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Abstract: Correlative clinical evidence and experimental observations indicate that integrin
adhesion receptors, in particular those of the αV family, are relevant to cancer cell features,
including proliferation, survival, migration, invasion, and metastasis. In addition, integrins promote
events in the tumor microenvironment that are critical for tumor progression and metastasis,
including tumor angiogenesis, matrix remodeling, and the recruitment of immune and inflammatory
cells. In spite of compelling preclinical results demonstrating that the inhibition of integrinαVβ3/αVβ5
and α5β1 has therapeutic potential, clinical trials with integrin inhibitors targeting those integrins
have repeatedly failed to demonstrate therapeutic benefits in cancer patients. Here, we review
emerging integrin functions and their proposed contribution to tumor progression, discuss preclinical
evidence of therapeutic significance, revisit clinical trial results, and consider alternative approaches
for their therapeutic targeting in oncology, including targeting integrins in the other cells of the tumor
microenvironment, e.g., cancer-associated fibroblasts and immune/inflammatory cells. We conclude
that integrins remain a valid target for cancer therapy; however, agents with better pharmacological
properties, alternative models for their preclinical evaluation, and innovative combination strategies
for clinical testing (e.g., together with immuno-oncology agents) are needed.
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1. Introduction

Since their initial discovery as extracellular matrix (ECM) cell adhesion receptors over 30 years ago,
integrins were rapidly identified as molecules relevant to cancer cell functions, notably migration,
invasion, and metastasis formation. Cancer and leukocyte biology research greatly contributed to
unraveling many of the cellular and molecular features of integrins as we know them today [1,2].
The characterization of their molecular structure, activation, and signaling functions, lead to
fundamental discoveries with far-reaching implications in many fields of biology and medicine [3,4].
The development of integrin inhibitors based on the Arg–Gly–Asp binding sequence, raised great
hopes for the development of novel anti-cancer therapies, in particular to inhibit tumor angiogenesis [5].
Despite encouraging results in preclinical models, all efforts to translate the experimental results into a
therapeutic benefit for cancer patients were disappointing, and can be illustrated by the failure of the
αVβ3/αVβ5 inhibitor cilengitide as an anti-cancer drug [6,7]. This integrin inhibitor has gone through
a full preclinical and clinical development cycle, and ultimately failed in randomized trials in several
disease entities. At this point, a fundamental question is warranted: are integrins still practicable
therapeutic targets in cancer, despite the failure of targeting αVβ3/αVβ5 and α5β1 in several clinical
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trials? We need to re-evaluate the role of integrins in cancer, including how can we best target them,
and how we can translate preclinical observations into clinical benefits. Here, we will review selected
aspects of integrin biology and cancer-related function, and discuss some considerations for future
developments as anti-cancer therapeutics aiming at lessons learned.

2. Integrin Adhesion Receptors, a Class of Its Own

Integrins are αβ heterodimeric cell surface adhesion receptors. There are 18 α and eight β subunits
consisting each of a long extracellular domain (750–1000 amino acids), and short transmembrane and
cytoplasmic domains (20–75 amino acids, except for the β4 cytoplasmic subunit up to over 1000 amino
acids long), which in combination form 24 different heterodimers [8,9]. Integrins bind to insoluble
ECM proteins (e.g., fibronectins, laminins, collagens), matricellular proteins (e.g., Cyr61/CTGF/NOV,
CCN), cell surface (e.g., Intercellular Adhesion Molecules, ICAMs; Vascular Cell Adhesion Molecule-1,
VCAM-1) and soluble (e.g., fibrinogen, complement proteins, Vascular Endothelial Growth Factor, VEGF;
Fibroblast Growth Factor 2, FGF2; angipoietin-1 or Transforming Growth Factor β, TGFβ) [9,10] ligands.
Binding occurs through a pocket formed by the α and β subunits or through the I-domain on some α

chains [11]. The ligand binding specificity is promiscuous (one integrin binds multiple ligands) and
redundant (different integrins bind to the same ligand) [12]. Promiscuity may be advantageous in
conditions when function is more important than the specificity of the eliciting event. This is the case
during wound healing, where cells have to cope with a rapidly changing ECM. IntegrinαVβ3, which binds
nearly a dozen of different ligands, is the prototype of a promiscuous integrin. Redundancy may reflect the
need for a given cell to respond differently to the same ECM protein. For instance, α5β1 and αVβ6 bind
to fibronectin, but elicit different responses [13]. Integrins exist in a low affinity, closed (bent) form and a
high affinity, active, open (extended) form. Integrin activation involves the binding of two cytoplasmic
adaptor proteins, talin and kindlin, to the intracellular domain of the β-integrin (“inside-out signaling”).
In turn, high-affinity ligand binding induces a further conformational change of the cytoplasmic tails,
promoting linkage to the actin cytoskeleton, focal complexes formation, and signaling events that are
required for stable cell adhesion, spreading, migration, proliferation, survival, and differentiation [11,14].
Many integrins expressed on cancer cells or cells of the tumor microenvironment have been reported to
be involved in cancer progression. An overview is given in Table 1.

Table 1. Overview of integrins expressed in cancer cells and the cells of the tumor microenvironment.
The table lists the main integrins reported to play a role in cancer. For further reading, we refer to
specific reviews and original articles [9,12,13,15–32]. Abbreviations: CAF, Cancer Associated Fibroblasts,
MyF, Myofibroblasts.

Integrin
Heterodimer

Arg-Gly-Asp
Ligand Binding

Dependency

Integrin Expression Patterns

Cancer Cells Vascular Cells CAF, MyF Immune Cells

α1β1 + ++ ++ ++

α2β1 +++ ++ ++ ++

α3β1 +++ ++ ++

α4β1 +++ ++ +++

α5β1 + +++ +++ ++ ++

α6β1 +++ ++ ++

α7β1 ++

α8β1 + + ++

α9β1 ++ ++ ++

α10β1 ++

α11β1 ++
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Table 1. Cont.

αVβ1 + ++ ++ ++

αLβ2 +++

αMβ2 +++

αXβ2 +++

αDβ2 +++

αVβ3 + +++ +++ ++ +++

αiibβ3 + Platelets

α6β4 +++ ++

αVβ5 + +++ +++ ++

αVβ6 + +++ ++

α4β7 + +++

αEβ7 +++

αVβ8 + ++ +++ ++ ++

3. Integrin Adhesome as a Signaling Complex

Integrins lack intrinsic enzymatic activity and rely on structural (e.g., paxillin, vinculin) and
adaptor (e.g., SRC Homologous and Collagen-like (SHC), Crk-Associated Substrate, p130 (CAS))
proteins and enzymes (e.g., Focal Adhesion Kinase, FAK; Integrin Linked Kinase, ILK) for their
signaling function. Many of the signaling pathways activated by integrins are also activated by growth
factor receptors (GFRs), such as epidermal growth factor receptor (EGFR) or vascular growth factor
receptor (VEGFR). Maximal signaling is achieved when GFRs and integrins are engaged. The molecular
basis of this cooperation is believed to be the ability of engaged integrins to cluster intracellular adaptor
and signaling proteins, thereby facilitating interactions with GFRs [33,34]. In addition, integrins can
physically associate laterally with cell membrane proteins (e.g., CD151 or CD47) to elicit or modulate
signaling events [35]. This complex and highly dynamic structure at the interface between cell adhesion
and GFRs signaling is referred to as the adhesome [36]. Signaling integration provides enhanced
specificity, as well as temporal and spatial control over many cellular events, compared to signaling
from GFRs alone. Integrins activate four main signaling pathways relevant to cancer initiation,
progression, metastasis, angiogenesis, and inflammation: the Rat Sarcoma (RAS)-mitogen activated
protein kinases (MAPKs), the phosphoinositid-3-kinase (PI3K)-AKT, the Rho-family GTPases, and the
Nuclear Factor kappa B (NF-κB) pathways (for more insights and details, we refer to recently published
reviews [37–42].

