]. TAZ plays a critical role in cell migration,
invasion, tumorigenesis and stem cell traits in breast cancer cells [13,14]. TAZ is not only a driver
of basal-like breast cancer progression and a novel prognostic factor but is also required for the
maintenance of tumor growth and established metastases [15].

Previous studies have focused on individual components of the Hippo signaling pathway but the
means by which external pathways alter Hippo pathway proteins is under-studied. It is known that
aberrations in upstream regulators affect YAP/TAZ activity and expression levels. For instance, the
phosphorylation of TAZ by upstream kinase LATS leads to the subsequent phosphorylation by CK1E
and the recruitment of SCFβ-TrCP E3 ligase to promote TAZ degradation through the 26S proteasome [16].
Since there are no known drugs that can target TAZ at the protein level, the therapeutic intervention
points in TAZ-driven malignancies outside of canonical Hippo signaling should be determined.

Post-translational modifications are enzymatic processes that modify proteins after
biosynthesis [17]. The addition of ubiquitin is one of the most common post-translational modifications,
marks proteins for degradation, alters their functions or changes their signaling processes [18]. Through
a multi-step process, ubiquitin moieties are added to the proteins, thereby changing their fate. As with
most cellular processes, ubiquitination is reversible through the action of deubiquitinating enzymes
(DUBs). DUBs are a family of enzymes that remove the ubiquitin from target substrates to increase
stability, change cellular localization or modify protein-protein interactions [19–21]. Multiple reviews
have focused on how E3 ligases act on the Hippo signaling pathway but the deubiquitinating enzymes
that affect Hippo components, specifically YAP/TAZ, are largely unknown [22,23]. Recently, USP10 was
found to stabilize YAP/TAZ protein levels in hepatocellular carcinoma; however, there are currently no
known DUBs that regulate TAZ specifically in breast cancer [24].

To assess the novel regulators of TAZ at the protein level, we used an siRNA library screen of DUBs
and identified that USP1 can alter TAZ stability in breast cancer cells. We found that the loss of USP1
reduces TAZ protein levels through increased TAZ poly-ubiquitination. Genetic perturbation of USP1
alters cell proliferation and migration in a TAZ-dependent manner. Furthermore, we demonstrated a
link between USP1 and TAZ protein levels in TNBC. These findings uncovered a novel regulatory
mechanism of TAZ that could serve as a biomarker for the treatment or prognosis in BC patients.

2. Results

2.1. USP1 Is a Novel DUB of TAZ

We employed an siRNA screen targeting genome-wide DUB enzymes to understand how
deubiquitinating enzymes alter TAZ protein levels in vitro. The TAZ-expressing construct was
co-transfected with the Dharmacon siRNA DUB library in HEK293T cells. The siControl or siTAZ
served as negative or positive control. Protein lysates were collected 72 h post-transfection and
exogenous TAZ expression was detected by immunoblot (Figure 1A). We found that the knockdown of
several DUBs such as, USP1, UCK2, UBL4A and UCHL1 dramatically reduced TAZ protein levels
(Figure 1B). Using TCGA data, we found that USP1 and TAZ significantly co-occurred in the TNBC
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cases, while the other DUBs had a less significant co-occurrence (USP1:WWTR1 OR = 2.958, p < 0.001;
UCK2:WWTR1 OR = 1.605, p < 0.001; UBL4A:WWTR1 OR = 1.123, p < 0.013; UCHL1:WWTR1 OR
= 1.497, p < 0.009) [25,26]. Using mRNA expression data, we also found that USP1 and TAZ were
positively correlated (Figure 1C, R = 0.33, p < 0.001). The other DUBs identified in our screen had
a much lower Spearman correlation than that of USP1 and TAZ (UCK2: rho = 0.18; UBL4A: rho =

−0.13; UCHL1: rho = 0.29). Since USP1 is known to act in an oncogenic manner while UCHL1 and
UBL4A are shown to have tumor-suppressive functions, we focused our studies on how USP1 alters
TAZ [27–29]. To understand the expression of USP1 and TAZ at the protein level, we analyzed a panel
of breast cancer cell lines. Interestingly, we found that USP1 and TAZ were highly expressed in TNBC
cell lines (MDA-MB-231, MDA-MB-468) when compared to non-transformed (MCF10A) or luminal
cell lines (MCF7, T47D) (Figure 1D). Altogether, these data showed that USP1 and TAZ protein levels
are positively correlated in TNBC.
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MB-231 cells– TNBC). GAPDH was used as a loading control. Immunoblots were quantified and 
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that the reduction of TAZ protein level was not from alterations at the transcription level (Figure 2 
A,B). We also noted no change in other Hippo components upon knockdown of USP1 in MDA-MB-
231 cells (Figure S1A). USP1 activity is dependent on its interaction with UAF1 [30]. To validate our 
USP1 knockdown result, we used a small molecule that targets the USP1/UAF complex. We first 

