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Simple Summary: Artificial Intelligence methods using machine learning and radiomics is an
emerging area of research for radiological and oncological applications for patient management.
Recent evidence from breast cancer suggests that different breast cancer subtypes may respond
differently to adjuvant therapies. The use of a 21-gene array assay called OncotypeDX can predict
potential recurrence of cancer in patients with estrogen positive breast cancer after treatment, however,
there are potential cost disadvantages that hamper its widespread use. Multiparametric magnetic
resonance imaging can simultaneously identify key functional parameters and provide unique
imaging phenotypes of breast cancer, which is used in radiomic analysis. Radiomics provide
quantitative information of different tissue types. We have developed a new machine learning
radiomic informatics tool that integrates clinical and imaging variables, single, and multiparametric
radiomics to compare with the OncotypeDX test to stratify patients into three risk groups: low,
medium, and high risk of breast cancer recurrence.

Abstract: Optimal use of multiparametric magnetic resonance imaging (mpMRI) can identify
key MRI parameters and provide unique tissue signatures defining phenotypes of breast cancer.
We have developed and implemented a new machine-learning informatic system, termed Informatics
Radiomics Integration System (IRIS) that integrates clinical variables, derived from imaging and
electronic medical health records (EHR) with multiparametric radiomics (mpRad) for identifying
potential risk of local or systemic recurrence in breast cancer patients. We tested the model in patients
(n = 80) who had Estrogen Receptor positive disease and underwent OncotypeDX gene testing,
radiomic analysis, and breast mpMRI. The IRIS method was trained using the mpMRI, clinical,
pathologic, and radiomic descriptors for prediction of the OncotypeDX risk score. The trained
mpRad IRIS model had a 95% and specificity was 83% with an Area Under the Curve (AUC) of
0.89 for classifying low risk patients from the intermediate and high-risk groups. The lesion size
was larger for the high-risk group (2.9 ± 1.7 mm) and lower for both low risk (1.9 ± 1.3 mm) and
intermediate risk (1.7 ± 1.4 mm) groups. The lesion apparent diffusion coefficient (ADC) map values
for high- and intermediate-risk groups were significantly (p < 0.05) lower than the low-risk group
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(1.14 vs. 1.49 × 10−3 mm2/s). These initial studies provide deeper insight into the clinical, pathological,
quantitative imaging, and radiomic features, and provide the foundation to relate these features to
the assessment of treatment response for improved personalized medicine.

Keywords: mpRad; radiomics; multiparametric radiomics; informatics; IRIS; machine learning; breast;
magnetic resonance imaging; diffusion-weighted imaging; DWI; ADC map; cancer; OncotypeDX

1. Introduction

Integrating clinical health information with radiological imaging and other biomarkers could
be beneficial for different types of cancer. This integration of seemingly disparate data may improve
our understanding of the complex nature of cancer and potentially provide predictive markers with
clinical benefit in certain cancer phenotypes. For example, in breast cancer, there is active research
on how to predict the potential of local recurrence after conservative treatment. One such method to
predict local and systemic recurrence of breast cancer is the OncotypeDX assay [1–3]. OncotypeDX
is based on the mRNA expression by RT-PCR in estrogen receptor (ER) positive disease without the
human growth factor receptor 2 (HER2-neu) overexpression and is tested on tissue obtained at biopsy
or core diagnostic or surgical samples [4,5]. OncotypeDX has been validated in prospective studies as
a prognostic tool predictive of excellent outcomes in patients with ER-positive disease treated with
endocrine therapy [1]. It has since shown to be a predictive tool to identify patients with breast cancer,
most likely to benefit from the addition of adjuvant chemotherapy to endocrine therapy [1–4,6–10]

Multiparametric (mp) radiological imaging can accurately detect and characterize breast lesions
using advanced quantitative parameters [11–14]. Dynamic contrast-enhanced (DCE)-magnetic
resonance imaging (MRI), which is a marker of the vascularity and permeability of breast lesions,
can characterize malignant lesions by the rapid uptake of a contrast agent, followed by fast washout
over time, and benign lesions by slow uptake and persistent or plateau washout [11,15–19]. Moreover,
by interrogating the movement of water within the intra- and inter-cellular environments of normal and
lesion tissue using diffusion-weighted imaging (DWI), with the apparent diffusion coefficient (ADC)
of water map, can provide characterization of breast and other lesions [12,20–24]. Recent research
had demonstrated that textural and shape analysis of multiparametric radiomics (mpRad) could
potentially add a unique insight into the underlying tissue pathology [25]. Radiomics is an area of
research, which deals with quantitative and qualitative textural analysis of the underlying tissue
pathology [26–33]. Radiomic analysis of breast mpMRI has been investigated for breast cancer diagnosis
and treatment response assessment in the research setting across multiple studies [25–28,31,32,34].
However, to date, no one has investigated using mpRad coupled with breast mpMRI and informatic
data and testing with OncotypeDX for breast lesion characterization.

The challenge is to accurately combine mpMRI with radiomic, clinical, and pathologic features to
stratify patients and identify the potential for cancer recurrence, similar to the OncotypeDX. To answer
this challenge, we have developed a new machine-learning informatic method termed Integrated
Radiomics Informatic System (IRIS), which can be applied to multiparametric MRI and radiomics,
clinical, and pathologic descriptors, as well as a gene array analysis [32,35–38]. The purpose of this
study is to test the IRIS algorithm by combining data from imaging, radiomics, and electronic medical
health records (EHR) to stratify patients into three risk groups: low, medium, and high risk, and then
compare these groups with the OncotypeDX 21-gene assay scores.
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2. Methods

2.1. Clinical Subjects

All studies were performed in accordance with the institutional guidelines for clinical research
under a protocol approved by our Institutional Review Board (IRB number: NA_00001113 and
NA_00022703), and all Health Insurance Portability and Accountability Act (HIPAA) agreements were
followed for this retrospective study and informed consent was waived. All procedures performed in
studies involving human participants were in accordance with the ethical standards of the institutional
and/or national research committee and with the 1964 Helsinki declaration and its later amendments or
comparable ethical standards. Patients were selected from the Johns Hopkins Integrated Breast Cancer
Research Database, developed by one on the authors (C.U.), and who had underwent MRI as part of
the clinical health record review. Of the patients with biopsy proven breast cancer who presented to
our facility for bilateral breast MRI, 123 patients were identified to have both the OncotypeDX and an
advanced MRI exam, which included DCE and DWI. Our inclusion criteria were: (1) breast imaging
on 3T MRI scanner, (2) dynamic contrast enhanced and DWI MRI sequences, and (3) pathology proven
diagnosis of Estrogen receptor positive (ER+) breast cancer and (4) OncotypeDX having been performed
on lesion tissue samples. There were 80 patients with 83 lesions that satisfied the inclusion criteria.