4. Cancer Cell Integrins

Soon after their discovery, it was observed that integrin expression is altered in cancer compared to the
corresponding healthy tissue, particularly of α3β1, α4β1, α5β1, α6β4, αvβ3, αvβ5, αvβ6, and αvβ8 [28],
and that in certain cancers, this altered expression was correlated with outcomes [43]. The complexity
of integrin regulation, ECM composition, concomitant signaling from GFRs, and pleiotropic functions,
together with the possibility that their contribution to cancer may differ across different cancer types, stages,
and treatment, significantly complicated assigning a specific cancer-related phenotype to a given integrin.
Observations about their clinical relevance were merely correlative and often contradictory [16,18,19,44].
Nevertheless, some key contributions to cancer progression, in particular metastasis, have been established.
For a general overview of cancer-related functions, in particular to the metastatic cascade, we refer to
some recent comprehensive reviews [13,20,23,28,30,37,45]. Here, we will discuss selected known and
emerging roles of integrins and their relevance to events critical for cancer progression (Figure 1).
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Figure 1. Integrin-dependent functions relevant to cancer. Integrins have been implicated in
mediating several hallmarks of cancer, including cancer cell proliferation, dormancy, survival, stemness,
metabolic adaptation, and metastatic niche formation. Integrins also promote epithelial-to-mesenchymal
transition and invasion, which are two key steps of metastasis formation. In the tumor microenvironment,
integrins promote endothelial cell survival and angiogenesis, the recruitment of immune and inflammatory
cells, and stroma remodeling and fibrosis induced by cancer-associated fibroblasts. The role of integrins
in these functions are described in more detail in Sections 4.1–4.6 and 5.1, and 5.2. This listing is
non-exhaustive. Abbreviations: CAF, cancer-associated fibroblasts; CCN1, cysteine rich protein 61
(CYR61); CSC, cancer stem cell; endothelial cell; EC, endothelial cells, ECM, extracellular matrix; EMT,
epithelial to mesenchymal transition; EXS, exosomes; LOX, lysyl oxidase; PC, pericytes; POSTN, periostin;
TC, tumor cell; TNC, tenascin.

4.1. Epithelial-to-Mesenchymal Transition (EMT) and Cancer Invasion

Epithelial cancer cells can undergo a complex, multistep gene expression reprogramming process
referred to as epithelial–mesenchymal transition (EMT), culminating with the down-regulation of
epithelial-specific genes and the up-regulation of mesenchymal specific ones, which are associated
with increased motility, invasion, and metastasis [46]. Integrins play an important role in the induction
of EMT and in mediating some of its effects. For instance, integrin α3β1 expression is required for
TGFβ1-stimulated Small Mothers Against Decapentaplegic (SMAD) signaling, leading to EMT [47,48].
On the other side, epithelial cells stimulation with TGFβ1 leads to a down-regulation of β4 integrin,
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which is a typically epithelial integrin essential for epithelial integrity and stability, resulting in
facilitated migration (see Figure 1) [49]. The signaling axis PEAK1/ZEB1 is mediating TGFβ1-induced
EMT in breast cancer through integrin β3 and fibronectin interaction [50]. In turn, integrins are critical
mediators of EMT. For example, the transcription factors TWIST1 and AP-1 cooperate to upregulate
integrin α5 expression to induce EMT and tissue invasion [51]. Mechanisms of invasion are quite
universal and shared by most tissues and cells. They include guidance by integrins toward fibrillar
collagen and/or laminins, haptotactic migration though chemokines and growth factors, and physical
pushing [52]. Cancer cell invasion occurs preferentially along pre-existing ECM tracks of least resistance,
followed by tissue remodeling. For example, invasive breast cancer cells preferentially invade along
collagen bundles and adipocytes. Matrix remodeling/degradation, in concert with integrins function,
is key to invasion. The elongation factor-2 kinase (eEF-2K) regulates the invasive phenotype of
pancreatic cancer cells by activating a signaling axis consisting of tissue transglutaminase (TG2) and
the β1 integrin/uPAR/MMP-2 complex as well as a decrease in SRC activity [53]. The αVβ3 integrin in
turn controls matrix metalloproteases 9 (MMP9) activity during invasion by binding to its Hemopexin
(PEX) domain, resulting in controlled pericellular proteolysis [54]. Invasive migration and proteolytic
remodeling of the ECM are interdependent processes that control tissue micropatterning events that
are critical for the transition from collective to individual cancer cell invasion [55]. Importantly,
cancer cells do not only invade through integrin-mediated interaction with the ECM, but can also do
so by ameboid migration by a push-and-pull mechanism in the absence or integrin engagement and
metalloproteases [35,56,57].

4.2. Anoikis

Anchorage-dependent cell survival and growth are essential functions of integrin-mediated
adhesion to the ECM. Upon cell detachment from the ECM, integrin clustering and the adhesome
are disrupted, resulting in the dispersion of GFRs, loss of cell signaling, and cell death (anoikis) [58].
However, recent studies suggest that in non-adherent cells, integrins may still be in an active
signaling state through the binding of ECM fragments or soluble ligands, and contribute to promote
anchorage-independent cancer cell survival, growth, and metastasis. Active FAK, which is a
critical transducer of integrin-mediated survival, is observed in β1 integrin-positive endosomes,
where it may contribute to initiate cell survival signals in cells in suspension [59]. Similarly,
αVβ3-positive adhesomes promote SRC-CAS (Rous sarcoma oncogene cellular homolog-Crk-associated
substrate)-dependent cell survival independently of FAK and cell adhesion, thereby pointing to a role
for αVβ3 anchorage-independent tumor cell growth, survival, and aggressiveness [60]. CCN proteins
associate to the ECM and bind to integrins or cell surface proteoglycans to regulate cell proliferation,
motility, and differentiation [10]. We have previously shown that the matricellular CCN1 (CYR61)
promotes the lung metastasis of triple negative breast cancer (TNBC) cells by binding to active β1
integrin at the cell surface and promoting AMP-activated protein kinase α (AMPKα) signaling, survival,
and early colonization of the lung [61]. Recent observations indicate that integrin–GFRs cross-talk may
persist in detached cells to provide survival signals. cMET (or Hepatocyte Growth Factor Receptor)
activation stimulates the endocytosis of active β1 integrin, which in turn sustains cMET signaling to
the MAPK pathway, resulting in anchorage-independent growth and metastasis (see Figure 1) [62].
This observation, in addition to the previously reported cross-talk between the β1 and β4 integrins
and cMET signaling, suggests that targeting integrins may enhance the anti-tumor activity of cMET
inhibition in adherent and non-adherent cancer cells [63,64]. Thus, the role of integrins in promoting
survival may not be restricted to conditions of cell adhesion to the ECM, but may further continue
once cells are detached, thereby opening unanticipated therapeutic options.