Figure 1. USP1 is a novel DUB of TAZ. (A) Schematic representation of siRNA screen using Dharmacon
siRNA DUB library prepared using BioRender. Three siRNAs targeting a single DUB were transfected
per well. (B) Dot plot quantification of relative TAZ expression upon transfection with siRNA library
from immunoblots. (C) Spearman correlation plot of mRNA expression of WWTR1 vs. USP1 from
TCGA data. (D) Immunoblot analysis of USP1 and TAZ expression in a panel of breast cancer cell lines
(MCF7 and T47D – luminal, SKBR3 – HER2 overexpression, MCF10A – non-transformed epithelial,
MDA-MB-231, MDA-MB-468 and HCC1143, D3H2 lung metastasis of MDA-MB-231 cells– TNBC).
GAPDH was used as a loading control. Immunoblots were quantified and normalized to GAPDH.

2.2. USP1 Acts as a Post-Translational Modifier of TAZ

Next, to confirm our initial findings, we assessed whether the loss of USP1 affects TAZ protein
levels. The knockdown of USP1 in MCF10A and MDA-MB-231 cells using two independent shRNAs
against USP1 showed a reduction in TAZ protein levels, with no change in mRNA levels, indicating
that the reduction of TAZ protein level was not from alterations at the transcription level (Figure 2
A,B). We also noted no change in other Hippo components upon knockdown of USP1 in MDA-MB-231
cells (Figure S1A). USP1 activity is dependent on its interaction with UAF1 [30]. To validate our USP1
knockdown result, we used a small molecule that targets the USP1/UAF complex. We first determined
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the IC50 of ML323, a USP1/UAF1 complex inhibitor, on various cell lines (Figure S1B). Consistent with
the genetic knockdown of USP1, we found a reduction of TAZ protein levels in response to ML323
treatment (Figure 2C).
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Figure 2. USP1 acts as a post-translational modifier of TAZ. (A) Immunoblot analysis for USP1
and TAZ expression in USP1 knockdown MCF10A and MDA-MB-231 cells. GAPDH was used as a
loading control. (B) Relative mRNA expression of USP1 and TAZ in USP1 knockdown MCF10A and
MDA-MB-231 cells. (C) Immunoblot analysis for TAZ expression in MCF10A and MDA-MB-231 upon
treatment with 15µM ML323. GAPDH was used as a loading control. (D) Immunoblot analysis for
TAZ expression in USP1 knockdown MCF10A and MDA-MB-231 cells with MG132treatment. GAPDH
was used as a loading control. (n = 2) (E) Immunoblot analysis for USP1 and TAZ in USP1 knockdown
MDA-MD-231 cells with CHX treatment at various time points. GAPDH was used as a loading control.
(n = 3) (F) Immunoblot analysis for USP1 and TAZ expression in USP1 overexpressing MCF7 cells
with CHX treatment at various time points. GAPDH was used as a loading control. (n = 2) Data are
shown as the mean ± SD. Unpaired two-tailed student t-test: * p < 0.05, ** p < 0.01, *** p < 0.001. NS: no
significance. Immunoblots were quantified and normalized to GAPDH.
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Upon ubiquitination, proteins are targeted to the proteasome for degradation. To determine
whether the reduction of the TAZ protein levels in shUSP1 occurs through proteasome degradation,
we treated the shControl or shUSP1 cells with the proteasome inhibitor MG132. Accordingly, we found
that the proteasome inhibitor treatment significantly rescued the TAZ protein levels in the absence of
USP1, indicating that USP1 stabilizes TAZ and protects it from proteasome degradation (Figure 2D).

To determine whether the loss of USP1 function affects TAZ protein half-life, we treated the
shControl or shUSP1 MDA-MB-231 cells with cycloheximide, a drug that is widely used for inhibiting
protein synthesis [31]. We found that the TAZ protein half-life is dramatically reduced in the shUSP1
cells compared to the shControl cells (about 4 h in the absence of USP1 compared to 8 h when USP1 is
present) (Figure 2E). We transduced MCF7 cells with a USP1 overexpression construct to assess how
USP1 overexpression affects TAZ stability. Consistently, overexpressing USP1 significantly increased
TAZ protein stability (about 6 h under USP1 overexpression condition compared to 2 h under the
control condition) (Figure 2F). Taken together, these results demonstrate that USP1 expression increases
TAZ protein half-life.

2.3. USP1 and TAZ form a Complex That Alters TAZ Ubiquitination

To determine whether USP1 interacts with TAZ, we co-transfected Flag-TAZ and HA-USP1 into
HEK293T cells and co-immunoprecipitation (co-IP) assays were performed. Immunoprecipitation with
Flag antibody showed that Flag-TAZ can interact with HA-USP1 proteins (Figure 3A). Alternatively,
immunoprecipitation with HA antibody showed that HA-USP1 reciprocally interacts with Flag-TAZ
(Figure 3A). Furthermore, we confirmed that both exogenous TAZ or USP1 can interact with endogenous
USP1 or TAZ (Figure 3B). In addition, we detected that USP1 and TAZ colocalize in MDA-MB-231 cells
by immunofluorescence detection. Using anti-Flag antibody (red) and anti-TAZ antibody (green), we
show that USP1 (exogenous) and TAZ (endogenous) tend to co-localize in the nucleus at high density
conditions, which is typical of MDA-MB-231 cells (Figure 3C).