2.2. Histological Phenotyping

All breast cancers were categorized by histological phenotyping based upon
immunohistochemistry (IHC). Estrogen and progesterone receptors (ER and PR), HER2-neu
by Fluorescence in situ hybridization (FISH), and Ki-67 proliferation index (%). The Elston tumor
grades for each lesion were distributed as Grade 1 (9%), Grade 2 (78%), and Grade 3 (13%).
Histopathological data was obtained from the breast pathology database (C.B.U.). All patient
demographics matched the current clinical criteria for the OncotypeDX test (ER+).

2.3. Integrated Radiomics Informatics System (IRIS)

2.3.1. Multi-Subspace Embedding and Clustering

We have developed a machine learning model that integrates different types of clinical and
imaging parameters, which allows for the construction of a clinical decision support model [36,38,39].
The inherent high dimensionality of the clinical and imaging parameters and any complex correlations
within the data presents significant challenges for integration and visualization of the data.
These challenges were solved using the nonlinear dimensionality reduction (NLDR) method [39].
Nonlinear dimensionality reduction algorithms transform and embed a D dimensional space into a
lower d dimensional manifold representation of D’s intrinsic dimensionality, where d < D. The goal of
the multi-subspace embedding and clustering method is to transform the patient space, represented as
X =

{
x1, x2, . . . , xnp

}
∈ RD where, xi represents the ith patient, np represents the number of patients,

and D represents the number of clinical and imaging parameters, into an Integrated Radiomics
Informatics System (IRIS) visualized by a heatmap as shown in Figure 1. The steps of the IRIS system
are outlined below [32,36].

In the first step, np d-dimensional subspaces, where d ∈ {1, 2, 3}, are extracted from each
D-dimensional patient vector, xi, by selecting all combinations of one, two, or three IRIS parameters
from D. Here, np is given by { (D, 3). Each subspace can be represented as in Equation (1):

Si =
{
s1, s2, . . . , snp

}
∈ Rd

∀ d ∈ {1, 2, 3}, i ∈
{
1, 2, . . . , np

}
, (1)

The second step involves transformation of each d-dimensional subspace, Si ∈ Rd
∀ i ∈

{
1, 2, . . . , np

}
into a one dimensional embedding, Yi =

{
y1, y2, . . . , ynp

}
∈ R1

∀i ∈
{
1, 2, . . . , np

}
using a nonlinear

dimensionality reduction algorithm [40]. In the third step, each one-dimensional embedding, Yi is
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evaluated against a ground truth (e.g., OncotypeDX scale) based on the correlation coefficient, Ri
between Yi and the ground truth. In this paper, we employed the correlation coefficient as the
evaluation metric. The aim of this step is to identify the optimal set of one-dimensional embeddings,
U, such that, Ri ≥ 0.5, as shown in the following Equation (2):

U = {Yi ∈ Y|Ri ≥ 0.5} ∀ i ∈
{
1, 2, . . . , np

}
, (2)

In the fourth step, a hierarchical clustering algorithm is used to cluster the set, U to produce
two clustering configurations. The first clustering configuration is between different informatics and
radiomics parameters. The first clustering configuration provides a visualization of relationships
between the clinical and imaging parameter embedding, each parameter’s importance, and identify
redundant embeddings. The second clustering configuration is between each patient, visualizing the
relationship between different patients. This allows IRIS to identify patients clustered into different
risk groups and classify any unknown patient into a relevant risk group.Cancers 2020, 11, x 4 of 23 
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Figure 1. Illustration of the Integrated Radiomics Informatics System (IRIS) using different data
inputs and the OncotypeDX. (Top) the high dimensional patient space created by the radiological
characteristics, informatics, radiomics, and clinical information. (Bottom) IRIS transforms the patient
space into (Left) a complex interaction network for visualization of inter-parameter relationships,
(Middle) multi-subspace embedding, and clustering heatmap to indicate potential risk identified
by each IRIS parameter and the risk signature for each patient, and (Right) final patient classes
(e.g., low, or high-risk) classified using the combine Isomap and Support Vector Machine (IsoSVM)
classification algorithm.

2.3.2. Feature Importance

In IRIS, the importance of each clinical or imaging parameter, i is calculated as the percentage
of embeddings in U that include parameter i. The contribution of each parameter to the IRIS model
allows for assessment of which parameters to keep and which to discard.

2.3.3. Complex Network Analysis of Informatics Parameters

Using IRIS, the high dimensional relationship between different clinical and imaging parameters
was explored by modeling and analyzing a complex informatics network. Before modeling the complex
network, the raw values corresponding to each clinical and imaging parameter were transformed into
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risk prediction score normalized in the range 0–1, such that zero corresponds to low risk and one
corresponds to high risk. The normalized risk prediction score for every parameter was calculated
using the following steps:

a. First, a correlation coefficient, ri between the values, yi spanned by the parameter, i across all the
patients and corresponding OncotypeDX scores are calculated.

b. Second, the range of clinical and imaging parameter values across all the patients are normalized
from zero to one according to the following formula (3):

zi =


yi−min(yi)

max(yi)−min(yi)
, i f ri ≥ 0

1− yi−min(yi)

max(yi)−min(yi)
, i f ri < 0

(3)

Here, zi represents the resultant risk prediction score for each parameter, i.