4.3. Metabolism

Several pathways controlling metabolic functions, such as such as AMPK, mammalian target of
rapamycin (mTOR), and hypoxia-inducible factor (HIF) in response to nutrients’ availability and needs,
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also control integrin expression and function [65,66]. In turn, integrins control metabolic functions,
thereby establishing a reciprocal, dynamic communication between cell adhesion and metabolism [67].
Metabolic events regulate integrin expression and function at the levels of transcription, degradation,
recirculation, and glycosylation. These mechanisms and their impact on integrin biology have been
recently summarized and discussed in excellent review articles, and thus will not be addressed
here [67,68]. Instead, we will briefly highlight the modulation of metabolism by integrins. β1 integrins
activate the PI3K–AKT pathway via FAK or ILK, AKT, and mammalian Target of Rapamycin Complex 1
(mTORC1) [42]. mTORC1 is a critical regulator of the reprogramming of lipids, nucleotides, and amino
acids metabolisms, and an inducer of the EMT promoter TWIST [69–71]. Integrin-mediated adhesion,
PI3K–AKT signaling, and MAPK signaling promote cell survival during times of nutrient deprivation,
for instance in hypoxic tumor regions, through the induction of autophagy [72]. Integrin–ILK dependent
signaling also controls the Hippo signaling pathway, which is a critical nutrient-sensing system,
leading to the Yes-Associated Protein/Tafazzin (YAP/TAZ)-dependent transcription of proliferation
and cell survival genes. It is interesting that tenascin-C (TNC), an ECM protein promoting invasion
and metastasis, modulates YAP via binding to α9β1 integrin [73]. Thus, integrin signaling during
EMT contributes to coordinate the concomitant global changes in cell metabolism that are relevant
for cell proliferation, migration, and survival [74–77]. Integrin signaling is also involved in the
metabolic reprogramming of cancer cells from oxidative phosphorylation toward glycolysis and
biosynthesis. TWIST induces aerobic glycolysis in breast cancer cells via β1 integrin signaling through
the FAK–PI3K–Akt–mTOR axis [78]. Consistent with this, integrins also control glucose transport,
and in breast cancer cells, the loss of adhesion reduces glucose uptake, ATP production, and fatty acid
oxidation [79]. In migrating cells, β1 integrin interacts with the lactate transporter Mono Carboxylate
Transporter 4 (MCT4) at the leading edge and integrin-mediated cell migration depends on MCT4
function to export excessive lactic acid and control intracellular pH (see Figure 1) [80,81]. Thus, there is
emerging evidence indicating that integrins are involved in the regulation of metabolic functions
at steps when cancer cells alter their interaction with the ECM or acquire novel integrin-dependent
activities (e.g., motility, invasion, survival).

4.4. Stemness and Resistance to Therapy

Similar to normal tissues, cancers are hierarchically organized and contain cells with stem cell-like
features, which are referred to as cancer stem cells (CSCs), which can drive tumor initiation, self-renewal
(maintenance), resistance to therapy, relapses, and metastasis [82,83]. They are present in specific
locations (niches) that are rich in particular ECM proteins such as periostin and TNC, and close
to vascular cells [84,85]. By interacting with the surrounding ECM, integrins appear to control the
balance between physiological stem cell renewal and differentiation [86]. It is of interest that most
integrins that have been associated with physiological stem cells are also expressed in CSCs [22,83].
In particular, α6 integrins (i.e., α6β1 and α6β4) are widely expressed in CSCs in breast [87], prostate [88],
colorectal [89], brain [90], and non-small cell lung [91] cancers. While integrin expression patterns
have been initially used as markers to identify CSCs, it is increasingly clear that they play functional
roles. Integrin α6 contributes to breast cancer initiation by inducing FAK-mediated expression of
the polycomb complex protein B cell-specific Moloney murine leukemia virus Integration site 1
(BMI-1), which is necessary for CSCs self-renewal, via its cytoplasmic domain [92,93]. Integrin β3
is essential for maintaining the CSC phenotype in breast [94], pancreas, and lung [95] cancers.
αVβ3 expression distinguishes mammary luminal progenitors (β3high) from mature luminal cells
(β3low) [96], and αVβ3 contributes to mediating CSC properties, including spheroid formation,
tumor initiation [97], and metastasis [60]. Targeting CSCs integrins to modulate their interaction
with the ECM of the stem cell niche may be of therapeutic potential. For instance, the inhibition of
integrin α6 suppressed the CSC phenotype and impacted cancer progression in glioblastoma [90].
Thus, the modulation of CSCs function and fate is a novel emerging function of integrins in cancer (see
Figure 1).
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The role of integrins in CSC biology is likely to contribute to chemoresistance and tumor relapse,
which is an integrin effect that was reported earlier [98]. In breast cancer, paclitaxel (Taxol) treatment
enriches high CSC for integrin α6 [93], and in a spontaneous lung cancer model, CSCs expressing
integrin β4 are enriched after cisplatin treatment [91]. Integrin β3 is highly expressed in cancer cells
with acquired resistance to the EGFR inhibitors to erlotinib and lapatinib through the activation
of NF-κB signaling [95]. Integrin β1 has been reported to promote resistance to radiotherapy in
head and neck cancer [99], lapatinib and trastuzumab resistance in breast cancer [100], and erlotinib
resistance in lung cancer [101] by enhancing SRC and AKT activities. Consistently, silencing integrin
β1 restored erlotinib sensitivity [101]. DNA damage can enhance αVβ3 expression on resistant cells,
facilitating clearance by phagocytosis, and thereby dumping the immune response [102]. Consistently,
the inhibition of αVβ3-mediated phagocytosis enhanced antibody-dependent cytotoxic responses [103].
Thus, unexpectedly, tumor cell αVβ3 may turn out to be a regulator of the anti-tumor immune response,
thereby opening new therapeutic opportunities.

4.5. Metastatic Niche

Tumor cells leaving the primary tumor on the way to form metastases face their main challenge
when they enter the distant organ, and need to adapt to survive in the new tissue [104]. For this,
disseminated tumor cells (DTC) rely on a specialized microenvironment called the metastatic
niche, promoting their survival and outgrowth [105,106]. The recruitment of inflammatory/bone
marrow-derived cells and endothelial cells, through the production of growth factors, cytokines,
and chemokines, the modification of the ECM, and, paradoxically, hypoxia, are essential elements of
the niche [107–110]. Metastatic niches can be induced by primary tumors even before DTC reach the
peripheral tissues, and are therefore also referred to as pre-metastatic niches. This implies a cross-talk
between the primary tumor and peripheral tissues [111,112]. Inflammation is a key element of this
cross-talk and the (pre)metastatic niche formation. Pro-inflammatory factors, such as S100 or Serum
Amyloid A acute phase Proteins (SAP) family members induced by the primary tumor, play a critical
role in the formation of (pre)metastatic niches, including the recruitment of CD11b+ myeloid cells [113].
Exosomes released by cancer cells promote metastasis by contributing to the formation of organ-specific
(pre)-metastatic niches through their ability to transfer metabolites, proteins, and RNA to distant
tissues [114–116]. Strikingly, integrins enriched on the surface of cancer-derived exosomes contribute
to organ-specific targeting. For instance, exosomes shed by cancer cells metastasizing to the lung are
enriched for α6β1 and α6β4 integrins, which home themselves to the lung, while αVβ5 integrin-rich
exosomes shed by liver-tropic cancer cells are that preferentially home to the liver (see Figure 1) [116].
Once in the target organ, exosomes actively contribute to the formation of the (pre)metastatic niche
by inducing the expression of specific ECM proteins and pro-inflammatory factors, including S100
proteins favoring the recruitment of inflammatory cells [116]. Further research is necessary in order to
evaluate the clinical significance of these observations, and in particular whether impinging on the
integrins-mediated homing of tumor-derived exosomes may have an adjuvant therapeutic effect on
metastatic tumor progression. On the other side, circulating exosomes may be exploited to identify
patients progressing to metastasis.