Next, to determine whether the loss of USP1 affected TAZ ubiquitination, we co-transfected
His-tagged ubiquitin (His-Ub) and TAZ in the presence or absence of USP1 and treated with proteasome
inhibitor MG132. The His-IP assays confirmed that TAZ ubiquitination is increased in the absence of
USP1 (Figure 3D). Protein ubiquitination begins with the attachment of a single ubiquitin molecule to
a substrate lysine residue. Evolutional evaluation of TAZ showed that lysine 45/46 is highly conserved
across species, whereas other lysine residues were not (Figure S2). To determine the lysine residue
in TAZ that may be ubiquitinated, we transfected several TAZ lysine mutants in the presence or
absence of USP1. We found TAZ-WT, -K54R and -K157R mutants showed a slight reduction in TAZ
protein levels in the absence of USP1, whereas TAZ-K45/46R mutant protein levels were not altered
(Figure 3E). The result suggested that ubiquitination of TAZ occurs predominantly on K45/46. We then
co-transfected HA-Ub and TAZ-WT or -K45/46R TAZ in HEK293T cells, HA-Ub immunoprecipitation
assay demonstrated the decreased ubiquitination of TAZ in the TAZ-K45/46R mutant compared to
TAZ-WT (Figure 3F). Taken together, these results suggest that USP1 directly interacts with and
deubiquitinates TAZ and that ubiquitination predominantly occurs at TAZ lysine 45/46.

2.4. USP1 Depletion Impairs Breast Cell Proliferation in a Partially TAZ Dependent Manner

Many studies have shown that TAZ promotes the growth of non-transformed and transformed
mammary epithelial cells [32,33]. Therefore, to assess how the loss of function of USP1 affects cell
proliferation, we knocked-down USP1 using two independent shRNAs targeting USP1 in MCF10A and
MDA-MB-231 cells. USP1 depletion reduced cell proliferation in both MCF10A and MDA-MB-231 cell
lines (Figure 4A). Furthermore, the knockdown of USP1 corresponded to a reduction in clonogenicity
and cell migration (Figure 4B,C). To determine the effects of knockdown USP1 in vivo, we injected
shCtrl or shUSP1 MDA-MB-231 cells into the mammary fat pad of SCID mice. We found that USP1
knockdown cells had a significant reduction in tumor growth compared to control cells, indicating that
USP1 loss reduces cell growth both in vitro and in vivo (Figure 4D).
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Figure 3. USP1 and TAZ form a complex and alters TAZ ubiquitination. (A) Interaction between
exogenous USP1 and TAZ in 293T cells. Cellular extracts were immunoprecipitated with Flag or
HA beads and probed for antibodies against indicated proteins. GAPDH was used as a loading
control. (B) Interaction between exogenous TAZ and endogenous USP1 or exogenous USP1 and
endogenous TAZ. GAPDH was used as a loading control. (C) Immunofluorescence staining of
Flag-USP1 and TAZ in MDA-MB-231 cells (Scale bar = 50 µm). (D) Increased ubiquitination of TAZ
upon knockdown of USP1 and immunoprecipitation with His-beads. GAPDH was used as a loading
control for input. (E) Immunoblot analysis of TAZ-WT or lysine mutants in the presence or absence
of USP1. GAPDH was used as a loading control. (F) Decreased ubiquitination of K45/46R mutation
after co-immunoprecipitation with HA-beads. GAPDH was used as a loading control for input.
Immunoblots were quantified and normalized to GAPDH.
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Figure 4. Loss of function of USP1 alters cell proliferation and migration. (A) Cell proliferation assay of
MCF10A and MDA-MB-231 cells upon knockdown of USP1. (B) Quantification of clonogenicity assays
after 11 days upon knockdown of USP1 in MCF10A and MDA-MB-231 cells. (C) Quantification of cell
migration after knockdown of USP1 in MCF10A and MDA-MB-231 cells. (D) Images and quantification
of tumor size of shCtrl, shUSP1-1 or shUSP1-2 MDA-MB-231 cells injected into the mammary fat pad of
SCID mice, n = 6. (E) Immunoblot analysis of TAZ expression in shUSP1 MCF10A cells. GAPDH was
used as a loading control. (F) Cell proliferation of control or TAZ-4SA transduced shUSP1 MCF10A
cells. (G) Quantification of clonogenicity assay after 11 days of control or TAZ-4SA transduced shUSP1
MCF10A cells. Data are shown as the mean ± SD. Unpaired two-tailed student t-test: * p < 0.05, ** p <

0.01, *** p < 0.001. Western blots were quantified and normalized to GAPDH.