2.3.4. Construction of Network Model of Informatics Parameters

The complex informatics network, G was constructed from the multidimensional data,
Zi = {z1, z2, . . . , zK} ∈ Rnp , where, zi represents the risk prediction score of the clinical and imaging
parameter, i; K is the number of clinical and imaging parameters; and np is the number of patients [38].
The network G is represented as G = (V,E) with V = {v1,v2, . . . ,vK} being the set of K vertices representing
the clinical and imaging parameters and E being the adjacency matrix indicating the interactions
between the clinical and imaging parameters in the form of edge weights. The edge weight between
any two vertices vi and vj was computed by Equation (4) as follows

Ei j = 1− corr
(
zi, z j

)
, (4)

The edge weights represent the distances between any two parameters. We defined a neighborhood
parameter, k, to define the number of nearest neighbors each parameter could be connected to.
The connectivity in the resulting complex network is dependent on the value of k chosen. If the value
of k is chosen to be too large, the complex network may produce short circuit or spurious connections
while a low value of k would produce a disconnected network [40]. The value of k selected as three by
empirical analysis.

2.3.5. Statistics and Topological Characteristics of the Complex Network

The complex network was analyzed using graph summary metrics and centrality metrics [41,42]
The average path length and diameter are the basic statistical metrics computed for any complex
network. A path is defined as the set of edges connecting any two nodes and the sum of weights
of these edges represent the path length. Average path length, as the name suggests, is the average
of the path lengths across all pairs of nodes or clinical and imaging parameters. Diameter is the
maximum value among all the path lengths. Graph centrality metrics identify the most important
clinical and imaging parameters in the complex network and called the hub nodes [43,44]. These hub
nodes influence the network properties. Furthermore, the probability of any incoming node connecting
to these hub nodes is significantly higher than connecting to other nodes [42]. The hub nodes may
correspond to the key clinical and imaging parameters that are predictors of breast cancer recurrence
risk. In total, the following metrics were extracted from the complex network: degree distribution,
average path length, diameter, clustering coefficient, and different centrality measures such as degree
centrality, harmonic centrality, and betweenness centrality (see Appendix A).
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2.3.6. Multiparametric and Single Radiomics

The Multiparametric Radiomic Tissue Signature Model

We define a tissue signature (TS) that represents the composite feature representation of a tissue
type based each of the different imaging sequences [25]. Mathematically, for N different imaging
parameters with TS at a voxel position, Sp is defined as a vector of gray level intensity values at that
voxel position, p across all the (N) images in the data sequence for different tissue types and is given by
the Equation (5),

Sp =
[
I(1)p , I(2)p , I(3)p , . . . , I(N)

p

]T
, (5)

where, Ip is the intensity at voxel position, p on each image, and T is the transpose. Then we define the
tissue signature probability matrix (TSPM) as an N dimensional matrix with each cell representing a
tissue signature configuration. The TSPM characterizes the spatial distribution of tissue signatures
within a Region of Interest (ROI). From the TSPM, we derive three radiomic features, the TSPM entropy,
uniformity, and mutual information (MI). The tissue signature first order statistics (TSFOS) features,
which characterize the distribution of voxel intensities across all the imaging parameters are calculated,
similar to traditional first order radiomics. The second order mpRad features are calculated from the
tissue signature co-occurrence matrix features (TSCM). The TSCM characterizes the spatial relationship
between tissue signatures within an image or ROI.

Radiomic Parameters

We defined five mpRad and 51 single radiomic features to quantify the textural properties of
the breast tumor on the post-contrast DCE MRI parameters [25,45–49]. The radiomic features can be
sub divided into five categories: First Order Statistics (FOS, three–mpRad, 14 single features), Gray
Level Co-occurrence Matrix (GLCM, two-mpRad, 18 single features), Gray Level Run Length Matrix
(GLRLM, 11 single features), Neighborhood Gray Tone Difference Matrix (NGTDM, 5 single features),
fractal dimension features (2 single features), and convexity.

The input parameters were determined from empirical analysis for the statistical texture analysis
methods of FOS, GLCM, GLRLM, and NGTDM were set as follows:

a. Binning for FOS = 64.
b. Gray level quantization for GLCM, GLRLM and NGTDM = 64.
c. The distance d for GLCM was set to one voxel.
d. Both GLCM and GLRLM were evaluated in all the four directions—0◦, 45◦, 90◦, and 135◦.

Rotational invariance was achieved by extracting the radiomic features from GLCM and GLRLM
averaged across all the directions.

We also computed radiomic feature maps (RFMs) [32] corresponding to the FOS and GLCM
features. The mean of the RFM feature map metrics were used in the prediction model. Finally,
the fractal dimension for the tumor intensity profile and tumor boundary were evaluated in addition
to the convexity of the tumor boundary. All of the radiomic features were extracted using our in-house
software developed using MATLAB (Version 19a).

2.3.7. Patient Classification

We implemented patient classification using the hybrid IsoSVM feature transformation and
classification algorithm [32] based on the Isomap [40] and the Support Vector Machine (SVM)
algorithms [50]. We evaluated the following four models:

a. Low vs. intermediate risk group.
b. Low vs. high-risk group.
c. Intermediate vs. high-risk group.
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d. Low vs. intermediate and high-risk groups combined.

The imbalance in the number of patients in different risk groups was overcome by setting different
misclassification penalties for different risk groups while training the SVM [51]. The optimal values for
the Isomap neighborhood parameter and the misclassification penalty were estimated using leave one
out cross validation.

2.4. Multiparametric Breast Imaging

Patients were scanned on a 3T MRI system (3T Achieva, Philips Medical Systems, Best,
The Netherlands) using a bilateral, dedicated four-channel, phased array breast coil (Invivo, Orlando,
FL, USA) with the patient in the prone position.

2.4.1. Proton MRI Imaging

T2-weighted spin echo (Transverse Relaxation, Echo Time, Inversion Recovery
(TR/TE/IR) = 7142/70/220 ms, Field of View (FOV) = 350 × 350, matrix = 220 × 195, slice thickness
(ST) = 5 mm, Sensitivity encoding (SENSE) = 2, and Averages (Ave) = 2), and fast spoiled gradient
echo (FSPGR).

