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Abstract: Aminobisphosphonates, such as zoledronic acid (ZA), have shown potential in the treatment
of different malignancies, including colorectal carcinoma (CRC). Yet, their clinical exploitation is
limited by their high bone affinity and modest bioavailability. Here, ZA is encapsulated into the
aqueous core of spherical polymeric nanoparticles (SPNs), whose size and architecture resemble that
of biological vesicles. On Vδ2 T cells, derived from the peripheral blood of healthy donors and CRC
patients, ZA-SPNs induce proliferation and trigger activation up to three orders of magnitude more
efficiently than soluble ZA. These activated Vδ2 T cells kill CRC cells and tumor spheroids, and are
able to migrate toward CRC cells in a microfluidic system. Notably, ZA-SPNs can also stimulate the
proliferation of Vδ2 T cells from the tumor-infiltrating lymphocytes of CRC patients and boost their
cytotoxic activity against patients’ autologous tumor organoids. These data represent a first step
toward the use of nanoformulated ZA for immunotherapy in CRC patients.

Keywords: Vδ2 T cells; zoledronic acid; polymeric nanoconstruct; anti-tumor immunity;
colorectal carcinoma

1. Introduction

It is well established that the immune system is involved in controlling the growth and expansion
of solid tumors, including colorectal carcinomas (CRCs) [1,2]. Tumor-infiltrating lymphocytes (TIL)
comprise multiple cell subsets that can either kill tumor cells (effector anti-tumor lymphocytes) or
modulate this response (regulatory T cells, Treg) [3,4]. A recent analysis of the overall survival of
CRC patients revealed that the presence of intratumoral γδ T cells highly correlates with a significant
favorable prognosis [3,4]. These cells are resident in the mucosal-associated lymphoid tissue of the
gut epithelium and play a major role in controlling the integrity of the intestinal barrier when facing
bacterial infections and pathogenic injuries [5–9]. Γδ T lymphocytes can be activated upon recognition
of unprocessed non-peptide small molecules, including phosphoantigens (PA), derived from the
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mevalonate pathway in tumor cells [10–12]. Different drugs can be used to enhance γδ T cell activation,
such as synthetic pyrophosphate-containing compounds [13,14]. Among these, aminobisphosphonates
(N-BPs) are known to induce the activation and proliferation of the Vδ2 γδ T cell subset, thus increasing
their blood concentration and anti-tumor activity [15–18]. For instance, the N-BP zoledronic acid (ZA)
is a chemically stable analogue of inorganic pyrophosphate that inhibits the farnesyl pyrophosphate
synthase (FPPS) of the mevalonate pathway and up-regulates isopentenyl pyrophosphate (IPP)
accumulation, promoting the preferential growth of anti-tumor Vδ2 T cells in vitro and in vivo [19–21].
This immunostimulating property, together with the direct anti-tumor effects, have paved the way for
clinical trials of different N-BPs [22–26]. We have recently reported that epithelial and mesenchymal
cells from CRC specimens, upon exposure to ZA, stimulate the expansion of Vδ2 T cells with anti-tumor
activity [21]. However, one of the main limitations in using free ZA for the treatment of CRC is
its bone tropism. Indeed, N-BPs are used in the therapy of osteoporosis for their ability to reach
the bone and activate the osteo-matrix deposition [16,17]. This property is a clear advantage when
treating bone metastases of carcinomas or bone marrow tumors like multiple myeloma [16–19].
Nevertheless, the strong N-BPs’ concentration in the bone limits the distribution in other districts,
such as a neoplastic mass developing in the colon. Furthermore, as with most small molecules, ZA has
a rapid blood clearance that also limits its effective use in γδ T cell stimulation [27,28]. Therefore, novel
delivery strategies are needed to capitalize on the multifaceted therapeutic properties of ZA. To improve
the biodistribution and bioavailability of N-BPs, prodrugs have been proposed [29]. Although these
have been shown to trigger the expansion of Vδ2 T cells more efficiently than the corresponding soluble
form, these formulations do not warrant a significant reduction in bone tropism.

On the other hand, nanomedicine [30] could represent an ideal tool to enhance the circulation
half-life and intra-tumor accumulation of ZA, while preserving its pharmacological features. Moreover,
the effective use of nanoparticles for stimulating the immune system response against tumors has been
recently demonstrated [31,32].

Nanoparticles (smaller than 200 nm) can exploit the presence of large fenestrations in the tumor
vessels, the so-called enhanced permeation and retention effect (EPR), to increase drug accumulation
in the neoplastic tissue compared to free drugs [33,34]. Moreover, as the molecules are loaded inside
the nanoparticle, drug solubility and stability could be notably improved, preventing degradation by
serum proteins. Finally, it is possible to control the release of the drug, hindering early leakage, and its
natural accumulation in bone tissue [35–37].

In this work, ZA was reformulated into spherical polymeric nanoparticles (ZA-SPNs) with an
aqueous core containing the active molecule, enclosed in a thin polymer matrix and a lipid monolayer.
This architecture confers to ZA-SPNs an appearance similar to biological vesicles. These ZA-SPNs
enhance the efficiency of ZA in the stimulation of CRC patients’ Vδ2 T cells that, in turn, kill autologous
tumor organoids, supporting the proposal to use this drug formulation against CRC.

2. Results

2.1. Synthesis and Characterization of ZA-SPNs

In order to enhance tumor accumulation for future in vivo use, ZA was reformulated into
nanoparticles. Briefly, spherical polymeric nanoparticles loaded with ZA (ZA-SPNs) were obtained via
a double emulsion–evaporation process, modifying the single emulsion protocol that was previously
described by Lee et al. [38]. This formulation comprised an aqueous core, entrapping the hydrophilic ZA
molecule, confined within a polymer shell and an external lipid monolayer. A schematic representation
of a ZA-SPN’s architecture is given in Figure 1A. Note that some of the lipids were conjugated with
2 kDa polyethylene glicole (PEG) chains, which limit unspecific absorption of blood proteins and extend
the half-life of SPNs in circulation [35]. The ZA-SPNs were spherical in shape (Figure 1B), exhibited
a hydrodynamic diameter of ≈170 nm and a polydispersity index (PDI) lower than 0.2, indicating a
monodisperse particle population, and a negative ζ-potential of approximately −40 mV, similar to that
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of biological vesicles (Figure 1C). The nanoparticles were found to be stable at 37 ◦C for more than
2 weeks, preserving both the size and the monodispersity index (Figure 1D). This should be ascribed to
the negative surface ζ-potential that prevented particle aggregation over time. Indeed, the ζ-potential
was also stable over the same period of observation (Figure S1A). Note that the geometry and shell
core structure of ZA-SPNs make them similar to biological vesicles. The pharmacological properties
of ZA-SPNs were analyzed in terms of ZA loading and release. Different input amounts of ZA were
considered in formulating the nanoparticles, namely 50, 100, 300, and 800 µg. The best formulation
was obtained for an initial input of 300 µg, which resulted in a final ZA concentration of ≈100 µM per
batch (Figure 1E) and an encapsulation efficiency, defined as the weight percentage of the encapsulated
ZA amount at the end of the process over the initial amount, of ≈10% (Figure S1B). This was identified
as the best configuration in that it maximized the ZA loading per batch, thus minimizing the mass
of nanoparticles needed to deliver a given amount of ZA. The release of ZA from SPNs is given in
Figure 1F, documenting a modest initial burst, corresponding to≈25% ZA released after 4 h, followed by
a sustained release, with more than 60% of ZA still entrapped in the SPNs after 2 days (50 h). Only after
about 7 days (150 h) had all loaded ZA been released out of SPNs, as evaluated using high pressure
liquid chromatography. This assured that the effects observed further in the experiments were not due
to the early release of ZA, but to the one entrapped within the nanoparticles, and were working only
after they were internalized.



Cancers 2020, 12, 104 4 of 26

Cancers 2020, 12, x FOR PEER REVIEW 3 of 26 

Cancers 2020, 12, x; doi: FOR PEER REVIEW www.mdpi.com/journal/cancers 

spherical in shape (Figure 1B), exhibited a hydrodynamic diameter of ≈170 nm and a polydispersity 
index (PDI) lower than 0.2, indicating a monodisperse particle population, and a negative ζ-
potential of approximately −40 mV, similar to that of biological vesicles (Figure 1C). The 
nanoparticles were found to be stable at 37 °C for more than 2 weeks, preserving both the size and 
the monodispersity index (Figure 1D). This should be ascribed to the negative surface ζ-potential 
that prevented particle aggregation over time. Indeed, the ζ-potential was also stable over the same 
period of observation (Figure S1A). Note that the geometry and shell core structure of ZA-SPNs 
make them similar to biological vesicles. The pharmacological properties of ZA-SPNs were 
analyzed in terms of ZA loading and release. Different input amounts of ZA were considered in 
formulating the nanoparticles, namely 50, 100, 300, and 800 μg. The best formulation was obtained 
for an initial input of 300 μg, which resulted in a final ZA concentration of ≈100 μM per batch 
(Figure 1E) and an encapsulation efficiency, defined as the weight percentage of the encapsulated 
ZA amount at the end of the process over the initial amount, of ≈10% (Figure S1B). This was 
identified as the best configuration in that it maximized the ZA loading per batch, thus minimizing 
the mass of nanoparticles needed to deliver a given amount of ZA. The release of ZA from SPNs is 
given in Figure 1F, documenting a modest initial burst, corresponding to ≈25% ZA released after 4 
hours, followed by a sustained release, with more than 60% of ZA still entrapped in the SPNs after 
2 days (50 h). Only after about 7 days (150 h) had all loaded ZA been released out of SPNs, as 
evaluated using high pressure liquid chromatography. This assured that the effects observed 
further in the experiments were not due to the early release of ZA, but to the one entrapped within 
the nanoparticles, and were working only after they were internalized. 

A B

C D

E F

 
Figure 1. Zoledronic acid–spherical polymeric nanoparticles’ (ZA-SPNs) physico-chemical 
properties. (A) Schematic of a ZA-SPN. DPPC: 1,2-dipalmitoyl-sn-glycero-3-phosphocholine; DSPE-
PEG: 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[succinyl(polyethylene glycol)-2000]; 

Figure 1. Zoledronic acid–spherical polymeric nanoparticles’ (ZA-SPNs) physico-chemical
properties. (A) Schematic of a ZA-SPN. DPPC: 1,2-dipalmitoyl-sn-glycero-3-phosphocholine;
DSPE-PEG: 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[succinyl(polyethylene glycol)-2000];
PLGA: Poly(D,L-lactide-co-glycolic) acid. (B) SEM images of ZA-SPNs, showing their spherical shape and
dimension (enlargement in the upper-right corner). Scale bar: 100 nm. (C) Size distribution of ZA-SPNs;

polydispersity index (PDI) and ζ-potential values are also shown. (D) Size and PDI stability over time
of ZA-SPNs. (E) ZA-SPNs batch average molarity (µM) obtained for different input amounts of ZA
in the synthesis process, showing 300 µg as the best input condition. (F) Release profile of ZA from
ZA-SPNs, showing the minimal ZA loss within the first 48 h. Panels C–F: mean values ± SD.