4.6. Metastatic Dormancy

DTC can remain quiescent for prolonged periods of time as single cells, small clusters,
or micrometastases before resuming growth to form macrometastases in a state called metastatic
dormancy [117,118]. This is particularly relevant for breast cancer, where clinical relapses can occur
years or decades after primary cancer therapy [119,120]. Interaction with the ECM is implicated in
controlling dormancy, paralleling the role of cell–ECM interaction in physiological CSC niches [121].
For example, high Urokinase-type Plasminogen Activator Receptor (uPAR) expression and α5β1
integrin binding to fibronectin suppresses p38 activity, increases ERK activity, and promotes cell
proliferation. Accordingly, low uPAR-expressing cells have a high p38/Extracellular Regulated Kinase
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(ERK) activity ratio, fail to assemble fibronectin fibrils and ligate α5β1 integrin, and are dormant
in vivo [122]. Similarly, the loss of α5β1 integrin expression results in the inactivation of the RAS–Rat
Fibrosarcoma (RAF)–ERK signaling pathway, the activation of p38/Janus N-Terminal Kinase (JNK)
stress signaling pathway, the induction of the TP53/RB-dependent cell-cycle arrest, and dormancy (see
Figure 1) [123]. This suggests a role for the cross-talk between mitogenic and stress signals regulated by
the uPAR–α5β1–ECM axis in controlling cellular dormancy [124]. Interestingly, collagen-rich (fibrotic)
ECM promotes the transition of dormant DTC to growing DTCs [121,125–127]. Accordingly, β1 integrin
ligation mediates the awakening of dormant DTC in a murine breast cancer model [121]. The ECM
protein periostin, which is a αVβ3 and αVβ5 ligand present in the primary and metastatic tumor
stroma, drives DTC escape from dormancy by activating Wingless Int-1 (WNT) signaling [128,129].
Inhibition of the PI3K–AKT signaling cascade, which is a pathway also controlled by integrins,
can activate autophagy and induce quiescence [130], while low or absent AKT signaling in DTC
correlates with dormancy in breast cancer patients [130,131]. Consistently, dormant tumor cells express
high levels of Aplysia Ras Homology Member I (ARHI), which is an inhibitor of the PI3K–AKT
cascade, and ARHI silencing breaks dormancy in several experimental models [132,133]. Thus,
controlling cancer dormancy is emerging as an unanticipated activity of integrins, and interfering
with ECM integrins interaction may be a therapeutic approach to consider in order to promote cancer
dormancy [134,135]. Further studies are warranted to unravel their potential operability in patients at
risk for progression or recurrence after initial therapy, particularly radiotherapy.

5. Tumor Stroma

The tumor microenvironment (TME) contains a multitude of cells that positively or negatively
impact tumorigenesis, tumor growth, invasion, and metastasis, two of which are fibroblasts and
endothelial cells [136]. Integrins expressed on these cells participate in the cross-talk relevant to
tumor progression.

5.1. Fibroblasts and the Extracellular Matrix

Altered composition of the tumor ECM, such as increased fibrillar collagen deposition, cross-linking,
and rigidity provide guidance cues and oncogenic signals for cancer cell growth and invasion in multiple
cancers, including breast, colorectal, head and neck, and pancreas [137]. Matrix cross-linking through
lysil oxydases (LOXs) increases matrix stiffness, integrin-dependent signaling, and SRC-dependent cell
proliferation, resulting in facilitated tumor progression and metastasis [30,138–140]. Altered collagen
deposition, ECM modification, and increased cancer-associated fibroblasts (CAF) contractility may be
a general hallmark of tumor progression and poor prognosis, and therefore a potential therapeutic
target [137]. We recently reported a novel mechanism by which CAF induces contact-dependent
Colorectal Cancer CRC cell motility and invasion. Activated fibroblasts express FGF-2 on their surface
and present it to FGF receptors (FGFR) on CRC cells, resulting in integrin αVβ5-dependent CRC
cell migration along fibroblasts. The inhibition of FGF-2 on fibroblasts or FGFR, SRC, and αVβ5
on cancer cells prevented these effects (see Figure 1) [141]. By using an orthotopic model of CRC,
we validated in vivo these in vitro results. The co-injection of CRC cells with fibroblasts in the cecum
of mice promoted lung metastasis, which was prevented by treatment with the SRC and FGFR
kinase inhibitors dasatinib and erdafitinib, respectively [142]. These experiments suggest that the
FGF2–FGFR–SRC–αVβ5 integrin axis might be a potential therapeutic target to prevent metastasis
in stage II and III CRC. In a previous study, we identified the matricellular protein CCN1 and αVβ5
integrin as proteins cooperating to mediate the invasion and metastasis of tumors growing in hypoxic
pre-irradiated tissues. αVβ5 inhibition by a pan-anti-anti-αV monoclonal antibody (mAb) 17E6 or
the αVβ3/αVβ5-specific cyclic Arg–Gly–Asp peptide cilengitide [143] attenuated CYR61/CTGF/NOV1
(CCN) 1-dependent metastasis [144]. Thus, integrins are important mediators of the interaction of
tumor cells, CAF, and matricellular proteins relevant to tumor progression, and are therefore of
potential therapeutic relevance.
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5.2. Endothelial Cell

αVβ3 was the first integrin reported to be preferentially expressed in angiogenic endothelial cells [145].
The inhibition of αVβ3 through antibodies, Arg–Gly–Asp-based cyclic peptides, or non-peptidic mimetics
suppressed tumor angiogenesis without affecting quiescent endothelial cells. In preclinical studies,
the inhibition of angiogenesis with αVβ3 antagonists suppressed tumor progression, raising a high
expectation that αVβ3 inhibition may be a valuable anti-cancer strategy (see Figure 1) [9,146]. However,
genetic ablation of the αV or β3 subunit had minimal impact on developmental angiogenesis [147,148],
while it increased VEGFR-2 signaling and tumor angiogenesis [149,150]. Interestingly, the acute genetic
deletion of endothelial cell αVβ3 transiently suppressed tumor angiogenesis if performed before
tumor implantation, but not once tumors were already growing [151]. Low concentrations of high
affinity Arg–Gly–Asp-based peptidic inhibitors such as cilengitide induce αVβ3 affinity maturation
and signaling, resulting in stimulated angiogenesis [152]. These observations question the relevance of
αVβ3 as a target in anti-angiogenesis therapies. High-affinity inhibitors disrupt the Vascular Endothelial
(VE)–cadherin junction, and increase permeability through αVβ3 activation and FAK–SRC signaling
in vitro [153]. These effects translated into increased vascular permeability of αVβ3-positive tumor
vessels in tumor-bearing mice treated with cilengitide, resulting in increased chemotherapy delivery to
the tumor relative to healthy tissue [154]. Interesting, the αVβ3 function appears to be modulated by
inflammatory factors. A combined administration of high doses of Tumor Necrosis Factor/Interferon
gamma (TNF/IFNγ) through an isolation limb perfusion setting to cancer patients with sarcomas or
melanoma metastases of the limbs inactivates endothelial cell αVβ3, causing endothelial cell death and
selective disruption of the tumor vasculature [155]. Inactive αVβ3 integrin acts permissive for TNF to
kill endothelial cells through a lack of AKT activation and anti-apoptotic signals [156]. Prostaglandin E2
(PGE2) promotes tumor angiogenesis by activating αVβ3 function and signaling through the prostane
receptors cyclic Adenosine Monophosphate (cAMP), Protein Kinase A (PKA) and RAC, and these effects
are blocked by Cyclooxygenase-2 COX-2 inhibition [157]. However, endothelial cells express many
additional integrins beyond αVβ3/αVβ5, including α4β1, α5β1 (fibronectin receptors), α9β1 (tenascin
receptor), α3β1, α6β1 and α6β4 (laminin receptors), and α1β1 and α2β1 (collagen receptors) [158].
Due to the overlap of integrin expression across different cell types and tissues, the selective targeting of
integrins to inhibit tumor angiogenesis remains challenging. Nevertheless, the inhibition of α1β1, α2β1,
α5β1 suppressed tumor angiogenesis and reduced tumor growth in many experimental models [9,159].