T1-weighted (TR/TE = 5.4/2.3 ms, FOV = 350 × 350, matrix = 548 × 550, ST = 3 mm, SENSE = 2
and Ave = 1) sequences were acquired.

2.4.2. Pharmacokinetic Dynamic Contrast-Enhanced MRI

The Pharmacokinetic (PK) DCE was obtained using non-fat-suppressed (FS), three-dimensional
(3D), FSPGR T1-weighted (TR/TE = 3.4/1.7 ms, FOV = 350 × 350, matrix = 256 × 126, Flip angle
(FA) = 10, slice thickness = 5 mm, and Ave = 1) sequences. Pre- and fourteen post- contrast images
(temporal resolution = 15 s) after intravenous administration via a power injector at a rate of 2 mL/s of
a gadolinium (Gd-DTPA) contrast agent (0.2 mL/kg (0.1 mmol/kg)).

2.4.3. High-Resolution Dynamic Contrast-Enhanced MRI

T1-weighted 3D Gradient Recalled Echo (GRE) with FS (TR/TE = 5.8/2.9 ms, FOV = 350 × 350,
matrix = 720 × 720, flip angle = 13, ST = 3 mm, and Ave = 1) were obtained pre and post the PK-DCE.

2.4.4. Diffusion Weighted Imaging

Diffusion-weighted imaging was acquired before contrast imaging using an FS fast spin echo
planar parallel imaging sequence (TR/TE/IR = 9548/70 ms, FOV = 350 × 350, matrix = 220 × 195,
SENSE = 2, Ave = 2, ST = 3 mm, b = 0, 200, 600, 800 s/mm2) on three planes and in less than
three minutes. Trace apparent diffusion coefficient (ADC) maps were constructed using a diffusion
monoexponential model.

2.5. MRI Data Analysis

2.5.1. Clinical Breast Lesion Classification Methods

Breast lesions were identified on the breast MRI by a radiologist and defined by the Breast
Imaging-Reporting and Data System (BI-RADS) lexicon [52,53]. Breast density was defined as
extremely dense tissue, heterogeneously dense tissue, scattered fibroglandular tissue, or primarily
fatty tissue. Background parenchymal enhancement (BPE) was defined as minimal, mild, moderate,
or marked. Lesions were classified as a focus, a mass or non-mass enhancement (NME). Morphologic
assessment was defined for masses, as shape (round, oval, irregular), margins (1 = circumscribed,
2 = not circumscribed 2a = irregular 2b = spiculated), and enhancement patterns (1 = homogenous,
2 = heterogeneous or 3 = rim). For NME, distribution (1 = focal, 2 = regional, 3 = linear
4 = diffuse, and 5 = segmental) and enhancement pattern (homogenous, heterogeneous, clustered
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ring, and clumped) were recorded. We defined lesion morphology into seven classes (1 = focal
NME, 2 = regional NME, 3 = linear or segmental NME, 4 = circumscribed mass, 5 = irregular mass,
or 6 = spiculated mass).

2.5.2. Pharmacokinetic Contrast Enhancement Metrics

Pharmacokinetic kinetic DCE MRI provides quantitative metrics of the volume transfer constant
(Ktrans (min−1)), which characterize uptake of the contrast agent, the leakage within the extracellular
extravascular space (Ve (%)), and the transfer rate constant (kep (min−1)). Post-processing of the DCE
exam was performed by a combined Brix and Tofts model [15,54,55] using DynaCAD (Invivo, FL, USA)
software from the identified breast lesions, and detailed in these manuscripts [11,56–58].

2.5.3. ADC Mapping

Regions of Interest (ROI) were drawn on normal appearing glandular tissue and breast lesions
defined by DCE MRI. Means and standard deviations were calculated for both tissue types. Ratios of
lesion ADC to glandular tissue ADC (L/GT) were calculated from equation (6) below using the lesion
and glandular tissue [23].

Normalized ADC value = (ADC value of Lesion)/(ADC value of glandular tissue). (6)

2.6. Statistical Analysis

We computed summary statistics (mean and standard deviation of the mean) for the quantitative
imaging parameters from the mpMRI. An unpaired two-sided t-test was performed between each pair
of risk groups imaging parameters to determine statistical significance. Sensitivity and specificity,
and Area Under the Curve (AUC), were calculated to determine the classification of the patients in the
different groups. Statistical significance was set at p ≤ 0.05.

3. Results

3.1. Clinical Demographics

A total of 80 patients with 83 lesions of 123 patients identified who had both multiparametric
MRI imaging and Oncotype assay were selected. There were 19 (24%) lesions with Recurrence Score
low risk (0–17), 49 (61%) lesions with intermediate risk (18–31), and 12 (15%) lesions with high risk
(>31). Seventy-four patients were ER+/PR+ and six had only ER+ expression. The age distribution
was low risk (age = 53 ± 10 years), intermediate risk (age = 53 ± 11 years) group, and high-risk
(age = 54 ± 9 years) group. These data are summarized in Table 1. The 42 patients not included in
the study did not undergo a complete advanced mpMRI imaging session and one patient that was
HER2-neu positive.

Table 1. Patient clinical parameters and demographics.

Clinical Information Mean ± SD

Patient Age 53 ± 10
Tumor Grade (Elson)

1 8
2 60
3 12

Ki67 (%) 29 ± 16
ER+ 80
PR+ 74

* HER2-neu+ 0
Triple Negative 0

ODX Score
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Table 1. Cont.

Clinical Information Mean ± SD

Low (≤17%) 19
Intermediate (18–30%) 49

High (≥31%) 12

Estrogen Receptor (ER), Progesterone Receptor (PR), HER2-neu + (human growth factor receptor 2) * HER2-neu
patients were excluded. ODX = OncotypeDX; Ki-67 is a histological marker for proliferation. Standard Deviation =
SD; HER2 = human growth factor receptor 2; * HER2-neu patients were excluded.