2.2. ZA-SPNs Induce the Proliferation and Activation of Vδ2 T Lymphocytes

To test the ability of ZA-SPNs to trigger the expansion of Vδ2 T lymphocytes, peripheral blood
mononuclear cells (PBMCs) of healthy donors were incubated with decreasing amounts of ZA-SPNs
for 24 h. Then, cell cultures were supplemented with exogenous interleukin-2 (IL-2) and replaced with
fresh IL-2 every three days. The amount of Vδ2 T cells was evaluated using immunofluorescence with an
antibody specific for the Vδ2 chain of the T cell receptor (TCR), followed by florescence activated cell sorter
(FACS) analysis, on days 0, 7, 14, and 21. The expansion rate of Vδ2 T lymphocytes were calculated by
dividing the number of Vδ2 positive T cells at a given time point by their initial number. At the beginning,
the amount of Vδ2 T cells present in the PBMCs was very low (2.5 ± 1.2% n = 10). As documented in
Figure 2A (showing one representative experiment out of 10), both ZA-SPNs and soluble ZA were able to
induce Vδ2 T cell proliferation, with a maximal expansion on day 21, although the effect of ZA-SPNs
was more rapid than that of ZA. The second striking difference was the dose of ZA needed. Indeed,
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the maximum increase in the percentage of Vδ2 T cells (>90% of the whole cell culture) was reached in
21 days of culture with 0.05 µM of nanoformulated ZA (ZA-SPNs) against 1.0–5.0 µM of soluble ZA,
depending on the PBMC donor (Figure 2B, mean ± SD of 10 donors). Specifically, the EC50 of ZA-SPNs
was 1.355 × 10−3 µM, while that of ZA was 3.685 × 10−1 µM (Table 1). In other words, an almost 300 times
higher soluble ZA dose was needed to obtain the same effect as ZA-SPNs. The expansion of Vδ2 T cells
in response to ZA-SPNs was remarkable: the number of Vδ2 T cells rose from the initial value of 103 to
23 × 106 after 21 days, with a 23,000 fold increase (EC50 in Table 1); a similar effect was achieved with
soluble ZA, only at two orders of magnitude higher concentrations (Figure 2B).

Due to the remarkable efficiency of ZA-SPNs, we further analyzed whether nanoformulated ZA,
at the concentration of 0.05 µM (5 × 10−2 µM reported in Figure 1B), could trigger the proliferation of Vδ2
T cells, even without the addition of exogenous IL-2. Thus, PBMCs were labelled with carboxyfluorescein
succinimidyl ester (CFSE), and on day 7 of the culture, proliferating Vδ2 T lymphocytes were identified
using a double immunofluorescence assay, as cells with decreasing levels of CFSE content (green
fluorescence intensity is inversely proportional to cell division rate) and reactivity with the anti-Vδ2
specific mAb. As shown in Figure 2C, a significant decrease of CFSE content in Vδ2 T cells was detected
in ZA-SPNs cultures; in addition, an estimation of cell generations on day 7 showed that Vδ2 T cells
incubated with ZA-SPNs had divided six to eight times, whereas cells treated with soluble ZA divided
only one to two times (Figure 2D, ModFit LT analysis). At this time point, the percentage of Vδ2 T cells
proliferating in ZA-SPN-stimulated cultures ranged from 20 to 35% in four out of five donors (Figure 2E);
in contrast, no significant proliferation was detected with soluble ZA (Figure 2C–E) or empty SPNs
(Figure 2E). This finding prompted the evaluation of whether ZA-SPNs could trigger the activation of
Vδ2 T cells. It is well known that the neo-expression of activation antigens, such as cluster differentiation
(CD) 25 and CD69, on T lymphocytes is a marker of cell triggering. Indeed, CD69 can function as a
metabolic gatekeeper increasing glucose uptake [39], while CD25 is the α chain of the IL-2 receptor (IL2R)
that increases the affinity for IL-2 of the βγ dimers of IL-2R [40]. Both these markers are involved in
the growth of T lymphocytes [37,38]. CD25 expression on Vδ2 T cells, upon stimulation with ZA-SPNs,
was detectable at 48 h, whereas no induction of CD25 was observed using soluble ZA or empty SPNs
(Figure 2F). Neo-expression of the CD69 molecule on Vδ2 T cells was faster (detectable after 24 h) and
stronger when PBMCs were incubated with ZA-SPNs compared to soluble ZA (Figure 2G,H). On the
other hand, empty SPNs did not induce the expression of CD69 (not shown). Of note, the one donor
whose Vδ2 T cells did not respond for proliferation (Figure 2E, light blue circle) also failed to express
CD25 upon ZA-SPNs stimulation (Figure 2F, light blue circle). These data indicate that ZA carried by
SPNs can deliver a strong activation signal to Vδ2 T cells, leading to the neo-expression of activation
antigens and expansion in the absence of exogenous growth factors.
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Figure 2. ZA-SPNs stimulated the expansion and activation of Vδ2 T lymphocytes. (A) PBMCs were 
incubated with ZA-SPNs (red) or soluble ZA (gray) at the indicated concentrations (μM) for 24 h 
before the addition of interleukin (IL)-2. The percentage of Vδ2 T lymphocytes was evaluated at 
different time points (7, 14, and 21 days) using fluorescence activated cell sorter FACS analysis. One 
representative experiment out of 10 is shown. (B) Left graph: PBMCs were incubated with ZA-SPNs 
(red) or soluble ZA (gray) (Log μM) for 24 h before the addition of IL-2. The percentage of Vδ2 T 
lymphocytes (2.5 ± 1.2% in the starting PBMCs) was evaluated on day 21 using FACS analysis. Mean 
± SD of 10 healthy PBMCs. Right graph: Results of the left graph expressed as a fold increase of Vδ2 
T lymphocytes/mL at the end of the culture compared to the initial number. Mean ± SD of 10 
PBMCs. (C) Carboxyfluorescein succinimidyl ester (CFSE)-labeled PBMC from two representative 
donors (HD1, HD2) were cultured without (CTR) or with ZA-SPNs (0.05 μM) or soluble ZA (1 μM), 
without the addition of exogenous IL-2, and the decrease of CFSE intensity (green) was evaluated 
on day 7. Vδ2 T cells were identified with the specific mAb (red). (D) Vδ2 T cell proliferation, 
elicited as in (C), evaluated using the CFSE decrease in gated Vδ2 T cells with the ModFit LT5.4 
software. CTR: CFSE content in cells with the medium alone. Experimental representative of five 
replicates performed. (E) Vδ2 T cell proliferation to ZA-SPNs or ZA or empty SPNs (same 

Figure 2. ZA-SPNs stimulated the expansion and activation of Vδ2 T lymphocytes. (A) PBMCs were
incubated with ZA-SPNs (red) or soluble ZA (gray) at the indicated concentrations (µM) for 24 h before
the addition of interleukin (IL)-2. The percentage of Vδ2 T lymphocytes was evaluated at different time
points (7, 14, and 21 days) using fluorescence activated cell sorter FACS analysis. One representative
experiment out of 10 is shown. (B) Left graph: PBMCs were incubated with ZA-SPNs (red) or soluble ZA
(gray) (Log µM) for 24 h before the addition of IL-2. The percentage of Vδ2 T lymphocytes (2.5 ± 1.2%
in the starting PBMCs) was evaluated on day 21 using FACS analysis. Mean ± SD of 10 healthy PBMCs.
Right graph: Results of the left graph expressed as a fold increase of Vδ2 T lymphocytes/mL at the
end of the culture compared to the initial number. Mean ± SD of 10 PBMCs. (C) Carboxyfluorescein
succinimidyl ester (CFSE)-labeled PBMC from two representative donors (HD1, HD2) were cultured
without (CTR) or with ZA-SPNs (0.05 µM) or soluble ZA (1 µM), without the addition of exogenous
IL-2, and the decrease of CFSE intensity (green) was evaluated on day 7. Vδ2 T cells were identified
with the specific mAb (red). (D) Vδ2 T cell proliferation, elicited as in (C), evaluated using the CFSE
decrease in gated Vδ2 T cells with the ModFit LT5.4 software. CTR: CFSE content in cells with the
medium alone. Experimental representative of five replicates performed. (E) Vδ2 T cell proliferation to
ZA-SPNs or ZA or empty SPNs (same nanoparticle amounts as for the ZA-SPNs) elicited as in (C) in
five donors; mean ± SD also shown. CTR: medium alone. (F) Expression of the IL-2Rα chain (CD25) at
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48 h using FACS analysis on Vδ2 T lymphocytes in the indicated experimental conditions (CTR: medium
alone; ZA-SPNs: 0.05 µM; ZA: 1.0 µM; empty SPNs). Results are expressed as a percentage of CD25+

cells in gated Vδ2 T lymphocytes. (G,H) PBMCs cultured as in (C) for 6 h, 24 h, or 48 h were stained with
the anti-Vδ2 and anti-CD69 mAbs and analyzed using FACS. Quadrants: lower-left—CD69−Vδ2− cells;
upper-left—CD69+ cells; upper-right—CD69+Vδ2+ cells; lower-left—Vδ2+ cells. In (H), PBMCs stained
as in (G) and evaluated as the mean fluorescence intensity (MFI, a.u.) of CD69 expression on Vδ2 T
cells at 6 h, 24 h, and 48 h. Mean ± SD from eight donors’ PBMCs. CTR: medium alone.

Table 1. In vitro effect (EC50) of ZA-SPNs and soluble ZA on Vδ2 T lymphocyte expansion.

Compound Vδ2 Expansion a Vδ2 Fold Increase b Vδ2 Expansion from T + Mo c

ZA-SPNs 1.355 × 10−3 2.067 × 10−4 7.096 × 10−4

Soluble ZA 3.685 × 10−1 4.2 × 10−1 5.449 × 10−1

a EC50 value expressed as the µM concentration needed to reach 50% of the maximal percentage of Vδ2 T cells
grown in culture starting from PBMCs. b EC50 value expressed as the µM concentration needed to reach 50% of
maximal fold increase in Vδ2 T cell absolute number versus the initial Vδ2 T cell number. c EC50 value expressed as
the µM concentration needed to reach 50% of the maximal percentage of Vδ2 T cells grown in culture starting from
105 purified T lymphocytes with 103 monocytes (Mo) added (T:Mo ratio 1:100). Results are the average of three
replicates with a standard deviation of <10%.