To determine whether shUSP1 reduced cell proliferation through the effects of TAZ, we performed
rescue experiments. We transduced the shUSP1 MCF10A cells with exogenous TAZ-4SA (constitutively
active TAZ) (Figure 4E). The re-expression of TAZ induced cell proliferation and clonogenicity
phenotypes (Figure 4F,G). Taken together, these results suggest that loss of function of USP1 reduced
cell proliferation, in part, through dysregulation of TAZ.

Next, to evaluate the effects of USP1 overexpression on TAZ, we transduced HEK293T,
MDA-MB-231 and MCF7 cells with USP1. The overexpression of USP1 led to a significant increase
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of TAZ protein levels in all cell lines (Figure 5A). Furthermore, USP1 overexpression increased cell
proliferation and clonogenicity in MDA-MB-231 cells (Figure 5B,C). In addition, we assessed the effects
of USP1 overexpression in 3D culture. While we did not observe an increase in the overall number
of spheroids formed, we found a significant increase in spheroid size (Figure 5D). Finally, to test
whether TAZ is essential for USP1 proliferative phenotypes, we transduced USP1 overexpressing
MDA-MB-231 with two independent hairpins targeting TAZ (Figure 5E). Consistent with our previous
finding, we showed that the knockdown of TAZ reduced cell proliferation and clonogenicity of USP1
overexpressing cells (Figure 5F,G). Taken together these results showed that USP1 promotes cell
proliferation in a partially TAZ-dependent manner.
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Figure 5. USP1 overexpression increases cell proliferation in a partially TAZ-dependent manner.
(A) Immunoblot analysis for USP1 and TAZ in USP1 transduced MDA-MB-231, 293T and MCF7
cells. GAPDH was used as a loading control. (B) Cell proliferation assay of USP1 overexpressing
MDA-MB-231 cells. (C) Quantification of clonogenicity assay after 11 days in USP1 overexpressing
MDA-MB-231 cells. (D) Representative images and quantification of spheroid size in control or USP1
overexpressing MDA-MB-231 cells (Scale bar = 50 µm). (E) Immunoblot analysis of TAZ knockdown in
USP1 overexpressing MDA-MB-231 cells. GAPDH was used as a loading control. (F) Cell proliferation
assay for shCtrl or shTAZ in USP1 overexpressing MDA-MB-231. (G) Quantification of clonogenicity
assay after 11 days for shCtrl or shTAZ in USP1 overexpressing MDA-MB-231. Data are shown as the
mean ± SD. Unpaired two-tailed student t-test: * p < 0.05, ** p < 0.01, *** p < 0.001. Immunoblots were
quantified and normalized to GAPDH.
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2.5. USP1 and TAZ Expression Are Correlated in TNBC Patients

To address whether USP1 and TAZ could be used as markers for the prognosis of breast cancer
patients, we used gene set enrichment analysis (GSEA) and immunohistochemistry (IHC) staining
of TNBC cases. We first stratified TNBC patients from several publicly available datasets into USP1
low- or high-expression subsets using methods previously described by Ma et al. [34]. (Figure 6A and
Figure S3). Interestingly, we found that the YAP/TAZ gene signatures were significantly enriched in
the USP1 high samples compared to the other gene signatures, through GSEA (Figure 6B and Figure
S3) In addition, using publicly available datasets, we found that the high expression of both USP1 or
TAZ is associated with a reduction in relapse-free survival in breast cancer cases (Figure 6C) [35].Cancers 2020, 12, x 10 of 19 
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low- and USP1 high- subsets. (B) Cordenosi YAP/TAZ gene signature is highly correlated with USP1
high-subset patients. (C) Kaplan-Meier relapse free survival analysis curves for USP1 and TAZ in
breast cancer patients. (D) The dot plot represents the correlation of USP1 and TAZ in all the TMAs
stained indicating a positive correlation between staining intensity of ALL samples. Pearson correlation
between USP1 and TAZ protein levels were quantified by Aperio Image Scope of TNBC patients treated
at RPCCC. Data are shown as the mean ± SD. Unpaired two-tailed student t-test: * p < 0.05, ** p < 0.01,
*** p < 0.001. (E) Representative images of H&E and IHC staining of tumor microarrays (TMAs) from
TNBC patients treated at Roswell Park Comprehensive Cancer Center.
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We then performed TAZ and USP1 immunohistochemistry (IHC) staining in tissue microarrays
(TMAs) that contained TNBC cases from Roswell Park Comprehensive Cancer Center (RPCCC) (Figure
S4A). To understand the correlation of USP1 and TAZ expression in all 152 tumors stained, we plotted
USP1 expression versus TAZ expression. The USP1 and TAZ protein levels were significantly positively
correlated in these patient samples (Figure 6D, USP1 and TAZ, r = 0.3952, p < 0.001). Representative
images of high USP1/TAZ expression (patients 2 and 3) and low USP1/TAZ expression (patient 1)
tumors are shown in Figure 6E. Collectively, these data suggest that USP1 expression is correlated with
TAZ expression in TNBC patients’ samples and high USP1/TAZ expression is associated with reduced
overall survival of breast cancer patients.