However, clinical trials with the αVβ3 integrin inhibitors cilengitide [143] failed to demonstrate
significant therapeutic benefits, including in highly angiogenic glioblastoma [160]. Considering the
failures of other anti-angiogenic therapies (e.g., the anti-VEGF antibody bevacizumab) in halting
glioblastoma progression, the failure of cilengitide as anti-angiogenic drug [143] may not be due to
cilengitide itself, but rather to limitations intrinsic to all anti-angiogenic approaches, in particular
evasive resistance [161–163].

In summary, integrin inhibition as an anti-cancer therapy was initially conceived based on the role of
integrins in promoting cancer cell invasion, metastasis, and tumor angiogenesis. Recent developments
indicate that additional functions relevant to cancer cells are also mediated or regulated by integrins,
including dormancy, metabolism, survival, therapy resistance, EMT, fibrosis, cancer cell stemness,
exosome homing, and pre-metastatic niche formation. Thus, in the future, it will be important to
understand the contribution of integrins to these emerging functions, and evaluate the potential
therapeutic impact of impinging on these functions by inhibiting integrins.

6. Targeting Integrins in Cancer

Antibodies, endogenous proteins, peptidic antagonists, synthetic peptides, and peptidomimetics
have been used to target integrins in cancer. Some of these molecules were or are still in clinical
development, but none of them have been successfully established as an anti-cancer agent to date [30,164].



Cancers 2019, 11, 978 10 of 30

6.1. Inhibiting Integrin Function

Anti-αVβ3 antibody etaracizumab (MEDI-522) entered phase I and II clinical studies and
showed good tolerability, also in combination with chemotherapy, but no anti-angiogenic or
immunomodulatory effects were noted [165,166]. Anti-αV antibodies, such as intetumumab (CNTO95)
or abituzumab (EMD 525797/DI17E6) entered phase I and II clinical testing as single agents or in
combination with cytotoxic agents and/or other targeted molecules. Clinical trials were initiated in
a variety of solid tumors, including melanoma, sarcoma, colorectal, and prostate cancers [167,168].
Abituzumab showed specific activity in prostate cancer bone metastases [169]. A randomized,
double-blinded phase 2 study of abituzumab in combination with the EGFR inhibitor cetuximab
and Laucovorin, Fluorouracil, Irinotecan (FOLFIRI) chemotherapy in first-line RASWT metastatic
CRC with high αVβ6 integrin expression is planned and expected to be completed in August 2021
(www.clinicaltrials.gov/NCT03688230). The anti-α5β1 integrin antibody M200/volociximab was
shown to inhibit angiogenesis and suppress tumor growth and metastasis in mice [170]. It entered
clinical testing as a single agent in advanced epithelial ovarian or primary peritoneal cancer [171]
and in combination with chemotherapy in advanced non-small-cell lung cancer (NSCLC) [172].
Volociximab was generally well tolerated, and showed preliminary evidence of efficacy in advanced
NSCLC. Endogenous antagonists such as the peptides endostatin, tumstatin, or angiostatin showed
anti-cancer activity profiles [9]. Recombinant endostatin, a supposed α5β1 inhibitor, was tested in
clinical studies in combination with chemotherapies and radiotherapies [173,174], but the results have
been inconsistent, which also relates to problems in the production of the active protein [175].

The Arg–Gly–Asp-based cyclic peptide cilengitide (EMD121974) targeting αVβ3/αVβ5 has been
the most advanced and investigated integrin inhibitor so far [143]. In spite of preclinical evidence
of anti-cancer activity and great expectations from phase II clinical studies [176], phase III studies,
in combination with chemotherapy, targeted agents, or radiotherapy in a multitude of cancers—most
notably glioblastoma—failed to provided clinical benefits [6,7,160,177,178]. The α5β1-blocking non
Arg–Gly–Asp-based peptide ATN-161 entered clinical testing [179] based on preclinical anti-cancer
activities [180,181], but also failed to provide therapeutic benefits. It is currently being investigated in
combination with VEGF inhibition for the treatment of wet age-related macular degeneration [182].

Peptidomimetics are synthetic compounds mimicking the structure and action of natural
peptides that have the advantages of being insensitive to protease degradation, able to be
administered orally, and having longer stability. Many peptidomimetics targeting αVβ3, αVβ5,
and α5β1, including SCH221153, BCH-15046, SJ749, and JSM6427 have been developed and showed
anti-cancer activities in preclinical models [9,164].

6.2. Targeting Drug to the Tumor

A conjugation of integrin-targeting antibodies, Arg–Gly–Asp-based cyclic peptides, or peptidomimetic,
has been explored to improve the delivery and tumor uptake of drugs, biologicals, nanoparticles,
and liposomes compared to unconjugated drugs [183,184]. For example, αVβ3-specific Arg–Gly–
Asp-based cyclic peptides targeting the tumor vasculature or tumor cells have been successfully used
to deliver therapeutic compounds, as well as image tumor lesions (theranostics) [185,186]. In general,
these approaches have demonstrated superior ability in increasing drug uptake and activities in
the tumors (reviewed in [185,187–190]). Dual targeting has further significantly improved drug
delivery and activity. Utilizing peptides against P-selectin and αVβ3, which are two molecules that
are functionally implicated in different stages of the metastatic disease, significantly increased drug
delivery at metastatic sites, compared to a single molecule targeting [191]. Similarly, dual αVβ3
(vascular)/CD44 (cancer cell) targeting resulted in enhanced targeting efficiency and anti-tumor
activities through the enhanced permeation and retention effect [192,193]. Cell-penetrating peptides
can be combined with targeting peptides to improve drug delivery. For instance, tumor targeting
through a tumor-specific peptide, followed by proteolytic cleavage and binding to a second
receptor, improved delivery by facilitated extravasation and transport through extravascular tumor

www.clinicaltrials.gov/NCT03688230
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tissue [194]. Magnetic nanoparticles (magnetosomes) coupled to Arg–Gly–Asp peptides were targeted
to tumors after systemic administration and used to generate therapeutic heat upon laser excitation,
which successfully inhibited tumor progression [195].