2.3. ZA-SPNs Mediated Vδ2 T Cell Expansion Is Associated with Isopentenyl-Pyrophosphate (IPP) Production

It is well established that monocytes (Mo) are the main peripheral blood cell population responsible
for the N-BP-mediated triggering of Vδ2 T cells [6,20,21]. This is due to a monocyte’s ability to efficiently
accumulate IPP when exposed to N-BPs, including ZA [6,20]. As such, we examined whether ZA-SPNs
could stimulate Vδ2 T cell expansion from highly purified T lymphocytes co-cultured with Mo and
analyzed after 21 days. Different T cell to monocyte (T:Mo) ratios were considered, ranging from 10:1 to
1000:1. ZA-SPNs triggered the optimal proliferation of Vδ2 T cells at the T:Mo ratio of 10:1–100:1 (105 T
vs. 103–104 Mo) (Figure 3A). Notably, the EC50 for ZA-SPNs was 5.644 × 10−4 µM and 3.527 × 10−1 µM
for ZA using 104 Mo, which was more than 600-fold higher compared to ZA-SPNs (Figure 3A vs.
Figure 3B). With 103 Mo, EC50 became 7.096 × 10−4 µM and 5.449 × 10−1 µM for ZA-SPNs and ZA,
respectively; in this case, the difference was larger than 700 times in favor of ZA-SPNs (Table 1 and
Figure 3A vs. Figure 3B). This demonstrated that ZA-SPNs efficiently stimulated Vδ2 T cell proliferation
in the presence of very few Mo, with a strong gain in EC50. Furthermore, it was assessed whether
ZA-SPNs could stimulate the production of IPP, which is considered the product responsible for
ZA-mediated effects [10–12,21]. Toward this aim, highly purified peripheral Mo were incubated with
either ZA-SPNs (0.5 µM for 106 cells needed for IPP evaluation) or soluble ZA (0.5 µM for comparison
with ZA-SPNs at the same concentration) for 24 h. The IPP concentration was determined using high
performance liquid chromatography/time of flight-mass spectrometry (HPLC/TOF-MS). ZA-SPNs
induced a twofold higher IPP production than soluble ZA, with a mean value of 3 pM for ZA-SPNs
against 1.5 pM for ZA in three out of four Mo donors (Figure 3C). Then, we tested whether IPP
could also be produced by CRC cell lines in response to ZA-SPNs. Indeed, this event is needed to
trigger Vδ2-T-cell-mediated recognition and killing [10–12]. For this experiment, LS180 and SW620
were chosen, since we reported that the two cell lines produce high or low amounts, respectively,
of IPP when stimulated with soluble ZA [21]. LS180 produced about 30% more IPP in response to
0.5 µM ZA-SPNs compared to soluble ZA (14.12 pM vs. 9.92 pM), while SW620 IPP production to
0.5 µM ZA-SPNs was superimposable (≈3 pM) with that obtained with soluble ZA at the same dose
(Figure 3D,E). A small but detectable IPP production was also observed in LS180 using ZA-SPNs at a
0.05 µM concentration (5 pM). Empty SPNs did not evoke the production of IPP (<1 pM, Figure 3D,E).
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Figure 3. Monocyte requirement for Vδ2 T cell expansion and isopentenyl pyrophosphate (IPP) 
production in response to ZA-SPNs or ZA. (A,B) A total of 105 purified T lymphocytes were 
cultured with different amounts of autologous purified monocytes (Mo), as indicated, in the 
presence of ZA-SPNs (A) or soluble ZA (B) at different concentrations for 21 days. The percentage of 
Vδ2 T cells present in culture was evaluated using indirect immunofluorescence and FACS analysis; 
results are the mean ± SD of T cell populations from six healthy donors. (C) A total of 106 Mo were 
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chromatography/time of flight-mass spectrometry HPLC/TOF-MS. Colors indicate the four Mo 
donors. The mean ± SD for each condition is also shown. (D,E) A total of 5 × 105 LS180 or SW620 
CRC cells were incubated for 24 h with 0.05 or 0.5 μM ZA-SPNs or 0.5 μM soluble ZA, and IPP 
production was evaluated as in panel (C). Results are shown as pmol of IPP extracted by 
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representative experiment of two performed is shown. 
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that nanoparticles of this size are rapidly (by 4 h) engulfed by any cell, even if not professional 
phagocytes [41–43]. Then, Vδ2 T cells were added to CRCs engulfed with ZA-SPNs for a short 
incubation time (further 4 h), and their ability to interact with CRC cells was evaluated. Figure 4B 
shows an intimate contact between Vδ2 T cells, identified using the specific anti-Vδ2 mAb (green) 
and CRC (red); arrows indicate the engulfed Cy5-ZA-SPNs. Moreover, Vδ2 T cells also appeared 
clustered on CRCs, as it can be better appreciated in the representative SEM image (Figure 4C) 
where several Vδ2 T cells, false-colored in pink, surround and make contact with a much larger 
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Having shown that ZA-SPNs can be metabolized by CRC cells, and that Vδ2 T lymphocytes 
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Figure 3. Monocyte requirement for Vδ2 T cell expansion and isopentenyl pyrophosphate (IPP)
production in response to ZA-SPNs or ZA. (A,B) A total of 105 purified T lymphocytes were cultured
with different amounts of autologous purified monocytes (Mo), as indicated, in the presence of ZA-SPNs
(A) or soluble ZA (B) at different concentrations for 21 days. The percentage of Vδ2 T cells present in
culture was evaluated using indirect immunofluorescence and FACS analysis; results are the mean ± SD
of T cell populations from six healthy donors. (C) A total of 106 Mo were incubated for 24 h without
(CTR) or with 0.5 µM ZA-SPNs or with 0.5 µM soluble ZA or with empty SPNs, and the amount of
IPP produced (pM) was evaluated using high performance liquid chromatography/time of flight-mass
spectrometry HPLC/TOF-MS. Colors indicate the four Mo donors. The mean ± SD for each condition
is also shown. (D,E) A total of 5 × 105 LS180 or SW620 CRC cells were incubated for 24 h with 0.05 or
0.5 µM ZA-SPNs or 0.5 µM soluble ZA, and IPP production was evaluated as in panel (C). Results are
shown as pmol of IPP extracted by acetonitrile/total protein content in each cell lysate analyzed using
HPLC/TOF-MS. One representative experiment of two performed is shown.

2.4. CRC Cell Death Induced by Vδ2 T Lymphocytes Stimulated with ZA-SPNs

At first, the interaction of Vδ2 T lymphocytes with tumor cells challenged with ZA-SPNs was
qualitatively analyzed through confocal microscopy and SEM imaging. SW620 CRC cells were
incubated with Cy5-labeled ZA-SPNs to prove that nanoparticles could be internalized by tumor
cells. Figure 4A shows that Cy5-ZA-SPNs (orange, arrows) accumulated in CRC cells, evidenced
with the anti-epithelial cell adhesion molecule (EPCAM) mAb (red), in agreement with the notion
that nanoparticles of this size are rapidly (by 4 h) engulfed by any cell, even if not professional
phagocytes [41–43]. Then, Vδ2 T cells were added to CRCs engulfed with ZA-SPNs for a short
incubation time (further 4 h), and their ability to interact with CRC cells was evaluated. Figure 4B
shows an intimate contact between Vδ2 T cells, identified using the specific anti-Vδ2 mAb (green) and
CRC (red); arrows indicate the engulfed Cy5-ZA-SPNs. Moreover, Vδ2 T cells also appeared clustered
on CRCs, as it can be better appreciated in the representative SEM image (Figure 4C) where several
Vδ2 T cells, false-colored in pink, surround and make contact with a much larger cancer cell.
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Figure 4. ZA-SPNs triggered the cytotoxicity of colorectal carcinoma (CRC) cell lines and spheroids 
using Vδ2 T cells. (A) Representative confocal microscopy image showing Cy5-conjugated ZA-
SPNs’ (orange, arrows) internalization in CRC cells, identified using the anti-EPCAM mAb and 
Alexafluor555 isotype-specific goat antimouse (GAM) (red). Blue: nuclei diamidino phenylindole 
(DAPI) staining. Scale bar: 10 μm. (B) Vδ2 T cells identified using the specific anti-Vδ2 mAb and 
Alexafluor488-anti-isotype GAM (green) interacting with CRC (EPCAM followed by Alexafluor555 
GAM, red) previously exposed (24 h) to ZA-SPNs (white arrows). Blue: DAPI nuclear staining. Scale 
bar: 10 μm. (C) SEM images of a similar experiment in which Vδ2 T cells (pink) had surrounded a 
CRC (gray). Scale bar: 20 μm. (D) The CRC cell lines SW620, HCT-15, and HT-29 were cultured 
adherent in flat bottomed plates with ZA-SPNs (red) or with soluble ZA (gray) at different 
concentrations and challenged with activated Vδ2 T cells from healthy donors at the effector:target 
(E:T) ratio of 3:1 for 48 h. Then, viability was assessed using a crystal violet assay. Data is expressed 
as a percentage of living cells as compared to cells cultured in medium alone, are the mean ± SD of 
three independent experiments of six different replicates for each condition. (E) Spheroids of the 
CRC cell lines SW620, HCT-15, and HT-29 at day 5 were incubated with activated Vδ2 T cells at the 
E:T ratio of 3:1 and either ZA-SPNs (red) or soluble ZA (gray) at the indicated concentrations for 48 
h. Spheroid cell viability was assessed using crystal violet assay modified as described in Varesano 
et al. [45]. Data are the mean ± SD of three independent experiments of six replicates for each 
condition. 

Figure 4. ZA-SPNs triggered the cytotoxicity of colorectal carcinoma (CRC) cell lines and spheroids
using Vδ2 T cells. (A) Representative confocal microscopy image showing Cy5-conjugated
ZA-SPNs’ (orange, arrows) internalization in CRC cells, identified using the anti-EPCAM mAb
and Alexafluor555 isotype-specific goat antimouse (GAM) (red). Blue: nuclei diamidino phenylindole
(DAPI) staining. Scale bar: 10 µm. (B) Vδ2 T cells identified using the specific anti-Vδ2 mAb and
Alexafluor488-anti-isotype GAM (green) interacting with CRC (EPCAM followed by Alexafluor555
GAM, red) previously exposed (24 h) to ZA-SPNs (white arrows). Blue: DAPI nuclear staining. Scale
bar: 10 µm. (C) SEM images of a similar experiment in which Vδ2 T cells (pink) had surrounded a CRC
(gray). Scale bar: 20 µm. (D) The CRC cell lines SW620, HCT-15, and HT-29 were cultured adherent
in flat bottomed plates with ZA-SPNs (red) or with soluble ZA (gray) at different concentrations and
challenged with activated Vδ2 T cells from healthy donors at the effector:target (E:T) ratio of 3:1 for
48 h. Then, viability was assessed using a crystal violet assay. Data is expressed as a percentage of
living cells as compared to cells cultured in medium alone, are the mean ± SD of three independent
experiments of six different replicates for each condition. (E) Spheroids of the CRC cell lines SW620,
HCT-15, and HT-29 at day 5 were incubated with activated Vδ2 T cells at the E:T ratio of 3:1 and either
ZA-SPNs (red) or soluble ZA (gray) at the indicated concentrations for 48 h. Spheroid cell viability was
assessed using crystal violet assay modified as described in Varesano et al. [45]. Data are the mean ± SD
of three independent experiments of six replicates for each condition.