3. Discussion

Understanding the external signaling nodes that converge upon and regulate TAZ can lead to
better treatment options in breast cancer patients. It is known that USP1 and TAZ both have oncogenic
functions in breast cancer [36,37]. In the present study, we showed that the loss of USP1 can alter the
TAZ protein levels in both non-transformed and transformed mammary epithelial cells. More recently,
USP1 has been found to deubiquitinate and stabilize KPNA2, leading to pro-metastatic functions
in breast cancer [34]. Since both genes are often upregulated in TNBC, this signaling axis could be
blocked to prevent tumor formation and metastasis. KPNA2 has been shown to cause metabolic
reprograming in glioblastoma through the induction of cMYC [38]. The YAP-TAZ-TEAD axis, in
coordination with cMYC, can promote the transcription of genes associated with proliferation and
migration in mammary epithelial cells [39]. It would be interesting to investigate whether there is any
cross talk between KPNA2 and TAZ and whether these genes can induce a pro-metastatic phenotype
in concert with USP1.

The deubiquitinating enzyme USP1 is the most well-studied DUB and it has been implicated
in many cancer types [27]. The most characterized functions of USP1 are evident in the multiple
steps of the DNA damage repair pathway including the Fanconi anemia pathway and in the process
of translesion synthesis [40–42]. It has been shown that USP1 regulates the mono-ubiquitination of
the Fanconi anemia protein FANCD2 and deubiquitinates the proliferating cell nuclear antigen [43].
The knockout of Usp1 in mice results in genomic instability and a Fanconi anemia phenotype [44].
USP1 deubiquitinates and stabilizes ID1, ID2 and ID3, resulting in the accumulation of ID proteins
in osteosarcoma [45]. The knockdown of USP1 in osteosarcoma cells reduces the expression of
mesenchymal stem cell markers and initiates an osteogenic development program.

In this study we also found that mutating lysine 45 and 46 to arginine creates a TAZ protein
that cannot be ubiquitinated. This mutation is in the N-terminal region of TAZ, which is highly
disorganized and functions in protein-protein interactions. Furthermore, lysine 45 is the evolutionarily
conserved lysine residue present in TAZ (Figure S2). Having a better understanding of this ubiquitin
mutant could help researchers understand how proteins are altered in cancer. By creating stable cell
lines containing this mutant and performing biological assays we may be able to understand the initial
events that occur with TAZ overexpression and find a novel regulatory phenomenon that occurs in
breast cancer initiation and progression.

The functions of TAZ within the nucleus have been well established; however, how TAZ functions
within the cytoplasm is still not known. Research has shown that cytoplasmic TAZ is associated with
self-renewal of human embryonic stem cells, while nuclear TAZ induces differentiation [46]. While this
reveals the phenotypic aspects that occur in different compartments within the cell, how TAZ is shuttled
between the nucleus and cytoplasm adds another layer of complexity to its regulation. Whether TAZ
is transported through passive diffusion or mediated transport has been an issue plaguing the field
for years. It was recently found that the 290–345 amino acid region of TAZ is required for nuclear
import [47]. Further characterization of USP1 and TAZ interaction at the amino acid level may provide
further insight into TAZ cytoplasmic and nuclear shuttling.
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The phosphodegron present in the N-terminal region facilitates interaction with the SCFβ-TrCP

complex, so, the interaction of TAZ and USP1 in this location may block interaction with other proteins,
resulting in the increase of the TAZ protein expression observed with our findings. Blocking interaction
with these factors may leave TAZ in a state that drives concomitant nuclear accumulation. Conversely,
external proteins that bind to this region may also block the newly defined nuclear localization signal,
reducing TAZ nuclear shuttling. Further research is needed to determine the “perfect storm” for
TAZ nuclear and cytoplasmic accumulation and in which region USP1 binds to TAZ thus leading to
TAZ stabilization. The dynamic interplay between protein-protein interactions and their ability to
either block other interactions or drive further downstream functions could help us understand TAZ
regulation and how its dysregulation can drive breast cancer.

In summary, our research identified a regulatory mechanism that could serve as a therapeutic
target/strategy for tumorigenic potential. Since USP1 has been shown to regulate other targets, such as:
KPNA2, that drive breast cancer metastasis, targeting this enzyme may be beneficial in the treatment
of breast cancer patients, more specifically, TNBCs.