6.3. Tumor Imaging

Integrin αVβ3, α5β1, and αVβ6 have been explored for non-invasive tumor imaging purposes,
using magnetic resonance imaging (MRI), positron emission tomography (PET), computer tomography
(CT), and optical and ultrasound-based imaging techniques [9,196,197]. Their targeting is of great
potential relevance for the early diagnosis, staging of disease, patient’s stratification, and therapeutic
monitoring [198]. The imaging of experimental tumors using modified αVβ3-binding Arg-Gly-Asp
(RGD)-based peptides is a standard benchmark for the validation of tumor-targeting approaches [28].
PET technology has been preferred for use in animal models and in humans because of its high
intrinsic sensitivity. The level of expression of αVβ3 detected by PET correlated with the level of αVβ3
determined by immunohistochemistry, suggesting that this approach is a good surrogate of integrin
expression in vivo [197,199,200]. Tracers targeted by anti-αV integrin antibodies or peptides showed
high levels of specific tumor accumulation by PET, Single Photon Emission Computed Tomography
(SPECT), or optical imaging in different cancer models [201–205]. In spite of these interesting results,
the clinical value of the in vivo mapping of αVβ3 to quantify tumor angiogenesis has not been clinically
validated yet, as αVβ3 expression itself does not necessarily correspond to angiogenic activity in
tumor tissues [200,206]. Integrin α5β1 has also been explored for PET and SPECT-based imaging of
experimental tumors using peptidomimetic, linear, or cyclic peptides [207–209], while α5β1-based
imaging in human has not been reported yet [28]. αVβ6-based imaging may be attractive, as it is
associated with the invasion and activation of the TGFβ pathway in tumor cells. Using a αVβ6 peptide
ligand identified by phage display library screening PET/CT-based scans successfully imaged head
and neck cancers and NSCLC [210]. Interestingly, Nieberler et al. used a highly potent αVβ6-selective
integrin ligand [211] for fluorescence-assisted intraoperative assessment of resection margins in patients
with bone-infiltrating squamous cell carcinoma of the head and neck [212]. This approach could become
an invaluable intraoperative guidance tool for the surgeons to assure tumor-free resection margins.

7. Open Questions and Challenges Ahead

Over 30 years of experimental research has provided compelling evidence that integrins are
important mediators of cancer progression, and preclinical results indicate that they are potentially
valuable therapeutic targets, in particular αVβ3 and α5β1, for anti-cancer therapies. Yet, to date,
numerous clinical studies have failed to translate preclinical expectations into therapeutic benefits for
patients (Table 2). The failure of cilengitide, the integrin antagonist that has been most widely tested
in randomized clinical studies [143], was a major deception. After a large phase III trial evaluating
cilengitide in combination with radiation and temozolomide chemotherapy in newly diagnosed
glioblastoma failed to show any sign of activity, the further development of this anticancer drug was
halted, and the interest in αVβ3 integrin inhibition as a therapeutic target has dwindled [6,7]. Likewise,
the anti-αVβ3 antibody etaracizumab also failed to demonstrate significant therapeutic activity in
patients with melanoma. In contrast, the anti-αV antibody abituzumab has shown modest activity
in recurrent KRAS WT colorectal cancer, and is currently being tested in a larger randomized phase
II clinical trial. Likewise, the β1 inhibitor volociximab, in spite of encouraging preliminary results,
has also failed to demonstrate therapeutic benefits.
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Table 2. Selected clinical trials of agents targeting integrins. Non-exhaustive listing of the recent most important clinical studies with integrin inhibitors and their
salient features and results).

Study Name and Description Indication Phase/N pts Design Endpoints Outcome and Remarks References

Abituzumab (EMD 525797, anti-αV integrin antibody) (Merck-Serono): total no. of trials 3

POSSEIDON: SofC ± abituzumab (two doses) Colon Ca (KRAS WT) II
216 dose finding/randomized 1o: PFS

2o: OS
No diff in PFS, superior surv. of both

abituzumab arms vs. SoC. [213]

AMELION: Cetuximab/FOLFIRI ± Abituzumab, high αVβ6 expr. Colon Ca II
230 Randomized 1o: PFS

2o: OS, RR Start planned for 2nd quarter 2019 NA

Intetumumab (CNTO95, anti-αV integrin antibody) (Centocor, Johnson &Johnson): total no. of trials: 3

Intetuzumab ± DTIC vs. DTIC Melanoma II
129

randomized
(4-arms)

1o: PFS:
2o: OS, RR

Trend for improved OS with
high-dose intetumumab [214]

Docetaxel ± intetumumab Prostate Ca II
131 Randomized 1o: PFS

2o: RR Outcome favors placebo (!) [215]

Cilengitide (EMD 121974, anti-αVβ3/αVβ5 integrin cyclic peptide) (Merck-Serono): total no. of trials: 21 (+ 8 terminated)

ADVANTAGE: CDDP/5-FU/Cetuximab ± cil weekly vs. 2×/wk vs.
control Rec/metast. H&NCa II

184 3-arms 1o: PFS:
2o: OS, RR No difference in 1o or 2o endpoints [216]

CERTO: CDDP-based regimen ± cilengitide weekly or 2×/week NSCLC II
169 Randomized/dose-finding 1o: PFS

2o: OS Inconsistent results [217]

NABTT:0306: Cil 500 vs. 2000 mg + TMZ/RT→TMZ nd GBM II
112 Randomized OS Both arms improved over historical

controls [218]

Cil 500 vs. 2000 mg Rec GBM II
81 Randomized PFS6mo Responses at all doses [219]

Cil 2000 mg Prostate II
16

Uncontrolled, 2-stage
design PSA response No activity [220]

010: Cil (500 mg) + TMZ/RT→TMZ nd GBM II
52 Pilot study, uncontrolled 1o: PFS6mo

2o: OS Comparison to historical control [221]

CENTRIC: TMZ/RT→ TMZ ± Cil Methyl. MGMT
GBM

III
545

Pivotal international
EORTC trial. OS No activity [6]

CORE: Cil 5d/week vs. 2d/wk vs. control + TMZ/RT Unmethyl. MGMT
GBM

II
265 3-arms OS

2: PFS No differences [222]

Etaracizumab (MEDI-522, anti-αVβ3 integrin antibody) (MedImmune, Astra Zeneca): total trial 9 (+1 discontinued early)

Etatacizumab ± DTIC Melanoma II
112 Randomized RR, OS

No responses with etatcizumab
alone. No further evaluation

recommended.
[165]

Volociximab (MEDI-522, anti α5β1 integrin antibody) (AbbVie): total trials 7 (+ 3 discontinued early)

Numerous uncontrolled phase II studies against lung, pancreatic and ovarian cancer

SoC; standard of care. FOLFIRI; 5FU, leucovorin, irinotecan. DTCI; dacarbazine. CDDP; cisplatin. TMZ; temozolomide. RT; radiotherapy. Cil; cilengitide.
PFS; progression-free survival. OS; overall survival. RR; response rate. 1o; primary endpoint. 2o, secondary endpoint. Rec, recurrent; nd, newly diagnosed
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So, what went wrong in the development of integrins inhibitors as anti-cancer drugs? Is the choice
of the target (i.e., the integrin) a problem? It is hard to imagine that the contribution of integrins to
tumor development and progression observed in experimental and preclinical animal models does not
apply to human cancer. Alternative, is it our still incomplete understanding of the complexity of integrin
function and biology that that has mislead us toward overoptimistic approaches? Or, are the inhibitors
used inappropriate? Could this be a “simple” pharmacokinetic issue, or a more “complex” problem
associated with intrinsic properties of integrin that we failed to recognize? Maybe in the studied cancer
types, integrins did not play a predominant role, or the lack of a biomarker for patient selection led to the
failure. These are complex questions, for which today we do not have definitive answers. Nevertheless,
they should stimulate us to think about developing new concepts, tools, and approaches to successfully
exploit this fascinating class of molecules for the benefit of cancer patients (Figure 2).Cancers 2019, 11, x 13 of 30 
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Figure 2. What went wrong with the development of integrin inhibitors in cancer, and what can we do
different? The field focused largely on a few integrins, most notably αVβ3/αVβ5 and α5β1 based on
early preclinical work with the purpose to target tumor angiogenesis, using a limited set of inhibitors
(mostly interfering with ligand binding). A better understanding of integrin function and biology,
and the accumulated experience with clinical studies, should stimulate us to think about developing
new concepts, tools, and approaches to successfully exploit integrins as therapeutic targets in cancer.
Here is a non-exhaustive summary of the concepts discussed in the text. T, tested in the past to present;
A, alternative strategies to consider.
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7.1. Did We Target the Wrong Integrin(s)?