Having shown that ZA-SPNs can be metabolized by CRC cells, and that Vδ2 T lymphocytes
bind to ZA-SPN-treated CRC, we further analyzed whether these events resulted in an anti-tumor
effect. Toward this aim, Vδ2 T lymphocytes were added to CRC cell lines exposed to ZA-SPNs at an



Cancers 2020, 12, 104 10 of 26

effector:target (E:T) ratio of 3:1 to for allow the detection of the effect elicited by the nanoformulated ZA.
Indeed, at this E:T ratio, the cytotoxic activity of Vδ2 T cells to the three CRC cell lines tested (SW620,
HCT-15, and HT-29), evaluated as a reduction of living cells by the crystal violet assay, was almost
negligible (less than 10%; see the cell viability ranging from 90 to 100% with the lowest ZA-SPNs
concentrations in Figure 4D). The percentage of living CRC cells was strongly reduced in the presence
of Vδ2 T cells when serial dilutions of ZA-SPNs were added to the lymphocyte–CRC cell co-cultures
(Figure 4D). The ZA-SPNs’ EC50 of cytotoxic activity was again lower (by 10 to 50 times) than that
found for soluble ZA (Table 2). Both ZA-SPNs and ZA, in the absence of Vδ2 T cells, reduced the
percentage of living adherent SW620 and HT-29 cells to some extent; this effect was more evident on
HCT-15 (Figure S2A), but was always lower than that detected in the presence of Vδ2 T lymphocytes
(EC50 0.5 µM in Figure S2A vs. 0.1 µM depicted in Figure 4A and reported in Table 2).

Table 2. In vitro effect (EC50) of ZA-SPNs and soluble ZA on the Vδ2-mediated cytotoxicity of CRC
cells and spheroids.

SW620 HCT-15 HT-29

Compound Adh a Sph b Adh Sph Adh Sph

ZA-SPNs 8 × 10−2 >6 × 10−1 1 × 10−1 5 × 10−1 1 × 10−1 5 × 10−1

ZA 1.2 1.0 1.0 1.1 1.7 1.0
a The indicated CRC cell lines were cultured adherent to plates and used as targets (Adh). b CRC cell lines were
used as spheroid targets (Sph) in ultra-low attachment plates. The EC50 value is expressed as the micromolar
concentration needed to reach 50% of the maximal cytotoxic effect evaluated calculating the percentage of non-living
cells. Results are the average of three determinations with a standard deviation of <10%.

Since tumor cells grow in vivo as tridimensional (3D) structures, tumor spheroids have been
used to mimic the initial stage of neoplastic growth in vitro [44,45]. Thus, we assessed whether
Vδ2-T-cell-mediated killing of such structures could be stimulated by ZA-SPNs. We analyzed the
tumor spheroids obtained after culturing the representative three CRC cells lines SW620, HCT-15,
and HT-29 in ultra-low attachment plates, as described in Varesano et al. [45]. In these experimental
conditions, spheroids from 50 to 250 µm in diameter can be obtained [45]. CRC tumor spheroids
were able to engulf ZA-SPNs within 24 h of exposure (Figure S3A) and were killed by Vδ2 T cells;
the ZA-SPNs EC50 was superimposable or lower than that of ZA for HCT-15 and HT-29 cell lines,
while for SW620, the EC50 of ZA-SPNs was higher (Figure 4E and Table 2). A possible explanation
for the discordant effect of ZA-SPNs and soluble ZA on SW620 as adherent cells or spheroids could
be related to the different nanoparticle processing and/or mevalonate metabolism that follows the
ZA-SPNs’ entry, despite the detectable engulfment. The direct effect of ZA-SPNs on CRC cells growing
adherent in conventional experimental conditions or cultured as spheroids was also evaluated using a
crystal violet assay. Both ZA-SPNs and soluble ZA reduced the number of living cells by 30% when
used on SW620 and HT-29 CRC cell monolayers, while the HCT-15 cell line was more sensitive (Figure
S2A). On the other hand, SW620 and HT-29 spheroids were not directly affected by ZA-SPNs nor by
soluble ZA at the concentrations used, while the effect on HCT-15 spheroids was detected only with
ZA (Figure S2B). These findings were confirmed even after 96 h of incubation (not shown).

2.5. ZA-SPNs Elicited Vδ2 T Cell Proliferation from CRC Patients and the Killing of Autologous
Tumor Organoids

To plan a potential therapeutic use of nanoformulated ZA, it is essential to prove that ZA-SPNs
are actually able to trigger Vδ2 T cells from CRC patients’ samples. Toward this aim, first, the ability of
ZA-SPNs to expand Vδ2 T cells, either from peripheral blood or from tumor biopsies of CRC patients,
was assessed; then, the cytotoxic potential of these cells from patients’ PBMCs was quantified against
CRC tumor cell lines or autologous tumor cells growing in vitro as colon mucosa organoids. A ZA-SPNs
dose of 0.05 µM was chosen since it was the most effective on healthy donors’ PBMCs (see Figure 1A,B).
Figure 5A shows that expansion of Vδ2 T cells from the PBMCs of CRC patients was obtained with
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0.05 µM ZA-SPNs. This expansion occurred in all samples from CRC patients (n = 20), and in 14 out of
20 samples reached ≈90% after 14 days; however, a 20-fold higher concentration (1.0 µM) of soluble
ZA relative to the ZA-SPN concentration was needed to achieve this effect (Figure 5A). The absolute
Vδ2 T cell numbers are reported in Figure S4. Of note, ZA-SPNs were able to expand tumor-infiltrating
Vδ2 T cells (Table S1 reports the pathological features of these patients) when added to mononuclear
cells isolated from the tumor (Figure 5B); the percentage of Vδ2 T cells obtained ranged from 10 to
90% in 5 out of 10 cases. This result was quite remarkable since in the bioptic cell suspensions, the
starting amount of Vδ2 T cells was mostly lower than 0.1% and the CD45+ leukocytes, containing
infiltrating lymphocytes, were always less than 35% of the total cells (range 3–32% n = 10), as we
reported elsewhere [21,44,45]. In addition, the presence of monocytes in these cell suspensions was
almost negligible (range 0.02–0.5%, not shown) [21,46]. To define whether ZA-SPN-stimulated Vδ2 T
cells from patients’ PBMCs belonged to a population of effector cells, we analyzed the expression of
CD27 and CD45RA that was reported to define different lymphocyte subsets. In particular, naïve (N) T
cells bear CD27 and CD45RA molecules, as well as central memory (CM) T lymphocytes; express only
CD27; effector memory (EM) T cells are double negative; and terminal differentiated memory cells
(TEMRA) are surface CD45RA positive [45,47]. We reported that ZA can drive the expansion of Vδ2 T
cells, showing the characteristics of effector memory (EM) T lymphocytes (i.e., absence of CD27 and
CD45RA) [48]. As shown in Figure S5, also ZA-SPNs-stimulated Vδ2 T lymphocytes displayed an
EM/TEMRA (CD27−CD45RA−/CD27−CD45RA+) phenotype.

Thus, Vδ2 T effector cells obtained upon ZA-SPNs stimulation from the PBMCs of three CRC
patients were tested for their anti-tumor cytotoxic activity against the CRC cell lines HCT-15 and HT-29,
either as adherent monolayers (Figure 5C) or as spheroids (Figure 5D), exposed to ZA-SPNs. The E:T
ratio chosen was again 3:1 to emphasize the effect due to the nanoformulated ZA taken up by tumor
cells. Indeed, at this E:T ratio, the percentage of living tumor cells upon incubation with Vδ2 T cells
was still more than 80% for HCT-15 and ≈70% for HT-29 (Figure 5C,D). When the target tumor cells
or spheroids were challenged with 0.05 µM ZA-SPNs, the cytotoxic effect of Vδ2 T effector cells was
much more evident, as living tumor cells were less than 50% in all instances, decreasing by up to 20%
for adherent HT-29 or HCT-15 spheroids (Figure 5C,D).

To test whether ZA-SPNs-expanded Vδ2 effector T lymphocytes could kill tumor cells in an
autologous setting, organoids were derived from specimens of five CRC patients (listed in Table S1)
in serum-free controlled culture conditions. Figure S6A shows these organoids, with variable sizes
(perimeters and areas in Figure S6B), and expressing the epithelial marker EPCAM (Figure S6C).
In particular, OMCR18-006TK organoids display a morphology typical of mucinous tumors, according
to the histopathological diagnosis (Table S1). We first demonstrated the ability of organoids to engulf
ZA-SPNs within 24 h of exposure (Figure S3B). Then, organoids, labeled with the green fluorescent
probe calcein-acetoxy methyl ester (AM) and seeded in Geltrex domes, were exposed to ZA-SPNs (0.05,
0.1, 0.5 µM) and cultured with the corresponding autologous ZA-SPN-expanded Vδ2 T lymphocytes
for 6 days to allow the effector cells to enter the domes and reach the organoids. Figure 5E shows a
representative co-culture with Vδ2 T cells invading some organoids, where one is evident in subpanel
a, and one appears almost destroyed in b; this is also shown with Z-stack images in Figure S7.
The cytotoxic effect of Vδ2 T cells was evaluated by measuring the decrease in green fluorescence,
as previously reported by Chung et al. [49]. Autologous ZA-expanded Vδ2 T cells decreased the vitality
of tumor organoids by 10–30%; this cytotoxic effect was further increased when ZA-SPNs were added
during the cytolytic assay. Indeed, in the presence of 0.05 µM ZA-SPNs, Vδ2 T cells could reduce the
organoid viability by 50% (Figure 5F). In turn, 10- to 50-fold higher concentrations of soluble ZA were
needed to obtain superimposable effects with soluble ZA (Figure 5F). Altogether, these results are the
experimental proof that ZA-SPNs can efficiently trigger the growth and function of Vδ2 anti-tumor
effector T cells from CRC patients.
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Figure 5. ZA-SPNs triggered the expansion of CRC patients’ Vδ2 T lymphocytes to be able to kill 
CRC spheroids and autologous organoids. (A) PBMC from CRC patients were cultured with ZA-
SPNs (0.05 μM) or soluble ZA (1.0 μM) and 10 ng/mL (30 IU/mL) IL-2. The percentage of Vδ2 T 
lymphocytes was evaluated using FACS analysis on days 7 and 14. Vδ2 T cells in the starting 
PBMCs: 1.4 ± 1.6%, mean ± SD of 20 patients. (B) Tumor cell suspensions were cultured as in (A), 
and Vδ2 T lymphocyte expansion was determined on days 7 and 14. Results are expressed as 
percentages of Vδ2 T lymphocytes as mean ± SD of 10 patients’ specimens. Vδ2 T cells in the starting 
tumor-derived populations: 0.04 ± 0.05% (mean ± SD of 10 patients). (C,D) HCT-15 or HT-29 as 
adherent cells (C) or spheroids (D) were incubated with ZA-SPN-expanded Vδ2 T cells obtained 
from the PBMCs of three CRC patients. ZA-SPNs (0.05 μM) were further added or not (CTR) at the 
onset of the 48 h assay. E:T ratio was 3:1. Data expressed as a percentage of living CRC cells (crystal 
violet staining) as mean ± SD of six replicates/condition in three independent experiments. (E) 