4. Materials and Methods

4.1. Cell Line and Cell Culture

MCF10A cells have previously been described and were authenticated by short tandem repeat
profiling. MDA-MB-231, HEK293T and MCF7 cells were purchased from ATCC. MCF10A cells were
cultured in DMEM/F12 media (Corning, New York, NY, USA) supplemented with 5% horse serum
(Invitrogen, Carlsbad, CA, USA), 1% Pen/Strep, 20 ng/mL EGF (ProSpec, East Brunswick, NJ, USA), 0.5
µg/mg hydrocortisone, 100 ng/mL cholera toxin and 10 µg/mL insulin. MDA-MB-231, HEK293T and
MCF7 cells were cultured in DMEM supplemented with 10% fetal bovine serum and 1% Pen/Strep. All
cells were cultured in a humidified atmosphere of 95% air and 5% CO2 at 37 ◦C.

4.2. Plasmids and shRNA

shUSP1 constructs were generated in the pLKO.1 vector at the AgeI/EcoRI sites. USP1
overexpression construct was a gift from Wade Harper (Addgene plasmid #22596) and cloned into the
pLX304 vector. HA-Ub vector was a kind gift from the Attanasov lab (Roswell Park Comprehensive
Cancer Center) and His-Ub was a gift from Dr. Wang’s lab (Roswell Park Comprehensive Cancer
Center). TAZ lysine mutants were generated from the pBABE-WT-TAZ vector using a site-directed
mutagenesis kit (New England Biolabs, Boston, MA, USA) and PCR. Sequences for site-directed
mutagenesis are found in Table 1. shRNA hairpins targeting TAZ were obtained from Broad Institute
RNAi consortium and target sequences are in Table 1. Flow cytometry was used to isolate GFP positive
TAZ overexpressing cells.

Lentiviral packaging: Briefly, shRNA plasmid, ∆8.9 and VSVG were co-transfected into 293T cells
with Fugen transfection reagent. Viral supernatants were collected on day 3 and 4 after transfection.

4.3. Plasmid Transfection

For all transfections we used the PolyJet (SignaGen, Fredrick, MD, USA) transfection reagent.
HEK293T cells were plated to ensure 80% confluency next day. On day 2, 10 cm dishes were transfected
with 5 ug of plasmid DNA and 15 uL of PolyJet reagent in 500 uL of DMEM with no additives.
Five hours post-transfection, media was replaced with DMEM supplemented with 10% FBS and 1%
PenStrep. On day 3, lysate was harvested using RIPA buffer for western blot analysis or IP buffer for
co-immunoprecipitation assays. If the proteasome needed to be inhibited, MG132 was added to the
cells on day 3 for 4 h and lysates was harvested.
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Table 1. Key resources table.

Reagent or Resource Source Identifier

Antibodies

GAPDH Cell signaling technology Cat# 97166

TAZ Cell signaling technology Cat# 4883

USP1 Cell signaling technology Cat# 8033

Flag Sigma Aldrich Cat# F9291

HA Cell signaling technology Cat# 3724

Chemicals, peptides and Recombinant proteins

ML323 (USP1i) Sigma Aldrich Cat# SML-1177-25MG

Cycloheximide Sigma Aldrich Cat# C7698

MG132 Sigma Aldrich Cat# 1211877-36-9

Human siGENOME siRNA Library -
Deubiquitinating Enzymes Dharmacon Cat# G-004705-01

Anti-Flag M2 Affinity Gel Sigma Aldrich Cat# A2220

Dynabead His-tag Thermo Fisher Cat# 10103D

Pierce Anti-HA Magnetic Beads Thermo Fisher Cat# 88836

Critical Commercial Assays

Matrigel Corning Cat# 3554230

Pierce ECL western blotting substrate Thermo Fisher Cat# 32106

RIPA lysis and extraction buffer Thermo Fisher Cat# 89900

Crystal Violet Solution Sigma Aldrich Cat# HT90132-1L

Halt Protease and Phosphatase
Inhibitor Thermo Fisher Cat# 78441

PolyJet In vitro DNA transfection
reagent SignaGen Laboratories Cat# SL100688

Polybrene Sigma Aldrich Cat# 107689

Horse Serum Thermo Fisher Cat# 16050122

DMEM/F12 media Corning CellGro Cat# MT10090CV

DMEM Corning CellGro Cat# 10–090-CV

Fetal Bovine Serum Thermo Fisher Cat# 16030074

Epidermal Growth Factor ProSpec Cat# CYT-1115

Insulin Sigma Aldrich Cat# 9011-M

Penicillin/Streptomycin Sigma Aldrich Cat# P4333–100ML

PVDF membranes EMD-Millipore Cat# IBFP0785C

Experimental Models: Cell Lines

MCF10A Zhang lab

MDA-MB-231 ATCC Cat# HTB-26

MDA-MB-468 ATCC Cat# HTB-132

HEK293T ATCC Cat# CRL-11268

T47D ATCC Cat# HBT-133

SKBR3 ATCC Cat# HTB-30

HCC1143 ATCC Cat# CRL-2321

MDA-MB231 (D3H2) Dr. Jia Fang’s lab (Roswell Park)

MDA-MB-231 (lung mets) Zhang lab

Restriction Enzymes, plasmids, primers and shRNAs

shControl Target sequence:
CAACAAGATGAAGAGCACCAA

shUSP1–1 Target sequence:
CAGAGACAAACTAGATCAA
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Table 1. Cont.