3.2. Radiological Findings

Representative multiparametric breast imaging for each risk group as defined by OncotypeDX
are illustrated in Figure 2. The high-risk group had the largest tumor size (2.9 ± 1.7 mm). Followed
by the low-risk group tumor size (1.9 ± 1.3 mm) and the intermediate risk group (1.7 ± 1.4 mm).
These differences were not significant (p > 0.5). For advanced MRI parameters, there were clear
differences in each parameter and Oncotype risk groups. The PK-DCE parameter Ktrans values for
the intermediate- and high-risk groups were higher (0.46 and 0.49 (1/min) (p = 0.26)) compared to the
low-risk group (0.30 (1/min) (p = 0.02). Similar results were noted for the other PK-DCE parameters
(extracellular extravascular space (EVF) and kep). The maximum contrast enhancement from DCE
was largest for the low-risk group (503 ± 33 s), compared to the intermediate-risk (461 ± 24 s),
and high-risk groups (468 ± 31 s). Similarly, the ADC map values from the high- and intermediate-risk
patients in the lesion tissue were significantly lower (p < 0.05) than those for the low-risk patients
(1.14 vs. 1.49 × 10−3 mm2/s). However, the ADC map values in glandular tissue remained constant
across all groups (2.14–2.17 × 10−3 mm2/s). The bar graphs are shown in Figure 3.
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Figure 2. Demonstration of multiparametric magnetic resonance imaging (MRI) breast imaging of
each risk group defined by the OncotypeDX. (Left Column) typical imaging of the low risk patient.
(Middle Column) typical imaging of the medium risk patient. (Right Column) typical imaging of
a high-risk patient. The yellow arrows indicate the primary lesion in the breast. The MRI images
of T2-weighted (T2), apparent diffusion coefficient (ADC) map, Pharmacokinetic Dynamic Contrast
Enhanced (PK-DCE) and multiparametric radiomics demonstrate the different malignant lesions.
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Figure 3. Bar graphs of quantitative multiparametric MRI parameters for each risk group from the
OncotypeDX (OnDx). There are significant differences between each group of patients in the apparent
diffusion coefficient (ADC (×10−3 mm2/s)) of water and the Pharmacokinetic Dynamic Contrast
Enhanced (PK-DCE) metrics. The PK-DCE metrics are the volume transfer constant (Ktrans (min−1))
and the fractional volume of the extracellular extravascular space (EVF (Ve)). * p < 0.05.

3.3. Single and Multiparametric Radiomics

The single and multiparametric radiomic features demonstrated significant differences between
the low, intermediate, and high-risk groups and shown in Figure 4. The single and multiparametric
radiomic features, first order entropy feature map and the GLCM entropy feature map, which are
measures of heterogeneity, were significantly higher for the low risk group as compared to the
intermediate and high-risk groups. In contrast, the first order uniformity and GLCM energy, both of
which are measures of homogeneity demonstrated an opposite trend. These radiomic results are
summarized in Table 2.
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Figure 4. Bar graphs of different mpRad and single parameter entropy features extracted from DCE-MRI.
Multiparametric radiomics (mpRad), Frist Order Statistics (FOS), Gray Level Co-occurrence Matrix
(GLCM), radiomic feature mapping (RFM).
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Table 2. Summary of entropy and uniformity radiomic features characterizing the heterogeneity or
homogeneity of breast tumors across the different risk categories.

Radiomic Features Low Risk Intermediate Risk High Risk p-Value *

mpRad FOS Energy 1359 ± 223 1346.45 ± 171 3332 ± 900 0.03
mpRad FOS Entropy 5.62 ± 0.03 5.55 ± 0.02 5.45 ± 0.03 0.009

mpRad FOS Uniformity 0.02 ± 0.001 0.03 ± 0.001 0.03 ± 0.001 0.004
FOS Entropy 4.57 ± 0.09 4.32 ± 0.08 4.49 ± 0.17 0.06

FOS Uniformity 0.05 ± 0.003 0.06 ± 0.003 0.06 ± 0.007 0.01
GLCM Entropy 5.67 ± 0.10 5.37 ± 0.09 5.54 ± 0.20 0.04
GLCM Energy 0.01 ± 0.000 0.01 ± 0.001 0.01 ± 0.002 0.002

RFM FOS Entropy 3.58 ± 0.05 3.42 ± 0.05 3.30 ± 0.10 0.006
RFM FOS Uniformity 0.10 ± 0.004 0.12 ± 0.005 0.13 ± 0.009 0.004
RFM GLCM Entropy 4.23 ± 0.05 4.05 ± 0.05 3.95 ± 0.09 0.004
RFM GLCM Energy 0.02 ± 0.001 0.03 ± 0.003 0.03 ± 0.003 0.003

* low vs. intermediate high-risk groups, Multiparametric radiomics (mpRad), Frist Order Statistics (FOS), Gray
Level Co-occurrence Matrix (GLCM), radiomic feature mapping (RFM).

3.4. Integrated Radiomics Informatic System (IRIS) Model

The IRIS heatmap risk profile of each patient is shown in Figure 5. The top surrogates for mpRad
and single radiomics, imaging, and histological parameters determined from the clinical and imaging
model based on the IRIS heatmap are summarized in Tables 3 and 4.
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Figure 5. The IRIS heat map demonstrates the stratification of the integrated mpRad, radiological,
and clinical parameters into OncotypeDX score recurrence risk groups of low, intermediate, and high.
Interesting there appears to be intermediate and high-risk factors perceived in the low risk group that
may not habeen noted in clinical evaluations. Similarly, there are a mix of low and high-risk features
in the intermediate group. Integrated Radiomic Informatic System (IRIS), Non-linear dimension
reduction (NLDR).
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Table 3. The ranking of single radiomic features by IRIS.

Parameter Rank

Ki-67 1
Ratio Lesion/Glandular Tissue 2

Lesion ADC 3
%initial enhancement 4

RFM FOS kurtosis 5
Perm-Mean 6

NGTDM Busyness 7
GLCM Correlation 8

GLRLM GLN 9
GLRLM RLN 10

RFM Laplacian 10
RFM LoG 10

Frist Order Statistics (FOS), Gray Level Co-occurrence Matrix (GLCM), Gray Level Run Length Matrix (GLRLM), Gray
Level Nonuniformity (GLN), Run Level Nonuniformity (RLN), radiomic feature mapping (RFM), Neighborhood
Gray Tone Difference Matrix (NGTDM).