Figure 5. ZA-SPNs triggered the expansion of CRC patients’ Vδ2 T lymphocytes to be able to
kill CRC spheroids and autologous organoids. (A) PBMC from CRC patients were cultured with
ZA-SPNs (0.05 µM) or soluble ZA (1.0 µM) and 10 ng/mL (30 IU/mL) IL-2. The percentage of Vδ2 T
lymphocytes was evaluated using FACS analysis on days 7 and 14. Vδ2 T cells in the starting PBMCs:
1.4 ± 1.6%, mean ± SD of 20 patients. (B) Tumor cell suspensions were cultured as in (A), and Vδ2 T
lymphocyte expansion was determined on days 7 and 14. Results are expressed as percentages of
Vδ2 T lymphocytes as mean ± SD of 10 patients’ specimens. Vδ2 T cells in the starting tumor-derived
populations: 0.04 ± 0.05% (mean ± SD of 10 patients). (C,D) HCT-15 or HT-29 as adherent cells (C) or
spheroids (D) were incubated with ZA-SPN-expanded Vδ2 T cells obtained from the PBMCs of three
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CRC patients. ZA-SPNs (0.05µM) were further added or not (CTR) at the onset of the 48 h assay. E:T ratio
was 3:1. Data expressed as a percentage of living CRC cells (crystal violet staining) as mean ± SD
of six replicates/condition in three independent experiments. (E) Representative co-cultures of
ZA-SPN-expanded Vδ2 effector T cells and the autologous OMCR-016TK organoids exposed to ZA-SPN.
Upper-left image: 100×. Scale bar: 100 µm. Upper-right image: 200×. Lower panels: enlargements of
quadrants a, b, and c in the upper-right panel. Asterisks in each panel: organoids. Arrows in each
panel: Vδ2 T cells invading organoids (c, one almost destroyed in b) or in their neighborhood (c).
(F) Organoids from five patients (OMCR18-006TK, green; OMCR18-006TK, red; OMCR19-006TK, blue;
OMCR19-009TK, yellow; OMCR19-016TK, purple) were labeled with calcein-acteoxy methyl ester
(AM) and challenged with autologous ZA-SPN-expanded Vδ2 T cells for 6 days without ZA-SPNs
(CTR) or in the presence of ZA-SPNs or soluble ZA at the indicated concentrations. E:T ratio was 3:1.
Fluorescence of each culture well was quantified using spectrofluorometry and compared to that of
organoid cultures considered to be 100%. Data expressed as a percentage of green fluorescence as
mean ± SD of three independent experiments with six replicates/condition. The p-values of ZA-SPNs
versus CTR are shown.

2.6. ZA-SPNs-Vδ2 T Lymphocytes Transendothelial Migration Toward CRC Tumor Cells in a
Microfluidic System

To test the ability of ZA-SPN-expanded Vδ2 T cells (i.e., Vδ2 T lymphocytes obtained from PBMCs
upon stimulation with ZA-SPNs and further culture for 21 days) to extravasate and reach CRC cells,
a double-channel microfluidic chip was used [50]. This device comprised a vascular compartment (VC),
uniformly coated with human umbilical vascular endothelial cells (HUVECs), and an extravascular
compartment (EC), hosting a Matrigel matrix with CRC cells. The two compartments were separated by
an array of micropillars, equally spaced by 3 µm (Figure 6A). HUVECs were seeded and also grew on
the micropillars area, realizing an authentic vascular bed (Figure 6A,B showing the 3D reconstruction).
By using this microfluidic system, the dynamics of ZA-SPN-expanded Vδ2 T cells infused into the VC
was monitored over time. In the time-lapse experiments, these Vδ2 T cells fluxed into the VC (visible
in blue due to the nuclear staining) and were able to cross HUVEC monolayer (red, CM-Dil membrane
staining), and through the array of pillars, infiltrate the Matrigel matrix and reach the tumor cells
(green, GFP+) (Figure 6C).

The fluorescence intensity of the Vδ2 T cell nuclear staining was measured after 12 and 24 h in
the VC and EC using the Image J software, quantifying the percentage increase over time in different
regions of interest (ROIs) set for each channel (Figure 6D). Extravascular Vδ2 T cell accumulation was
detectable within 24 h, with a fluorescence increase of about 300% in EC (Figure 6D, black histograms).
While transported by the flow into the VC, the fluorescence increased up to 140 and 190% within the
first 12 and 24 h of observation, respectively, documenting the interaction of Vδ2 T cells with endothelial
cells (HUVECs) during the migration process (Figure 6D, white histograms). This interaction was
also visible in confocal images of a separate experiment, in which Vδ2 T cells (CM-Dil stained, red)
appeared in part in contact with HUVEC (green, phalloidin staining F-actin) in the VC and in part
adherent to the CRC in the EC (green, phalloidin staining F-actin); notably, CRC cells interacting
with Vδ2 T lymphocytes displayed a dim fluorescence and an altered actin distribution (Figure 6E).
In conclusion, Vδ2 T cells grown upon a ZA-SPN stimulation, and tested in the microfluidic system,
displayed the ability to extravasate and interact with tumor cells in the EC.
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Figure 6. Transendothelial migration of ZA-SPN-expanded Vδ2 T lymphocytes toward CRC cells in 
a microfluidic system. (A) Double-chamber microfluidic chip [50] composed of a vascular 
compartment (VC), uniformly coated with human umbilical vascular endothelial cells (HUVECs), 
and an extravascular compartment (EC), hosting a Matrigel matrix with CRC cells. The two 
compartments were separated by an array of micropillars, equally spaced by 3 μm. ZA-SPN-
expanded Vδ2 T cells were infused through the inlet into the VC, and their extravasation was 
mainly analyzed around the pillar area. (B) 3D reconstruction (lateral view) of the double channel 
microfluidic chip, showing on the right the HUVECs covering all of the channel (green/blue, 
phalloidin/DAPI) to mimic a complete vessel (VC); on the left, tumor cells (CRC, nuclear blue 
staining) in the EC. P: micropillar zone. Some Vδ2 T cells stained with CM-Dil (red) were visible in 
both compartments. Scale bar: 100 μm. (C) Time-lapse images following the localization of ZA-SPN-
activated Vδ2 T lymphocytes before (time 0) and after (12h, 24h) injection into the VC. HUVEC 
membranes were stained using CM-Dil (red) and Vδ2 T cell nuclei were stained by DAPI (blue). EC: 
extravascular channel populated with GFP+ SW480 CRC cells (green). P: micropillars. Scale bar: 100 
μm. (D) Quantification (Image J software) of DAPI fluorescence intensity increase measured at 12 h 

Figure 6. Transendothelial migration of ZA-SPN-expanded Vδ2 T lymphocytes toward CRC cells in a
microfluidic system. (A) Double-chamber microfluidic chip [50] composed of a vascular compartment
(VC), uniformly coated with human umbilical vascular endothelial cells (HUVECs), and an extravascular
compartment (EC), hosting a Matrigel matrix with CRC cells. The two compartments were separated
by an array of micropillars, equally spaced by 3 µm. ZA-SPN-expanded Vδ2 T cells were infused
through the inlet into the VC, and their extravasation was mainly analyzed around the pillar area.
(B) 3D reconstruction (lateral view) of the double channel microfluidic chip, showing on the right
the HUVECs covering all of the channel (green/blue, phalloidin/DAPI) to mimic a complete vessel
(VC); on the left, tumor cells (CRC, nuclear blue staining) in the EC. P: micropillar zone. Some Vδ2 T
cells stained with CM-Dil (red) were visible in both compartments. Scale bar: 100 µm. (C) Time-lapse
images following the localization of ZA-SPN-activated Vδ2 T lymphocytes before (time 0) and after
(12 h, 24 h) injection into the VC. HUVEC membranes were stained using CM-Dil (red) and Vδ2 T cell
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nuclei were stained by DAPI (blue). EC: extravascular channel populated with GFP+ SW480 CRC cells
(green). P: micropillars. Scale bar: 100 µm. (D) Quantification (Image J software) of DAPI fluorescence
intensity increase measured at 12 h and 24 h compared to time 0 (addition of Vδ2 T cells) in the VC
(white columns) or the EC (black columns). Data expressed as a percentage of fluorescence increase,
compared to time 0; mean ± SE. The p-values are shown. (E) Representative confocal image (top view)
showing Vδ2 T cells (red, CM-Dil, white arrows), close to HUVECs in the VC, and surrounding CRC
cells in the EC. Phalloidin (green) stained the F-actin filaments to show the organization of HUVECs;
actin filaments were also visible in the CRC. DAPI (blue) stained both the HUVEC and CRC nuclei.
P: micropillar zone. Scale bar: 100 µm.

3. Discussion

A major challenge in the hypothetical use of N-BPs as stimulators of anti-tumor Vδ2 T lymphocytes
in solid cancers is related to the bone tropism of these compounds [16,17]. The encapsulation of ZA
into spherical polymeric nanoparticles (ZA-SPNs), with a characteristic size of ≈200 nm, appears to be
an effective solution to this hindrance. Indeed, nanoparticles up to a few hundreds of nanometers in
diameter tend to passively accumulate in tumor tissues, following the so-called enhanced permeability
and retention (EPR) effect [30,33,34]. This effect warrants the release of the drug into the tumor,
preventing its early leakage and its natural accumulation in bone tissue.

In this work, we have demonstrated that SPNs can efficiently load ZA in such a way that large-scale
production for clinical translation could be possible and that the payload was stably retained within its
aqueous core for up to approximately one week. The architecture of ZA-SPNs, with an aqueous core
confined within a lipid monolayer, resemble that of natural vesicles, likely favoring their penetration
into cells. This would cause a progressive release of ZA inside tumor cells, leading to prompt activation
of the mevalonate pathway responsible for IPP production [10], which eventually induces the activation
and proliferation of Vδ2 T lymphocytes with anti-cancer functions.

Interestingly, not only do ZA-SPNs stimulate Vδ2 T cells at a concentration about 300-fold lower
compared to soluble ZA, but can also, and unexpectedly, trigger their proliferation without exogenous
IL-2, which is usually needed for T cells expansion. Possibly, ZA-SPNs induce a stronger signal than
soluble ZA onto Vδ2 T cells, and in this way, promote the expression of activation molecules, such
as the metabolic gatekeeper CD69 and the α-chain of the IL-2 receptor (CD25). Indeed, although not
shown, a small fraction (≈17%) of Vδ2 T lymphocytes could actually express intracytoplasmic IL-2
upon stimulation with ZA-SPNs. Thus, ZA-SPNs could sensitize Vδ2 T cells to cytokines and growth
factors present in the extracellular milieu. Yet, the underlying mechanism would have to be more
precisely characterized in further studies.