Reagent or Resource Source Identifier

shUSP1–2 Target sequence:
GCTAGTGGTTTGGAGTTTG

plx304 Addgene Cat# 25890

Flag-HA-USP1 Addgene Cat# 22596

USP1 antibody for IHC Abcam Ca# 84772

TAZ-K39R IDT
Forward:

ATGAATCCGAGGCCTAGCTCG
Reverse: GACAGAGTTGAAGAGGGC

TAZ-K45/46R IDT

Forward:
TCGTGGCGGAGGAGGATCCTGCCG

Reverse:
GCTAGGCTTCGGATTCATGACAG

TAZ-K54R IDT
Forward:

TCTTTCTTTAGGGAGCCTGATTC
Reverse: CTCCGGCAGGATCTTCTT

TAZ-K148R IDT
Forward:

CACATAGAAAGGATCACCACATGG
Reverse: ATTGAGGAAGTACCTCTG

TAZ-K157R IDT
Forward: GACCCTAGGGCGATGAAT

Reverse:
TTGCCATGTGGTGATTTTTTC

TAZ-K234R IDT
Forward:

CAGCAGCAGAGGCTGCGGCTTC
Reverse: CTGCTGCTGAGTGGTCAG

TAZ-K392R IDT

Forward:
GCTCTGAACAGGAGTGAGCCCTTTC

Reverse:
AGACTCTACATCATTGAAGAG

His-6Ub Dr. Xiajiang Wang (Roswell Park) NA

HA-6Ub Dr. Boyko Attanasov (Roswell
Park) NA

EcoRI-HF New England BioLabs Cat# R3101S

AgeI-HF New England BioLabs Cat# R3552S

XhoI-HF New England BioLabs Cat# R0146S

KpnI-HF New England BioLabs Cat# R3142S

HindIII-HF New England BioLabs Cat# R3104S

CutSmart Buffer New England BioLabs Cat# B7204S

USP1 qPCR primers IDT
Forward:

GCTTTGCTGCTAGTGGTTTG
Reverse: GTTGGCTTTGTGCTCCATTC

TAZ qPCR primers IDT

Forward:
AGTACCCTGAGCCAGCAGAA

Reverse:
GATTCTCTGAAGCCGCAGTT

GAPDH qPCR primers IDT

Forward:
GGTGAAGGTCGGAGTCAACGG

Reverse:
GAGGTCAATGAAGGGGTCATTG

shTAZ-1 Target sequence:
CCTGCCGGAGTCTTTCTTTAA

shTAZ-2 Target sequence:
GAAACTGCGGCTTCAGAGAAT
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4.4. Immunoblot and Co-Immunoprecipitation Analysis

For immunoblot analysis, cells were lysed in RIPA buffer (Boston Bio-Products, Ashland, MA,
USA) in the presence of protease and phosphatase inhibitors (Thermo-Fisher Scientific, Waltham, MA,
USA) Protein concentration was determined using the Bradford protein assay. Briefly, BSA standards
at varying concentrations were made to create a standard curve. Standards were made using either
RIPA buffer for western blot or IP buffer for co-IP experiments. Absorbance was read at 650 nm and
protein concentrations were calculated based on the slope of the standard curve. 20–30 ug of protein
was loaded, separated by SDS-PAGE (Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis)
and then transferred onto PVDF membranes (EMD Millipore, Danvers, MA, USA). Membranes were
blocked in 5% milk in TBS-T for one hour and incubated overnight at 4 ◦C with primary antibodies.
The next day membranes were incubated with anti-mouse or anti-rabbit secondary antibody (Bio-Rad,
Hercules, CA, USA). Proteins were detected using Peirce ECL western blotting substrate.

For co-immunoprecipitation cells were lysed in IP buffer (25 mM Tris-HCl, 150 mM NaCl, 1%
NP-40 and 5% glycerol, pH = 7.4) supplemented with protease and phosphatase inhibitors. 500 ug of
protein lysate was incubated with either HA, Flag or His tagged beads overnight at 4 ◦C. Lysates were
boiled at 95 ◦C for 10 min to denature interaction from beads and run as stated above for western blots.

All western blots were quantified using ImageJ and normalized to GAPDH expression.

4.5. Immunofluorescence

The cells were seeded on the wells of 24-well cell culture plates containing coverslips. 24 h
later, wells were washed with PBS three times and 4% paraformaldehyde was added for fixation.
After permeabilization with 0.1% Triton X-100 for 10 min, cells were blocked with PBS plus 1% BSA
for 1 h and incubated with primary antibodies overnight at 4 ◦C. Cells were washed three times
with PBS and incubated with secondary antibodies (Alexa-Fluor 488 goat anti-rabbit IgG for TAZ
and Alexa-Fluor 594 goat anti-mouse IgG for Flag-USP1) for 1 h at room temperature in the dark.
Finally, slips were incubated with 4′,6′-diamidino-2-phenylindole for 10 min and visualized under a
fluorescent microscope.