Based on experimental results, the large majority of the 24 known integrins is implicated in
cancer progression [223,224]. However, so far, only a few integrins have been explored clinically
as therapeutic targets in anti-angiogenic therapies: αVβ3 and αVβ5, with the small cyclic peptide
cilengitide; the αV subfamily (i.e., αVβ1/αVβ3/αVβ5/αVβ6/αVβ8) with the pan anti-αV antibody
abituzumab and intetumumab; and α5β1 with the anti-α5 antibody volociximab. The role of αVβ3 in
tumor angiogenesis have been questioned by genetic evidence, demonstrating that the constitutive
ablation of the β3 subunit increased tumor angiogenesis [149,150], while conditional deletion in
growing tumors had no anti-tumor effect [151]. Besides, αVβ3 and αVβ5, which are endothelial
cells, express additional integrins (i.e., α3β1, α4β1, α5β1, α6β1, α9β1, α6β4, α2β1) that were not
systematically considered and tested as potential therapeutic targets. The functional redundancy,
promiscuity, and compensation typical of integrins may be the reasons why these integrin inhibitors
were well tolerated, but at the same time had limited therapeutic effects. Redundancy and functional
compensation call for testing the concomitant inhibition of multiple integrins in preclinical models.
However, multiple targeting, if effective in animal models may be difficult to achieve in patients.

7.2. Did We Use the Wrong Inhibitor(s)?

Traditionally, integrin inhibitors have been conceived and screened for their ability to interfere
with cell adhesion and migration. These inhibitors generally target the extracellular domain to prevent
ligand binding, either by competitive, high-affinity occupation of the ligand-binding pocket (e.g.,
cilengitide), or by preventing affinity maturation or sterically hindering ligand binding (e.g., antibodies)
(Figure 3) [164,225]. However, integrins have complex features (i.e., allosteric regulation, including cis
interaction with other cell surface receptors and clustering at focal complexes and interaction with
cytoplasmic proteins), making them unique relative to other receptors that may complicate the
generation of effective inhibitors [226]. For instance, high-affinity “inhibitors” can prevent ligand
binding, but at the same time, can induce a “superactive” conformation sustaining cellular signaling
and resulting in enhanced angiogenesis [152,153,227]. This may be particularly relevant to the clinical
use of cilengitide, which has a short half-life of about two to four hours, and its concentration
in the plasma fluctuates dramatically between injections, resulting in possible dual effects [7,28].
A further complication is suggested by the inability of Arg–Gly–Asp-based antagonists to disrupt
αVβ3-ligand binding in contrast to allosteric antagonists [228]. Thus, allosteric antagonists may be
more effective than competitive antagonists to interfere with ligand-occupied integrins. Also, it appears
that ligand occupied integrins can still transduce survival signals, even in cells in suspension [59–61].
For example, treating cells with integrin ligand antagonists or expressing mutant integrins with
impaired ligand-binding capacity did not prevent αVβ3 from promoting the CSC phenotype [95].

These observations raise the possibility that integrins disengaged from the ECM but occupied by
natural ligands or high-affinity inhibitors may still signal and sustain cell survival. This hypothesis can
be tested by either inhibiting residual integrin-dependent signaling (e.g., by using kinase inhibitors) in
cells treated with integrin inhibitors, or by developing a novel class of integrin antagonists that block
both cell adhesion and signaling. As the interaction between the cytoplasmic tails with cytoplasmic
structural and signaling proteins is essential for both adhesion and signaling functions [229], this may
open unexplored opportunities to develop a novel class of inhibitors. We previously showed that
the expression of isolated β integrin subunit cytoplasmic and transmembrane domains in adherent
endothelial cells in vitro and in vivo caused massive cell detachment and death. The mechanisms
involved competition for the binding of essential cytoplasmic adaptor proteins (e.g., talin) to
engaged integrins (dominant negative effect), resulting in a ‘mechanical uncoupling’ of the integrins
from cytoskeletal structures and signaling molecules [230–232]. Unfortunately, the effect was not
integrin-specific: the expression of isolated β3 or β1 subunit cytoplasmic domain indiscriminately
blocked both β3 and β1 functions. This was likely because interactions of cytoplasmic domains with
key proteins of the adhesome are largely conserved across different integrins. Consistent with these
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observations, point mutations in the Y747F and Y759F of β3 subunits inhibited tumor angiogenesis
and tumor growth [233]. As the structure and molecular composition of the adhesion, as well as the
molecular interactions controlling integrin function all have dramatically improved since [35,36], it may
be worth revisiting the possibility of selectively inhibiting integrin function by interfering with the
adhesome. For example, the deletion of kindlin-2 reduced endothelial sprouting, while ILK silencing
reduced endothelial cell migration, tube formation, and tumor angiogenesis [234–236].Cancers 2019, 11, x 15 of 30 
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Figure 3. Alternative strategies to inhibit integrins. Current integrin inhibitors are mostly based on
preventing ligand binding through direct competition or (allo)steric interference with the extracellular
domains. However, some of these ligand-binding inhibitors may activate integrins and do not
fully suppress integrin signaling. Alternative approaches to interfere with integrin function may be
considered since integrin activation and signaling are complex events involving multiple and different
steps. Strategies to consider include: 1, the retention of bent integrins in their low-affinity state;
2, the prevention of full integrin extension and affinity maturation; and 3, irreversible preclusion of
ligand binding by covalent modification of the binding pocket. The intracellular domains and the
adhesome also provide additional opportunities, including: 4, interfering with kindlin/talin-mediated
activation; 5, the prevention of recruitments of signaling proteins of the adhesome (e.g., FAK) to the
β cytodomain; 6, the prevention of adhesome maturation or induction of adhesome dissolution by
interfering with protein–protein interactions.

7.3. Did We Target the Wrong Biological Process(es)?

A key rationale that fostered the development of integrin inhibitors as anti-cancer agents, in particular
those targeting αVβ3, was their ability to suppress tumor angiogenesis in preclinical models [237].
As we have learned from clinical trials with numerous anti-angiogenic drugs, the suppression of tumor
angiogenesis alone was revealed to be insufficient to effectively control tumor progression. Eventually,
only a few anti-angiogenic drugs were approved for clinical use, and this was largely in combination with
cytotoxic chemotherapy, in a limited number of advanced and metastatic cancers. Moderate outcome
benefits were demonstrated in colorectal, kidney, and liver cancer, while the benefits in lung, breast,
and ovarian cancer or glioblastoma were very modest or absent [6,238]. Thus, it could be that the effects
of integrins’ inhibition on the tumor vasculature did not translate into anti-tumor effects, not because
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of their inefficacy, but because of the complex relationship between tumor angiogenesis and tumor
progression, and the ability of cancer cells to adapt and escape from anti-angiogenic therapies [163].
The combined targeting of several integrin receptors and other angiogenic pathways may be required to
obtain significant anti-tumor effects.