Of note, ZA-SPNs were able to enhance the proliferation of Vδ2 T lymphocytes derived from
the peripheral blood or tumor specimens of CRC patients. Based on the EC50, the efficiency of
ZA-SPNs to expand Vδ2 T lymphocytes was 2 to 3 orders of magnitude higher than that of soluble
ZA. These Vδ2 T lymphocytes behaved as effector cells, exerting a strong cytolytic activity against
CRC tumor cells exposed to ZA-SPNs. This was tested in two different 3D models, namely tumor
spheroids and patient-derived organoids, to mimic cancer cell growth in vivo more closely. Indeed,
there is increasing evidence that both tumor development and response to therapy in humans are not
always predictable in animals [51,52]. Recently, zoledronic-acid-containing nanoparticles have been
reported to localize into extra-skeletal tumors in a murine model, thus avoiding bone sequestration of
such drug formulation [53]. This would also reinforce the proposal to use ZA-SPNs in therapeutic
schemes aimed to activate an anti-cancer immune response, mainly through the activation of γδ T
lymphocytes. Regrettably, murine cancer models present several limitations, considering that the two
major γδ T cell subsets do not have orthologues in mice [54,55], and that even syngeneic mice would
not be adequate as the response to N-BPs of γδ T cells is different in rodents than in humans [6,8].
On the other hand, 3D culture systems, including spheroids and organoids, have been validated as
preclinical models to overcome these inconveniences by the present authors and others [44,45,56,57].
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In a first set of 3D experiments, spheroids with diameters ranging from 50 to 250 µm
were considered to mimic tumors at early stages. In this case, ZA-SPNs could trigger Vδ2 T
lymphocyte-mediated cytotoxicity with different efficiencies depending on the used cell line. It is of
note that this difference among the used CRC cell lines was not evident on the cell monolayers. This may
have been due to the spatial heterogeneity in the IPP production by CRC cells because of the diverse
depths of penetration of the drug within the 3D cell aggregates. The cell line SW620 generates compact
spheroids that, although capable of ZA-SPNs engulfment, may limit drug penetration compared
to HCT-15 and HT-29 spheroids [45]. Another explanation is based on the different mevalonate
metabolism and IPP production that follows ZA-SPNs’ entry; these features might be constitutive of
each cell line or vary depending on the 3D structure acquired during tumor growth. Interestingly, the
cytotoxic efficiency of ZA-SPNs was remarkable when patients’ organoids were exposed to autologous
Vδ2 T cells that had expanded upon stimulation with ZA-SPNs. This demonstrated the potential
therapeutic relevance of ZA-SPNs in CRC patients, suggesting that 3D culture systems may have
specific features influencing the treatment outcome. Although validated using reliable pre-clinical
models [44,56,57], both spheroids and organoids have some limitations, including the lack of different
cellular components of the tumor microenvironment. It should be recalled that effector lymphocytes
must exert their anti-tumor activities in a microenvironment populated by suppressive cells, such as
mesenchymal stromal cells (MSC), regulatory T lymphocytes (Treg), and myeloid derived suppressor
cells (MDSC) [46,58].

Nevertheless, the present authors and others have previously reported that microenvironment
immunosuppression can be reverted using ZA or phosphoantigens, resulting in Vδ2 T cell
activation [48,59]. It is still to be established whether ZA-SPNs can affect the regulatory functions of
Treg and MDSC. However, it is likely that ZA-SPNs could influence the function of leukocytes since a
remarkable Vδ2 T cell stimulation was observed in the presence of a few monocytes. This should most
likely be ascribed to the enhancement of IPP production by these cells.

Another property of ZA-SPN stimulation was that of enhancing the ability of Vδ2 T cells to
sense tumor cells. Specifically, in a microfluidic chip, ZA-SPN-expanded Vδ2 T cells were able to
extravasate and migrate toward tumor cells, overcoming the vascular barrier and the extracellular
matrix. These findings indicate that Vδ2 T cells, after being activated by ZA-SPNs, could reach tumor
cells and recirculate, even if triggered away from the tumor site.

4. Materials and Methods

4.1. Reagents

Zoledronic acid (ZA) was purchased from Selleckchem (Aurogene, Rome, Italy).
Poly(D,L-lactide-co-glycolic) acid (PLGA, 50:50, CarboxyTerminated, molecular weight ≈ 60 kDa) was
purchased from Sigma-Aldrich (St. Louis, MO, USA). 1,2-dipalmitoyl-sn-glycero-3-phosphocholine
(DPPC), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[succinyl(polyethylene glycol)-2000]
(DSPE-PEG), and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE) were obtained from
AvantiPolar Lipids (Alabaster, AL, USA). Analytical grade dimethyl sulfoxide (DMSO), acetonitrile,
chloroform, absolute ethanol, dipotassium hydrogen phosphate anhydrous, and tetra butyl ammonium
Bi-sulphateand 5(6) carboxyfluoresceindiacetate N-succinimidylester (CFSE) were purchased from
Sigma-Aldrich (Milan, Italy). RPMI-1640 and FBS (One Shot™ Fetal Bovine Serum) were obtained from
Gibco (Thermo Fisher Scientific, Monza, Italy). DMEM-F12,L-Glutamine, and penicillin/streptomycin
(BioWhittaker® Reagents) were purchased from Lonza (Basel, Switzerland). Epidermal growth factor
(EGF) was purchased from Peprotech Europe (London, UK) while IL-2 was purchased from Miltenyi
(Miltenyi Biotec Italia, Bologna).
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4.2. Zoledronic Acid-Loaded Spherical Polymeric Nanoparticles (ZA-SPNs) Synthesis

Spherical polymeric nanoparticles (SPNs) were obtained using a double emulsion–evaporation
procedure, modifying the single emulsion protocol previously described by Lee et al. [38]. Briefly, ZA,
dissolved in the aqueous phase, was slowly added under probe sonication to an organic phase
containing 10 mg of PLGA and DPPC dissolved in chloroform. This first emulsion was added
dropwise to a 4% ethanol solution containing DSPE-PEG under probe sonication. The molar ratio of
DPPC:DSPE-PEG was 7.5:2.5, while both the lipids were at 20% w/w of the polymer. Empty SPNs were
prepared following the same procedure, but without ZA in the aqueous phase. Fluorescent ZA-SPNs
were prepared by substituting a small fraction of DPPC (10% of the total amount) with DSPE-Cy5.
After the evaporation of all the organic solvent in a reduced pressure environment, SPNs were purified
and collected through sequential centrifugation steps. The first centrifugation was performed at 1200
rpm for 2 min to remove large debris from the synthesis process. The supernatant was then centrifuged
at 12,000 rpm for 15 min, and the remaining pellet was centrifuged at the same speed several times in
order to remove the ZA not incorporated into the SPNs. Finally, the resulting SPNs were resuspended
in 1 mL aqueous solution before their use in all the subsequent experiments.

4.3. ZA-SPNs Physico-Chemical and Pharmacological Characterization

The nanoparticle size distribution and PDI were measured at 37 ◦C using dynamic light scattering
(DLS) with the Zetasizer Nano ZS (Malvern, UK). By using proper zeta-cells, the nanoparticles’
ζ-potential was also measured. For the stability study, both the size and PDI were measured over
time for a period of 2 weeks while maintaining nanoparticles at 37 ◦C in deionized (DI) water.
Also, ζ-potential was measured and monitored for the same time period. To study the nanoparticle
morphology, SPN samples were dropped on a silicon wafer and dried. Samples were then gold
sputtered and analyzed using a JSM-7500FA (JEOL, Milan, Italy) analytical field-emission scanning
electron microscope (SEM) at 15 keV. The amount of ZA entrapped in the nanoparticles (n = 3 for
each experimental condition) were measured using HPLC (1260 Infinity, Agilent Technology, Milano,
Italy), using a reverse phase C-18 column (Zorbax Eclipse plus, Agilent Technology, Milano, Italy).
Samples were eluted in isocratic conditions using a mixture of methanol (5%), acetonitrile (12%), and
a buffer made out of 4.5 g of dipotassium hydrogen phosphate anhydrous plus 2 g of tetra butyl
ammonium bi-sulphate in 1 L of DI water. The provided molarity refers to the molarity of one batch of
ZA-SPNs resuspended in 1 mL of solution. To evaluate the release profile of ZA from the nanoparticles,
a known amount of ZA-SPNs was loaded into Slide-A-Lyzer MINI dialysis microtubes with a molecular
cut-off of 10 kDa (Thermo Fisher Scientific, Waltham, MA, USA), and placed in 4 L of PBS in order
to simulate the infinite sink condition. At predetermined time points (namely 1, 4, 24, 48, 72, 112,
and 158 h), three samples were collected and the amount of ZA was measured using high pressure
liquid chromatography (HPLC).

4.4. Patients

Twenty-six CRC patients suffering from CRC were studied (institutional informed consent signed
at the time of donation and EC approval PR163REG201 renewed in 2017). The localization of tumors
was determined by the surgery staff of the Oncological Surgery Unit of the Istituto di Ricerca e Cura
a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino. The tumor stage was determined
according to the Union for International Cancer Control (UICC) and Dukes classification modified by
Aster and Coller [60], and the microsatellite status was analyzed by the Pathology Unit. The PBMCs
were isolated from all patients and used for measuring Vδ2 T lymphocyte proliferation and cytotoxic
activity in an allogenic or autologous setting. Tumor specimens from 14 patients were analyzed
(Table S1): 10 for the isolation of cell suspensions, used in experiments aimed to determine the ability
of ZA-SNPs to trigger the expansion of Vδ2 T cells, and 5 for the generation of organoids and used,
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within the fourth passage of culture, as targets to evaluate the cytotoxic activity of Vδ2 T cells from
autologous PBMCs.