Table 4. The ranking of mpRad features identified by IRIS.

Parameter Rank

Ratio L/GT 1
Lesion ADC 2

%initial enhancement 3
TSFOS Energy 4

TSFOS Kurtosis 5
TSPM Multidimensional uniformity 6

TSFOS Minimum 7
TSCM Dissimilarity1 8

TSCM Inverse Difference Normalized1 9
TSCM Inverse variance1 10

TSCM Sum variance1 10

Integrated Radiomic Informatic System (IRIS), Multiparametric radiomics (mpRad), Frist Order Statistics (FOS),
Gray Level Co-occurrence Matrix (GLCM), Gray Level Run Length Matrix (GLRLM), Gray Level Nonuniformity
(GLN), Run Level Nonuniformity (RLN), radiomic feature mapping (RFM), Neighborhood Gray Tone Difference
Matrix (NGTDM), Tissue signature Frist Order Statistics (TSFOS), Tissue signature probability matrix (TSPM), Tissue
signature co-occurrence matrix features (TSCM).

For the patient classification, the quantitative imaging parameters, ADC map values and the
PK-DCE parameters were combined with histopathological parameter of Ki-67, and the radiomic
parameters of FOS/GLCM entropy, FOS uniformity, and GLCM energy features. For the single
parameter-based IRIS model, the IsoSVM model classified the low risk group from the intermediate
and high-risk groups with a sensitivity and specificity of 95% and 88%, respectively, with an AUC of
0.93 (CI = 0.88–0.99). The optimal neighborhood parameter, dimensionality, and imbalance ratio were
found at 60, 10, and 2:1, respectively. The ROC curves from different inter-group IsoSVM classifiers
are shown in Figure 6. The lowest and non-diagnostic AUC (0.64 (CI = 0.47–0.81)) resulted from the
comparison between the intermediate and high-risk groups. Figure 7 demonstrates the ROC curves
from different inter-group IsoSVM classifiers using mpRad based IRIS model. There was no significant
difference between the ROC curves from the two radiomic feature sets. The p values for comparison
between the ROC curves for single and multiparametric radiomics were p = 0.33 (low vs. intermediate
+ high), p = 0.49 (low vs. intermediate), p = 0.30 (low vs. high), and p = 0.19 (intermediate vs. high).
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Figure 6. The Area under the Curve (AUC) graphs of the single IsoSVM model trained using quantitative
imaging parameters (PK-DCE, ADC), Ki67, and single radiomics (FOS Entropy, Uniformity; GLCM
Entropy, Energy) with the OncotypeDX score compared to each group. (A) The low versus intermediate
+ high-risk group. The sensitivity was 95% and specificity was 88% with an AUC = 0.93 (CI = 0.88–0.99).
(B) The low versus intermediate risk group resulted in a sensitivity of 81%, specificity of 67%, and
an AUC = 0.76 (CI = 0.63–0.90). (C) The low versus high risk group resulted in a sensitivity of 95%,
specificity of 100%, and an AUC = 1.00 (CI = 1.00–1.00). (D) The intermediate versus high risk group
resulted in markedly lower (non-diagnostic) AUC and other metrics with a sensitivity of 81%, and
specificity of 50%, and an AUC = 0.64 (CI = 0.47–0.81). Gray Level Co-occurrence Matrix (GLCM).
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quantitative imaging parameters (PK-DCE, ADC), Ki67, and mpRad (TSFOS Entropy, Uniformity,
Energy) with the OncotypeDX score compared between each group. (A) The low versus intermediate +

high-risk group. The sensitivity was 95% and specificity was 83% with an AUC = 0.89 (CI = 0.82–0.96).
(B) The low versus intermediate risk group resulted in a sensitivity of 81%, specificity of 70%, and
an AUC = 0.82 (CI = 0.7–0.92). (C) The low versus high risk group resulted in a sensitivity of 86%,
specificity of 92%, and an AUC = 0.98 (CI = 0.95–1.00) and class imbalance of 3:1. (D) The intermediate
versus high risk group resulted in markedly lower (non-diagnostic) AUC and other metrics with a
sensitivity of 73% and specificity of 67% and an AUC = 0.75 (CI = 0.61–0.89). Tissue signature First
Order Statistics (TSFOS).

The topological graph theoretic metrics for integrated centrality and other different centrality
measures for each informatics parameter are summarized in Tables 4 and 5. The average path
length between each parameter was 2.1 and diameter of the complex informatics network was 5.1.
The average clustering coefficient was 0.53, much higher than the clustering coefficient of Erdos–Renyi
random graph (CCER = 0.0228). Figures 8 and 9 illustrate the complex interaction network and the
inter-parametric relationships between all the variables for single and multiparametric radiomics
models. The hub IRIS parameters for single and multiparametric radiomics IRIS models have been
summarized in Tables 5 and 6.

Table 5. Summary of centrality values across different IRIS parameters.

IRIS Parameter Betweenness
Centrality

Degree
Centrality

Harmonic
Centrality

Integrated
Centrality

GLCM Variance 246 5 347.84 0.58
GLCM Autocorrelation 167 4 357.07 0.53
RFM FOS uniformity 886 7 3.55 0.53

NGTDM Contrast 1115 5 0.82 0.52
GLCM Energy 1084 5 1.35 0.51

RFM GLCM entropy 763 7 4.86 0.49
GLCM Maximum probability 975 5 1.32 0.48

GLCM Homogeneity 2 860 5 10.34 0.45
GLCM Correlation 747 6 0.83 0.45
kinetic curve type 371 9 0.66 0.44

Integrated Radiomic Informatic System (IRIS), Frist Order Statistics (FOS), Gray Level Co-occurrence Matrix (GLCM),
Gray Level Run Length Matrix (GLRLM), Gray Level Nonuniformity (GLN), Run Level Nonuniformity (RLN),
radiomic feature mapping (RFM), Neighborhood Gray Tone Difference Matrix (NGTDM).

Table 6. Summary of centrality values across different IRIS parameters with mpRad.