4.6. Cell Proliferation and Migration

For cell proliferation experiments 5.0 × 104 cells were plated in a 6-well plate. At 24, 48 and 72
h cells were counted using a hemocytometer to determine cell number. Clonogenicity assays were
performed by plating 200 cells in a 6-well plate and allowing growth for 11 days. Clones were then
washed with PBS, fixed with 4% paraformaldehyde and stained with crystal violet.

The transwell inserts (8 µm in pore size) were used in the migration and invasion assays. For
migration assay, 1.0 × 105 cells were seeded in the upper chamber and 750 µl of media was added
in the lower chamber. After 24 h inserts were washed with PBS, wiped with a Q-Tip, fixed with 4%
paraformaldehyde and stained with crystal violet.

4.7. 3D Spheroid Formation

3D cultured chambers were coated with Matrigel and 4.0 × 103 cells were diluted in 5% Matrigel
and transferred onto the Matrigel coated chambers. Media was replaced every 4 days until visible
spheroids were formed. The assays were completed in 2-independent experiments. Spheroid diameter
was quantified using ImageJ.

4.8. Quantitative PCR

Total RNA was isolated from cells using Trizol reagent. Real-time PCR assays were performed by
Power SYBR Green PCR Master Mix on the Applied Biosystems StepOnePlus Real-Time PCR system.
Primer sequences are listed in Table 1.
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4.9. In Vivo Tumor Formation

5.0 × 105 shControl or shUSP1 MDA-MB-231 cells were injected into the mammary fat pad of
SCID mice. Four weeks after injection tumors were isolated and measured to determine tumor size. Six
mice were used in each group. The care and use of animals were performed under the rules provided
by the Declaration of Helsinki and approved by the Institutional Animal Care and Use Committee of
the Roswell Park Comprehensive Cancer Center (Buffalo, NY, USA), IACUC protocol number: 1203M.

Public RNA expression data was downloaded from GEO. Using edgeR and limma R packages,
GSE142767 counts data were upper-quartile normalized and GSE2034 FPKM and GSE2034 affymetrix
expression data were quantile normalized [48–50]. Data sets were separated based on USP1 expression
into high and low expression. For each data set, a rank list was created based on fold change comparing
high to low USP1 expression. Gene set enrichment analysis was performed using fgsea R package
(http://biorxiv.org/content/early/2016/06/20/060012) for Cordenonsi YAP conserved signature from
MSigDB (Systematic name: M2871) [51,52]. Normalized enrichment scores and p-values were adjusted
for multiple comparisons and reported.

4.10. Immunohistochemistry Staining

Formalin-fixed paraffin embedded tissue blocks were sectioned to 5-micron thickness and subjected
to IHC studies. Quality of histomorphology of tumor samples were assessed on hematoxylin and
eosin (H & E) stained sections before immunostaining. Antibodies against TAZ was purchased from
Cell Signaling Technology and USP1 was purchased from Abcam. Paraffin sections were placed on
charged slides and IHC staining was carried out in a Dako AutostainerPlus (Carpinteria, CA, USA)
as previously described [7]. Histomorphology and immunostaining results were interpreted by a
board-certified pathologist.

4.11. Tissue Microarrays

The TMAs were built at the Pathology Resource Network at RPCCC using the pathology paraffin
archives. All patients in these TMAs had surgeries to remove the primary breast cancer lesion and
metastasis, when applicable, between 1996 and 2009. The staining intensity (0, 1, 2, 3) was multiplied
by the percentage of cells (0, 1, 2, 3) to generate a final staining score (H-score).

4.12. Patient Survival Analysis

Kaplan-Meier curves were created for Relapse Free Survival (RFS) using log-rank tests to compare
USP1 or TAZ expression in breast cancer patients.

4.13. Statistical Analysis

All data are representative of three independent experiments unless otherwise specified. p-values
were determined using two-tailed Student’s t-tests (p < 0.05 *, p < 0.01 **, p < 0.001 ***).

5. Conclusions

We have identified USP1 as a novel regulator of TAZ. We demonstrated that USP1 interacts with
TAZ and increases TAZ protein stability. Knockdown of USP1 reduces TAZ protein levels through
increased poly-ubiquitination, leading to a decrease of breast cancer cell proliferation and migration
in vitro and reduced tumor formation in vivo. Furthermore, we demonstrated a strong expression
correlation between USP1 and TAZ in breast cancer patients. Our findings facilitate the attainment
of better understanding of the crosstalk between these pathways and lead to potential therapeutic
interventions for breast cancer patients.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/11/3090/s1:
Figure S1: Loss of USP1 does not affect other Hippo signaling components, Figure S2: TAZ lysine conservation,
Figure S3: Stratification of GSE datasets and YAP/TAZ gene signature, Figure S4: IHC staining of 152 TNBC TMAs.

http://biorxiv.org/content/early/2016/06/20/060012
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