4.5. Ex Vivo Expansion of Vδ2 T Cells

ZA was solubilized in DMSO, following the manufacturer’s instructions. The amount of soluble
ZA to trigger Vδ2 T cell proliferation or activation of Vδ2-T-cell-mediated tumor cell lysis ranged
from 0.5 µM to 5 µM, in keeping with our previous data [21,45,48]. At these concentrations, the
dilution of DMSO in culture was less than 1:103 (between 1:2 × 103 and 1:2 × 104). Neither DMSO
at 1:103 nor ZA at concentrations up to 1 µM induced toxic effects, as evaluated using a crystal
violet assay and propidium iodide (PI, Sigma-Aldrich) staining, on the cells used in this study, nor
did they influence the proliferation or cytotoxicity of Vδ2 T lymphocytes [45]. Using ZA at a 5-µM
concentration, about 20% of dead cells were detected among the Vδ2 T cells after 14 days of culture.
The amount of ZA-SPNs to be used for triggering the expansion of Vδ2 T cells was determined in
preliminary experiments by adding decreasing amounts of SPNs to cell cultures (namely 0.5, 0.25,
0.12, 0.05, 5 × 10−3, 5 × 10−4, 5 × 10−5 µM). Notably, in all the in vitro experiments, the maximum
concentration used of ZA-SPNs was 0.5 µM and the optimum was 0.05 µM, the latter being more than
a thousand times lower than the batch concentration and free of direct toxic effect on T lymphocytes.
Similarly, this protocol was used also to estimate the non-toxic amount of nanoparticles for PBMCs (not
shown). As a control, empty nanoparticles were used, with the same polymer amounts used for the
ZA-SPNs. A concentration of 0.5 µM for 105 cells, the highest concentration tested, was not toxic for
either lymphocytes nor monocytes. A concentration of 50 nM of ZA-SPNs (from now on 0.05 µM for
easier comparison with soluble ZA) was experimentally found to be adequate to follow the expansion
of Vδ2 T cells in in vitro cultures.

PBMCs were obtained from both healthy adult donor’s buffy coats (institutional informed
consent signed at the time of donation) and venous blood samples of CRC patients using density
gradient centrifugation with Lymphocyte Separating Medium (Pancoll human, density: 1.077 g/mL,
PAN-Biotech, Munich, Germany), as described in Zocchi et al. [21]. To obtain Vδ2 T lymphocyte
populations, PBMCs were cultured in 96-well U-bottomed plates in 200 µL of RPMI-1640 medium
supplemented with 10% FBS, penicillin/streptomycin, and L-glutamine, and with serial dilutions of
either free ZA or ZA-SPNs, in a 37 ◦C humidified cell incubator with 5% CO2.

After 24 h, and on days 5 and 7, 100 µL of culture supernatant were discarded and substituted
with 100 µL of fresh medium containing recombinant human IL-2 (30 UI/10 ng/mL final concentration,
Miltenyi Biotec Italia, Bologna). On day 10, cells were split in the medium supplemented with IL-2 and
this was repeated every three days. The percentage of Vδ2 T lymphocytes was determined at different
time points (days 0, 7, 14, 21) using indirect immunofluorescence and cytofluorimetric analysis,
which was always performed by gating viable cells using the anti-Vδ2 TCR specific monoclonal
antibody (mAb) γδ123R3, as described in Musso et al. [48]. Lymphocyte populations were used as
effector cells in co-culture experiments with tumor cells or tumor cell spheroids after day 21 when
the percentage of Vδ2 lymphocytes were more than 96% of the total cells. In some experiments,
T lymphocytes and monocytes (Mo) were isolated from PBMC using specific negative selection kits
(Stemcells Biotecnologies, Voden, Italy). The purity of the selected T lymphocyte and Mo populations
was always more than 97% and 95%, respectively; this was determined using immunofluorescence
with specific anti-CD3 (to identify T cells) or anti-CD14 (to stain Mo) mAbs and FACS analysis
(see below). Then, T cells and Mo were co-cultured in the presence of soluble ZA or ZA-SPNs at
different T:Mo ratios (10:1, 20:1, 40:1, 100:1, 200:1, 1000:1) and the percentage of Vδ2 cells was analyzed
using immunofluorescence with the specific anti-Vδ2 mAb.

4.6. Immunofluorescence Assay and Analysis of Lymphocyte Proliferation

The immunofluorescence assay was performed as described in Musso et al. [48] with anti-Vδ2
mAb (γδ123R3, IgG1) or anti-CD3 mAb (289/10/F11, IgG2a) or anti-CD69 (31C4, IgG2a) or anti-CD25
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(4E3, IgG2b, Miltenyi Biotec) or anti-CD45RA (T60, IgG2a) or anti-CD27 (MT271, IgG1, Miltenyi
Biotec), anti-EPCAM (15806, IgG2b, R and D System, Minneapolis, MN) or anti-CD14 (TUK4, IgG2a,
Thermo Fisher Scientific) mAbs, followed by Alexafluor 647 or PE-anti-isotype specific goat anti-mouse
antiserum (GAM) (Life Technologies, Milan, Italy). At least 104 cells/sample were run on a CyAn ADP
cytofluorimeter (Beckman-Coulter Italia, Milan, Italy), and results were analyzed with the Summit 4.3
software (Beckman-Coulter) and expressed as percentage of fluorescent cells or mean fluorescence
intensity arbitrary units (MFI a.u.).

To measure the proliferation of Vδ2 T lymphocytes, the PBMCs were labelled with CFSE as
described in Musso et al. [61]. Briefly, 106 cells were incubated for 30 min at 37 ◦C in a water bath
in complete medium with 100 nM CFSE. Then, cells were extensively washed and put in culture at
105 cells/microwell in 96-well U-bottomed plates. ZA (1 µM) or ZA-SPNs (0.05 µM) were added and
the proliferation was analyzed at 7 days after labelling cells with anti-Vδ2-specific mAb, followed by
Alexafluor 647 GAM. Samples were analyzed on a CyAn ADP cytofluorimeter and proliferation was
indicated by the reduction of CFSE in the cell generations compared to the content of CFSE in the
parental component. The different cell generations were defined using the software ModFit LT 5.4
(Verity Software House, Topsham, ME, USA) with different colors.

4.7. CRC Cell Cultures and Spheroid Generation

The human CRC cell lines SW620, HCT-15, HT-29, LS180, SW-48, and SW480, provided and
certified as mycoplasma-free by the cell bank of the IRCCS Ospedale Policlinico San Martino (Blood
Transfusion Centre, B. Parodi, Genoa, Italy), were cultured in RPMI-1640 medium supplemented with
10% FBS, penicillin/streptomycin, and L-glutamine in adherent culture plates in a humidified incubator
at 37 ◦C with 5% CO2. Experimental conditions for the generation of tumor cell spheroids were selected
starting with decreasing numbers of each tumor cell line (2 × 104 to 1 × 104 to 5 × 103 per well) in
flat-bottom 96-well plates (Ultra-Low attachment multiwell plates, Corning®Costar®, New York City,
NY, USA), with DMEM-F12 serum free medium supplemented with EGF (Peprotech Europe, London,
UK) at a 10 ng/mL final concentration (≥1 × 106 IU/mg). EGF was selected, among other natural
ligands of epidermal growth factor receptor (EGFR), due to reasons previously described in detail in
Varesano et al. [45]. When plating, 104 cells of SW620, HCT-15, or HT-29 tumor cell spheroids were
obtained in 5–6 days after changing the culture medium every two days [45].

On day 5, CRC spheroids with a maximum diameter of about 250 µm were composed of living
cells, as assessed by culturing a sample under adherent conventional conditions for 24 h and the
subsequent identification of living cells with propidium iodide (PI, Sigma-Aldrich) staining and a
crystal violet assay (data not shown) as described in Varesano et al. [45]. Spheroid dimensions were
measured using images taken with the Olympus IX70 bright field inverted microscope equipped with
a CCD camera (ORCA-ER, C4742-80-12AG, Hamamatsu, Japan) via the analysis of regions of interest
after defining each spheroid with the CellSens software (version 1.12, Olympus, Tokyo, Japan) [43].

4.8. CRC Cell Viability and Cytotoxicity Assay

The CRC cell viability was determined using the Crystal Violet Cell Cytotoxicity Assay Kit
(Biovision, Milpitas, CA, USA) either upon exposure to serial dilution of ZA-SPNs from 0.5 to 0.005 µM
or ZA from 5 µM to 0.5 µM, and/or following co-culture with Vδ2 T cells. In conventional adherent
cultures, CRC cells were incubated with ZA-SPNs or free ZA at the above-mentioned concentrations
with Vδ2 T cells for 48 h, while finding the minimum time point to detect cytotoxicity with this
system [45]. The optimal amount of Vδ2 T cells to detect the cytotoxic effect elicited by the drugs
added, as determined in preliminary experiments, was 7.5 × 104 Vδ2 T cells/2.5 × 104 CRC cells,
corresponding to a 3:1 effector to target (E:T) ratio. Similarly, CRC spheroids were exposed to ZA-SPNs
or ZA, as above, and co-cultured for 48 h with Vδ2 T cells at the E:T ratio of 3:1 calculated as described
in Varesano et al. [45]. Then, spheroids were transferred in conventional adherent plates and incubated
for an additional 24 h to allow for plastic attachment. The CRC cells were then washed four times with
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PBS and the adherent cells were stained with crystal violet following the manufacturer’s instructions.
The amount of crystal violet, proportional to the amount of adherent/living cells, was measured with
the Victor X5 multilabel plate reader (Perkin Elmer Italia SPA, Milan, Italy) at 595 nm [45]. Results are
expressed as a percentage of living cells calculated as follows: (OD595 CRC/OD595 CRC plus drug
and/or Vδ2 T cells) × 100%.

4.9. CRC Organoid Generation and Vδ2 T Cell Cytotoxicity Elicited Using ZA-SPNs

Primary CRC organoid cultures were obtained following published guidelines [62,63].
Tissue samples, obtained after patient informed consent (PR163REG2014 renewed in 2017) and
collected by a trained pathologist, were enzymatically digested by collagenases type I and II in
Leibovitz L15 medium (Gibco-Thermo Scientific Italia, Milan, Italy) without serum. The digested
tissue was passed through a 100-µm strainer to completely eliminate the residual matrix and mucus.
Cripts were washed several times in fresh L15 medium to eliminate cell debris, mixed with Geltrex
(LDEV-free, hESC-qualified, reduced growth factor; Gibco-Thermo Scientific), and plated in a 24-well
plate. After polymerization at 37 ◦C, Geltrex domes were covered with 500 µL of medium per
well (DMEM-F12 plus B27 plus 10 ng/mL of EGF, ≥106 IU/mg) supplemented with antibiotics.
Different cocktails of inhibitors were tested on different wells [61] to identify the best culture condition
for each CRC tumor sample. This culture method naturally selects pure colorectal epithelial cells within
a few in vitro passages, while not allowing for the expansion of other contaminating populations [64].
The absence of wnt3a and R-spondin in the culture medium excluded the contamination of normal
epithelial cells from mucosa. In this study, we tested five organoid cultures (OMCR18-006TK,
OMCR18-006TK, OMCR19-006TK, OMCR19-009TK, and OMCR19-016TK), as detailed in Table S1,
which were photographed using a Leica DM-LB2 microscope (Leica Biosystems, Milan, Italy), equipped
with a GX-CamU3-18 camera (GT-Vision, Stansfield, UK) and depicted in Figure S6.