IRIS parameter Betweenness
Centrality

Degree
Centrality

Harmonic
Centrality

Integrated
Centrality

TSCM Contrast I 406.00 5.00 150.18 0.72
TSCM Autocorrelation I 238.00 5.00 210.53 0.68

TSCM Inverse Difference Moment Normalized1 367.00 4.00 150.18 0.66
TSCM Variance I 195.00 4.00 210.52 0.61
kinetic curve type 280.00 11.00 0.84 0.56

TSCM Inverse Difference Normalized1 358.00 6.00 21.24 0.51
TSCM Dissimilarity I 357.00 5.00 21.25 0.48

Green % 399.00 4.00 0.77 0.45
TSCM Homogeneity II 202.00 7.00 15.00 0.40

TSPM uniformity 330.00 4.00 0.99 0.39

Integrated Radiomic Informatic System (IRIS), Multiparametric radiomics (mpRad), Frist Order Statistics (FOS),
Gray Level Co-occurrence Matrix (GLCM), Gray Level Run Length Matrix (GLRLM), Gray Level Nonuniformity
(GLN), Run Level Nonuniformity (RLN), radiomic feature mapping (RFM), Neighborhood Gray Tone Difference
Matrix (NGTDM), Tissue signature Frist Order Statistics (TSFOS), Tissue signature probability matrix (TSPM), Tissue
signature co-occurrence matrix features (TSCM).
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Figure 8. Visualization of the Integrated Radiomic Informatic System (IRIS) single parameter radiomics
complex interaction network. The nodes represent different IRIS parameters, with edges corresponding
to inter-parametric relationships.
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Figure 9. Visualization of the Integrated Radiomic Informatic System (IRIS) mpRad complex
interaction network. The nodes represent different IRIS parameters, with edges corresponding
to inter-parametric relationships.

4. Discussion

We have introduced and demonstrated an advanced NLDR integrated clinical and imaging model
(IRIS) to analyze the relationships and interactions between mpMRI parameters, radiomics, clinical
heath records, and histological variables and compared these results with the OncotypeDX assay for
risk assessment of breast cancer recurrence. The data integration by the IRIS model using radiomic,
radiological, and clinical variables were able to group patients into the three different categories of
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low, intermediate, and high risk of breast cancer recurrence. Importantly, using IRIS, we defined
several mpMRI and mpRad variables that were predictive of potential local and systemic tumor
recurrence compared with categorization as defined by the OncotypeDX risk score. This integration of
mpMRI, clinical data, and radiomics compared favorably to OncotypeDX and may lead to an accurate
non-invasive assessment for risk of local and systemic recurrence. For example, we found that the
most important radiological and histological parameters were the ADC map values, PK-DCE metrics,
and Ki-67. These quantitative biological metrics reflect the cellularity, vascularity, and proliferation
status of the tumor. Therefore. By using an integrated machine learning model of imaging, radiomics,
clinical heath records, and histopathology data has the potential to describe unseen features of cancer
and may provide data for precision personalized care as shown from the IRIS visualization heatmap.
This is the one of the first studies to use an integrated graph theoretic and machine learning model
based on quantitative mpMRI, clinical variables, and both single and multiparametric radiomics in
breast cancer compared with gene array data [35,37].

The categorization of the different risk groups from our model was strikingly consistent based on
the combined imaging, radiomics, and pathological variables. Indeed, the ADC map values were lower
in the high and intermediate risk group consistent with the increased cell proliferation metric, Ki-67
from histological analysis. The PK-DCE parameters and lesion size demonstrated similar characteristics
in these groups. Moreover, the radiomics parameters revealed an interesting underlying pattern across
each of the three risk groups.

This report demonstrates that using an advanced unsupervised machine learning method in
breast cancer and integration of several variables can accurately separate those cancers into different
risk stratifications consistent with the OncotypeDX results. Finally, by using the complex interaction
mapping, one can visualize the connections formed between each variable, which may form the
basis for even further predictive modeling using the heatmap visualization tool or newer surveillance
methods of recurrence in clinical use. For example, in some low risk patients, there were potential
markers of increased risk, which may be missed by just looking at “single points” of data and these
cases could be followed more closely over time. Similarly, potentially high-risk markers were seen in
the intermediate risk cases, which could be useful for a surveillance program in these patients.

The clinical and radiological parameters utilized in this study were derived from our clinical
experience, since current treatment decision algorithms are based on standard clinicopathologic
prognostic, and predictive factors, large datasets using clinical measures such as tumor size, node
status, grade, ER, and HER2-neu [9,10,59–63]. Similarly, imaging features such as, breast density, lesion
morphology, size, enhancement patterns as well as quantitative metrics (ADC map values and PK-DCE)
are routinely used in practice and are familiar to the radiologist and readily available. Finally, radiomic
feature analysis methods are increasing bringing a new potential quantitative biological biomarker to
different cancers. The OncotypeDX assay has been shown to be a predictive tool to identify patients
most likely to benefit from the addition of adjuvant chemotherapy to endocrine therapy with validation
in prospective studies [1–3]. Thus, the ability to combine these quantitative measures would be an
important step in ensuring that “the right patient receives the right treatment”.

We developed an integrated informatics-radiomics decision support system (IRIS) based on
multi-subspace embedding and clustering method for the purpose of diagnosis or prognosis [36].
Furthermore, the complete multi-subspace embedding, and clustering method is unsupervised and
does not require any training data. The IRIS heatmap provides a visualization of relationship between
different cancers along with quantifiable embedding metrics. Using the IRIS heatmap, we would be
able to identify a patient or a group of patients with the most similar informatics embedding metrics
and use these metrics for a new patient with an unknown risk of recurrence. Understanding the
complex relationships between different embeddings can provide an insight on how these metrics
are related at biological level predicting recurrence of breast cancer. Interestingly, the lesion size was
not an accurate feature for categorizing cancers into the risk groups in this study. The lesion size was
largest for the highest risk group, but was smallest for the intermediate risk group, suggesting that
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lesion size alone is not an accurate predictor. Differentiating and characterizing benign from invasive
breast cancer is an important issue that was the focus of many different studies [12,19,63–66].