Importantly, until today, we lacked an adequate biomarker to predict which patients are likely
to benefit from anti-integrin treatment. While metabolic imaging and tissue analysis suggest that
cilengitide reaches its target, there is no information about its effects on the tumor vasculature or
tumor invasion in patients [7]. In the CENTRIC (Cilengitide, Temozolomide, and Radiation Therapy in
Treating Patients With Newly Diagnosed Glioblastoma and Methylated Gene Promoter Status) trial
(Methyl Guanine Methyl Transferase (MGMT) promoter methylated tumors), αVβ3 expression did
not reveal any prognostic or predictive information, while in the CORE (Cilengitide, Temozolomide,
and Radiation Therapy in Treating Patients With Newly Diagnosed Glioblastoma and Unmethylated
Gene Promoter Status) trial (unmethylated tumors), higher tumor expression levels of αVβ3 were
associated with slightly improved progression-free and overall survivals in patients treated with
cilengitide [177]. Still, this puts doubt as to whether tissue integrin expression is a useful biomarker.
The identification of biomarkers that are predictive of responses—or as a surrogate for target engagement
and for monitoring the activity of integrin inhibitors—is needed before further clinical investigation is
carried out.

The three main cancer cell-related processes that were considered as attractive targets for
integrin inhibitors are cell proliferation, survival, and invasion [18,239]. However, impinging on
cell proliferation and survival on cancer cells through integrin inhibition may be difficult to achieve,
as fully transformed cells acquire cell-autonomous growth and survival capacities in the absence
of extracellular cues through the activation of oncogenes and the inactivation of tumor suppressor
genes [240]. The inhibition of invasion, which is a critical event in the metastatic cascade, seems more
plausible to achieve. However, since patients treated with integrins inhibitors had advanced invasive
or metastatic diseases, these potential benefits may be blunted. As metastasis represents a starting
point for further seeding, one may nevertheless expect effects on further metastatic spreading [241,242].
However, it should also be noted that cancer cells can invade the ECM without the need for integrin
engagement through ameboid movements, which obviously would represent an escape mechanism to
integrin inhibition [35,56,57].

The microenvironment of most tumors is densely infiltrated with leucocytes and lymphocytes,
which use integrins for their homing, migration, and local functions [243–245]. While targeting
leucocyte integrins has been successful in the management of autoimmune diseases, it remains
largely unexplored in cancer [35]. This is a potentially appealing strategy considering that the tumor
microenvironment is rich in immunosuppressive cells (i.e., Regulatory T cells, Treg; Myeloid Derived
Suppressor Cells, MDSC) and their inhibition boosts the immune response [246]. For example,
antagonists of integrin α4β1 blocked the extravasation of monocytes into tumor tissue and prevented
the monocyte macrophage colonization of tumors and tumor angiogenesis [247]. While attractive
conceptually, a selective inhibition of Treg or MDSC recruitment may be difficult to achieve in
practice. Immune and inflammatory cells in the tumor microenvironment (i.e., granulocytes, MDSC,
monocytes, Dendritic Cells (DC) cells, T cell, B cells, Natural Killer (NK) cells) use overlapping
integrins to home, extravasate, and migrate to the tumor microenvironment, namely αLβ2, αMβ2,
αXβ2, α4β1, α1β1, α2β1, αVβ3, and α5β1. This overlapping pattern of expression and the
targeting some of the integrins, most notably α4 and β2, may cause severe unwanted effects such as
viral and bacterial infections, as these integrins are critical to the physiological immune response,
which significantly complicates such an approach [35].

A further cell population of the tumor microenvironment that may be considered to be targeted
with integrins inhibitors is the CAF. CAF are well established to promote cancer progression through
paracrine communication and remodeling of the ECM, which is a process that is tightly dependent on
integrins. Thus, inhibiting integrins on CAF, in particular of the αV and β1 family, is likely to interfere
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with matrix deposition and remodeling, and indirectly to suppress matrix-dependent functions that
normally promote tumor progression, in particular survival and invasion [31,32].

In addition to inhibiting integrin function to impinge on cancer-associated events, integrins may
serve as targets to deliver cytotoxic drugs to tumors, for instance by using antibody–drug conjugates
(ADCs). While this approach is not fully novel, it may pay off in some cancers, and may be combined
with diagnostic procedures (theragnostic).

7.4. Did We Use the Wrong Preclinical Models?

Preclinical tumor models used for drug testing are typically based on monitoring drug activity
on primary tumor growth and possibly on their metastatic dissemination [248,249]. These conditions
do not reflect the clinical situation in which systemic therapy is either used as adjuvant therapy to
eliminate microscopic or minimal residual disease and/or already disseminated cancer cells, or as
palliative therapies in patients with advanced and metastatic disease. Thus, most preclinical models
do not represent the actual clinical situation of patients eventually receiving the tested drug at
the advanced/metastatic stages [249]. This is a potentially confounding factor that may lead to
overestimating the therapeutic effects of the tested drugs. In addition, transplantable tumors based on
cell lines do not fully recapitulate the biological and molecular feature of the corresponding human
tumors, and in the case of xenografts, the host is immunodeficient, thereby depriving the tumor
microenvironment of important immunological functions. As this is a general problem in drug testing,
there is an urgent need to align preclinical models with the relevant clinical situation. Suitable models
should include orthotopic primary tumor growth, spontaneous metastasis formation, primary tumor
removal, and the treatment of metastatic disease.

7.5. Did We Perform the Wrong Clinical Trials?

A number of clinical trials were performed for over a decade, investigating either competitive
peptide-based inhibitors or monoclonal antibodies targeting specific integrins (Table 2). The largest
trial portfolio was for cilengitide, which is a cyclic inhibitor targeting αVβ3 and αVβ5 integrins.
Trials were well planned, and many were designed as randomized phase 2 trials aiming at identifying
the optimal dose or dosing regimen and activity signal seeking. Nevertheless, with a short half-life of
only a few hours, a twice-weekly infusion schedule may not have been an optimal choice, while drug
solubility limited the options of a continuous infusion schedule. The only partial penetration through
the blood–brain barrier is another limitation in particular when treating primary brain tumors.
The cilengitide development program also illustrates the limitations of randomized phase II trials that
cannot replace formal comparative phase III trials. Furthermore, a more critical interpretation of phase
II results and the integration of correlative endpoints is warranted if this design is to determine the fate
of an investigational agent. Predefined stringent criteria for “success” and “go/no go” decisions should
be determined at the onset of phase II trials.

Most trials targeting integrins to date are similar in design, and have repeatedly focused on the
same clinically defined tumor entities. Although some of the trials are aimed at enriching a certain
molecular subgroup (e.g., MGMT methylation in glioblastoma trials, mutated Kirsten RAS (KRAS) in
colorectal cancer), these markers are of important prognostic value of the disease of interest. However,
they have no mechanistic relationship to integrins as a treatment target.

8. Conclusions

In spite of compelling experimental results demonstrating that integrins contribute to cancer
progression and that their inhibition has therapeutic effects, clinical trials with αVβ3/αVβ5 and α5β1
integrin inhibitors have globally failed to demonstrate therapeutic benefits, and no inhibitors has been
registered as anti-cancer drug. However, therapy strategies have focused so far solely on integrins
on tumor cells and vascular cells. Consequently, new approaches targeting integrins in other cells
of the tumor microenvironment, e.g., cancer-associated fibroblasts and inflammatory/immune cells,
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are necessary and should be considered. Additionally, the pharmacological properties of the integrin
inhibitor and the heterogeneity and redundancies of integrin functions require further understanding
before proceeding with future investigation of novel integrin-targeting agents in the clinic. We conclude
that integrins remain a valid target for cancer therapy, but novel preclinical models and translational
studies focusing on the tumor microenvironment are needed.
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