Organoids in Geltrex domes (3 µL) were labeled with calcein-AM (Sigma-Aldrich, 500 nM),
washed with culture medium, seeded in 96-well flat-bottomed plates (1 dome/well), and challenged with
autologous Vδ2 T cells, previously expanded with ZA-SPNs, at the E:T ratio of 3:1. The number of tumor
cells in the 3-µL dome was evaluated via counting with the Miltenyi MACS Quant Cytofluorometer
(Miltenyi Biotec srl, Bologna, Italy). The E:T co-culture was performed in the presence of ZA-SPNs
(0.5, 0.1, 0.05 µM) and prolonged for 6 days to allow for the penetration of lymphocytes into the
domes (3–4 days, as evaluated using conventional microscopy in preliminary experiments, not shown),
followed by effector cell function. Then, fluorescence of each culture well was quantified using
spectrofluorometry (Ex:488 nm, Em: 530 nm, Victor X5, Perkin Elmer) and compared to the fluorescence
of organoid cultures without Vδ2 T cells, which was considered to be 100%. Data are expressed as a
percentage of green fluorescence.

4.10. Cell Preparation for Confocal and SEM Imaging

SW-48 cells were seeded on circular glass slides previously coated with fibronectin (1 mg/mL,
Sigma-Aldrich). After 24 h at 37 ◦C, to allow for cell attachment on the slide, samples were incubated
with 0.05 µM Cy5-conjugated ZA-SPNs for 4 h. Vδ2 T cells were then added for an additional 4 h.
For confocal imaging, cells were washed three times with PBS, fixed with 4% paraformaldehyde,
and stained with DAPI and anti-EPCAM mAb, followed by Alexafluor555 GAM for CRC cells and
with the anti-Vδ2 specific mAb or Vδ2 followed by Alexafluor488 GAM. Images were taken with
a spinning disc confocal microscopy system (Eclipse Ti with Revolution XDi acquisition System,
Nikon Instruments, Firenze, Italy) in sequence mode to avoid overlapping among the different
fluorochromes. In some experiments, SW620 spheroids, the OMCR18-016TK organoids, or Vδ2 T cells
obtained from the PBMCs were exposed to 0.05 µM Cy5-ZA-SPNs for 24 h. Spheroids and T cells were
also stained with 20 nM Syto16 (Life Technologies, Thermo Fisher Scientific, Milan, Italy) to identify
nuclei (blue pseudocolor). Spheroids or Vδ2 T cells were seeded onto glass slides, while organoids
were analyzed in Geltrex domes seeded into 96-well black plates with a clear bottom (Costar, Corning.
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Inc., Minneapolis, MN, USA). In another series of experiments, ZA-SPN-expanded Vδ2 T cells were
labeled with CFSE and incubated with the OMCR18-016TK organoids for 48 h and then analyzed
using confocal microscopy. Samples were run under a FV500 confocal microscope (Olympus Italia srl,
Milan, Italy with a PlanApo 20× objective or 40×NA1.00 oil objective, and data was analyzed with
FluoView 4.3b software (Olympus Italia srl, Milan, Italy). Images were taken in sequence mode and
shown in pseudocolor. For SEM, samples were washed with PBS and fixed with glutaraldehyde 2%
in a sodium cacodylate buffer 0.1 M at pH 7.4; then, samples were post-fixed with osmium tetroxide
1% solution, dehydrated with a series of alcohol at 4 ◦C, and infiltrated with hexamethyldisilazane.
After an overnight drying, they were sputter-coated with a thin (10 nm) layer of gold to protect them
and make their surface conductive. Imaging was performed with an analytical low-vacuum SEM JSM
6490 (JEOL (Italia), Milan, Italy), at 15 kV.

4.11. Microfluidic Chip Fabrication

The double-channel microfluidic chip was realized following the same protocols of the present
authors’ recent paper [50]. Briefly, by using a direct laser writing machine (DWL 66+, Heidelberg
Instruments, Heidelberg, Germany), optical masks were obtained and then used in sequential
photolithographic processes to impress the two channels and the raw pillars, which separated them
on the resist spun on a silicon wafer. After the resists development, the entire 2D geometry was
made tridimensional through the inductively coupled plasma – reactive ion etching (ICP-RIE) that,
using a Bosh process, dug the pattern into the silicon. This entire design was then transferred to
polydimethylsiloxane (PDMS), the final material of the chip, by casting the latter onto the silicon and
baking it at 60 ◦C overnight. Finally, the PDMS was treated with an oxygen plasma (20 W for 20 s) and
bonded to a glass coverslip to produce a closed hollow structure. A biopsy punch was used to create
the inlets and outlets. The final microfluidic chip presented two channels, which were 210 µm wide
and 50 µm high. The region of contact of the two channels (500 µm in length) was constituted by an
array of pillars, separated by a 3-µm gap.

4.12. Microfluidic Experiments

Before the seeding of the cells in the channels, the chip was autoclaved at 120 ◦C. A solution
of Matrigel (8–12 mg/mL, Sigma-Aldrich) was half diluted with a suspension of the CRC cell lines
SW-48 or SW-480 GFP+ (kindly provided by Dr. N.Ferrari, 15 × 106 cells/mL) and inserted in the
extravascular channel. For the gelation of Matrigel, the chip was kept in an incubator for 5 min at 37 ◦C.
Then, fibronectin (20 µg/mL, Sigma-Aldrich) was pipetted into the vascular channel, and after 15 min,
HUVECs (6 × 106 cells/mL, PromoCell GmbH, Heidelberg, Germany) were inserted into the same
channel. Experiments were then performed after overnight incubation in order to get an endothelial
vessel in the vascular channel and to allow tumor cells to attach and adapt to the extravascular channel
environment. Vδ2 T cells, previously stained with DAPI or CM-(Invitrogen Thermo Fisher Scientific,
Milan, Italy) were injected into the vascular channel through a syringe pump (Harvard Pump 11 Elite,
Harvard Apparatus, Holliston„ MA, USA) at a flow rate of 50 nL/min and at a E:T (Vδ2:CRC) ratio of
3:1. A Spinning disc confocal microscopy system (Nikon EclipseTi with Revolution XDi acquisition
System) acquired images at predefined time intervals (4 min) for 24 h. Images were analyzed using
the ImageJ software (1.52n, NIH, USA), quantifying the percentage increase in fluorescence intensity
(i.e., DAPI for Vδ2 T cells) in different regions of interest (ROIs, 500 µm in length and 215 µm in height),
close to the pillar area. Data represent the percentage increase of such fluorescence, compared to
time 0, and are expressed as mean ± SE. For the confocal images, F-actin cytoskeleton filaments were
stained in green using phalloidin (Alexa Fluor phalloidin, Life Technologies, Thermo Fisher Scientific,
Milan, Italy), nuclei with DAPI and Vδ2 T cells with CM-Dil. Images were acquired using a confocal
microscope (Nikon A1).
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4.13. HPLC Negative-Ion Electrospray Ionization TOF-MS

The production of IPP by monocytes or LS180 or SW620CRC cells, after treatment with different
amounts of 0.5 or 0.05 µM ZA-SPNs or 0.5 µM soluble ZA for 24 h, was evaluated on cell extracts,
dissolved via vortex mixing in 80 µL MilliQ water and 250 µL Na3VO4, and cleared using centrifugation
in an Eppendorf Minifuge (Eppendorf srl, Milan, Italy) (13,000 rpm, 3 min) using HPLC negative-ion
electrospray ionization time of flight mass spectrometry (HPLC/TOF-MS) according to the method
described by Jauhiainen et al. [65] with some modifications reported in detail in Zocchi et al. [21].
Calibration curves for IPP were generated with standards diluted in MilliQ water/0.25 mM Na3VO4 in
the range 0.1–15 µM. The IPP content was determined using HPLC/TOF-MS, operating in reflection
negative ion mode, using an Agilent 1200 series chromatographic system, equipped with G1379B
degasser, G1376A capillary pump, and G1377A autosampler. Negative full-scan mass spectra were
recorded using the Agilent’s Mass Hunter software version n. B.05.00 in the mass range of m/z
60–500. The full scan data were processed using the Agilent Mass Hunter Qualitative Analysis, ver.
B.02.00 software. The amount of IPP was measured using the extracted ion current (EIC) peak area
(EIC m/z 244.99 [M-H]−). Results are shown as pmol of IPP extracted using acetonitrile/total protein
content in each cell lysate. The chromatographic method used could not separate the isomers IPP
and 3,3-dimethylallyl pyrophosphate (DMAPP). The identity of the parent ion present in our cell
extracts was confirmed by verifying the formation of fragment ions (m/z 79, m/z 159, m/z 177, and m/z
227), generating negative MS/MS spectra with a mass spectrometer Agilent 1100 series LC/MSD Trap,
equipped with an orthogonal geometry electrospray source and ion trap analyzer (not shown) [21].

4.14. Statistical Analysis

Statistical analysis was performed using a two-tailed unpaired Student’s t-test. For the time-lapse
confocal studies, at first for assessing the homogeneity of variances, the equal-variance assumption
was tested using the Brown–Forsy test. ANOVA was performed to evaluate the differences between
groups, followed by the Tukey-HSD post-hoc test. The p-values are shown in the text or in the figure
legends. Results are shown as mean ± SEM or mean ± SD.

4.15. Human Subjects

All human studies described in this manuscript have been approved by the appropriate institutional
review board(s) as indicated in the Ethic Committee approval PR163REG2014 renewed in 2017.
The written informed consent was received from participants prior to inclusion in the study and it is
stored in the Molecular Oncology and Angiogenesis Unit.

5. Conclusions

In conclusion, this study demonstrates, for the first time to the present authors’ knowledge,
that the encapsulation of ZA into spherical polymeric nanoparticles can lead to the stimulation of Vδ2
T cell expansion and activation of anti-tumor activity far more effectively than soluble ZA. Moreover,
the awareness that both peripheral-blood and tumor-infiltrating Vδ2 T cells can respond to ZA-SPNs
and efficiently induce tumor cell death in patients’ organoids in an autologous setting, would further
support the use of this ZA nanoformulation in CRC. The eventual therapeutic plan may be preceded by
testing the IPP production and Vδ2 T cell activation in the patient-specific 3D model of tumor organoids
in order to pursue a personalized therapy. These results are a step toward the use of ZA-SPNs to
trigger anti-tumor immunity in CRC and their possible translation in clinical practice.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/1/104/s1.
Figure S1: ZA-SPNs ζ-potential over time and encapsulation efficiency, Figure S2: Effect of ZA-SPNs and ZA
on CRC viability, Figure S3: ZA-SPNs were internalized by CRC spheroids and organoids, Figure S4: ZA-SPNs
triggered the expansion of CRC patients’ Vδ2 T lymphocytes, Figure S5: Expression of CD45RA and CD27 in
Vδ2 T lymphocytes after stimulation with ZA-SPNs, Figure S6: Colon organoid characterization, Figure S7:
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ZA-SPN-expanded Vδ2 T cells can infiltrate colon organoids, Table S1: Pathology features of CRC patients from
which tumor cell suspensions and/or organoids were derived.
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