The complex interaction network provided insight into how the different IRIS parameters relate to
each other. For example, radiomic features of entropy and uniformity have higher integrated centrality
in the subgraph indicating these features provided complementary information about the underlying
network. In contrast, glandular ADC and Ki-67 have lower integrated centrality and more associated
with other distinct features in the network. The highest integrated centrality measures were the mpRad
and vascular features suggested the mpMRI provides more information about breast lesions.

Prior studies developing risk scores comparable to the OncotypeDX, typically used a single or
just few MRI parameters [10,34,67,68]. Some differences with those studies and the present study
are several; we employed machine learning and graph theory methods to differentiate these entities.
The IRIS model incorporated pathophysiological and imaging characteristics of different breast tissue
types, enabling a more predictive model of the tumor environment. Finally, we used the standard of
care BI-RADS information from the radiologist report in clinical records, which is an informatic risk
assessment and provides diagnostic characteristics of the lesion and surrounding tissue. The addition
of BI-RADS increased the dimensionality to our model by the combination of the breast density, mass
shape, margins, enhancement patterns, and other factors, in conjunction with the radiomics features,
a more complete picture of the lesion and surrounding texture characteristics. One limitation to the
study is our small sample size of patients, but this report provides encouraging preliminary data for
further testing on a larger cohort in a prospective study. For example, the non-diagnostic AUC between
the intermediate and high-risk group in this study may be attributed to the large class imbalance
of one to seven between the groups. Recent reports have shown non-diagnostic AUCs (0.50–0.77)
results [69] in a larger group of similar patients studied using the OncotypeDX and single parameter
radiomics consistent with our results. However, the authors in those studies used only a single MRI
parameter (DCE) and developed some different features based on image analysis, but they did not
utilize quantitative PK-DCE, ADC mapping, or other common MRI parameters, which are more
representative of the tumor microenvironment.

5. Conclusions

The incorporation of multiparametric radiomics into the IRIS model provided more quantitative
metrics for better characterization and complete picture of breast lesions. Ongoing work is underway
to see if IRIS could be used as a potential predictive or selection tool for patients for adjuvant treatment
and assist in decision making with pathology for those tough cases in the “low to intermediate” risk
group. IRIS could be used to identify high-risk features in the low to intermediate groups for potential
active surveillance, in terms of risk defined by the integration of several variable over time.

In conclusion, these initial studies provide insight into the molecular underpinning of the surrogate
imaging and clinical features and provide the foundation to relate these changes to histologic and
molecular pathology parameters. The integration of these clinical and imaging parameters may help
refine available prognostic and predictive markers, and improve clinical decision-making.

6. Patents
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Appendix A

Appendix A.1. Theoretical Graph Metrics

Appendix A.1.1. Clustering Coefficient

The clustering coefficient defines the connectedness of the neighborhood of an informatics
parameter. Clustering coefficient ranges from zero to one with zero representing completely
disconnected neighborhood and one representing completely connected neighborhood. Mathematically,
the clustering coefficient, i is defined by Equation (A1),

CC(i) =
2ei

ki(ki − 1)
, (A1)

Here ei is the number of connected edges neighborhood of i, ki are the number of nodes in the

neighborhood of i making ki(ki−1)
2 the maximum possible number of edges in the neighborhood.

Appendix A.1.2. Degree Distribution

The degree distribution is the most fundamental metric calculated for any complex network.
The degree distribution, P(k) is determined using the following equation

P(k) =
1
N

N∑
i=1

1
{
deg(i) = k

}
∀k ∈ {7, 8, . . . , N − 1}, (A2)

Here, deg(i) represents the degree of the parameter, i, which is defined as the total number of
parameters that are directly connected to it; N is the number of parameters.

The degree distribution enables us to identify whether the network is a scale-free network or
not. For scale free networks, the degree distribution follows the power law P(k) ∝ k−γ, with the value
of γ ranging between 2 and 3. Scale free networks are characterized by the presence of few highly
connected hub nodes that influence the network properties and may correspond to the key parameters
that are predictors of breast cancer recurrence risk [42].

Appendix A.2. Centrality Measures

The Centrality measures determine the importance of each informatic parameter in the complex
network. The most widely used measures of centrality are betweenness, harmonic, and degree
centrality [43,44,70]. We use three centrality measures, each centrality measure highlighting a different
importance property of the network.

Appendix A.2.1. Betweenness Centrality

Betweenness centrality quantifies the amount of information that flows through each parameter
or node [43]. It is defined as the number of shortest paths that pass through a parameter, given by
Equation (A3):

CB(i) =
∑

s,i,t

Nst(i)
Nst

, (A3)

Here, Nst is the total number of shortest paths between the parameters, s and t and Nst(i) is the
total number of shortest paths between s and t that pass through i.
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Appendix A.2.2. Harmonic Centrality

Harmonic centrality of a parameter is defined as the sum of inverse of all geodesic distances (path
lengths) from that parameter to all the other parameters [44]. Harmonic centrality measures the nodes
that are influential and how information spreads on the local network. Mathematically, harmonic
centrality of a parameter, i is given by Equation (A4):

CH(i) =
1

N − 1

N∑
s = 1
s , i

1
G(s, i)

, (A4)

Here G(s,i) is the geodesic distance or path length between the parameters s and i.

Appendix A.2.3. Degree Centrality

Degree centrality or degree is defined as the total number of parameters linked to a node, i.e.,
the number of neighbors, where each parameter is connected in the complex network.

Appendix A.2.4. Integrated Centrality

Each centrality measure signifies the importance of each parameter based on a pre-define
characteristic. Where, the significance of each parameter across all centrality indices can be defined
using integrated centrality [17] as shown in Equation (A5):

Cint(i) =
1
3

(
CB(i)

max(CB)
+

CH(i)
max(CH)

+
CD(i)

max(CD)

)
, (A5)

Here, Cint corresponds to the integrated centrality of the parameter, i; CB, CH, and CD represent
the betweenness, harmonic, and degree centralities of the parameter, i respectively and max () extracts
the maximum values of each centrality measure across all the parameters.
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