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Abstract: Background: Oral cancer is one of the most prevalent cancers worldwide. Despite that the
oral cavity is easily accessible for clinical examinations, oral cancers are often not promptly diagnosed.
Furthermore, to date no effective biomarkers are available for oral cancer. Therefore, there is an
urgent need to identify novel biomarkers able to improve both diagnostic and prognostic strategies.
In this context, the development of innovative high-throughput technologies for molecular and
epigenetics analyses has generated a huge amount of data that may be used for the identification of
new cancer biomarkers. Methods: In the present study, GEO DataSets and TCGA miRNA profiling
datasets were analyzed in order to identify miRNAs with diagnostic and prognostic significance.
Furthermore, several computational approaches were adopted to establish the functional roles of
these miRNAs. Results: The analysis of datasets allowed for the identification of 11 miRNAs with
a potential diagnostic role for oral cancer. Additionally, eight miRNAs associated with patients’
prognosis were also identified; six miRNAs predictive of patients” overall survival (OS) and one,
hsa-miR-let.7i-3p, associated with tumor recurrence. Conclusions: The integrated analysis of different
miRNA expression datasets allows for the identification of a set of miRNAs that, after validation,
may be used for the early detection of oral cancers.
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1. Introduction

Oral cancer is one of the most prevalent cancers worldwide, accounting for about 354,864 new
diagnoses and approximately 177,384 new deaths annually [1]. Generally, the term oral cancer identifies
a subset of head and neck cancers arising in the lips, hard palate, upper and lower alveolar ridges,
anterior two-thirds of the tongue, sublingual region, buccal mucosa, retro-molar trigone and floor of the
mouth [2]. Among these cancers, the most frequent histotype is oral squamous cell carcinoma (OSCC)
representing about 95% of all oral cancers [3]. Recent epidemiological data demonstrated that despite
the development of novel screening strategies together with the advancement of pharmacological
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treatments, the incidence and mortality rates of head and neck cancer, and in particular that of oral
cancer, are almost stable or increased during the last years [4,5].

Behind the increase of both oral cancer incidence and mortality rates, there are several modifiable
factors, including dietary and lifestyles habits, together contributing to cancer development. Among
these factors, alcohol consumption and smoking represent the most recognized factors predisposing to
OSCC [6,7]. Additionally, viruses and other microbes have been intensively associated with a higher
increase of OSCC development, such as infections sustained by human papilloma viruses (HPVs),
Epstein-Barr virus (EBV) or Candida albicans [8-10]. Although the majority of the studies are focused
on the investigation of microbial factors as cancer risk factors, recently several studies were pursued
with the aim of establishing a potential role of the human microbiota in protecting the host from several
tumors, including those of the oral cavity [11-13].

Along with these well-recognized risk factors, oral cancer development is also associated with
several molecular alterations affecting key genes involved in the regulation of pivotal cellular processes,
such as cell cycle, cell proliferation and apoptosis. The most frequent gene alterations found linked with
OSCC affect TP53, NOTCH1, CDKN2A, SYNEI1, PIK3CA, as well as the EGFR pathway-related genes
(including TGF-B, fibroblastic growth factor-BP (FGF-BP) and MMKG6) [14,15]. Recently, epigenetic
modifications, including promoter/intragenic methylation and microRNAs (miRNAs) de-regulation,
have been linked to the development of oral cancers by mediating the alteration of cellular homeostasis
and physiological processes [16-18].

Despite that the oral cavity is readily explorable, most oral tumors are diagnosed at an advanced
stage reducing the survival rate of patients [19,20]. Currently, there are no effective biomarkers for the
early diagnosis of oral cancer. Several studies have proposed the evaluation of the salivary and serum
levels of IL-6 and/or IL-8 as promising biomarkers for oral cancer lesions, however, the sensitivity and
specificity of these markers were low because they increase also in presence of various oral cavity
inflammatory conditions [21,22]. Other studies focused the attention on tumor markers already used
for the diagnosis of other solid tumors, such as the salivary levels of the carcino-embryonic antigen
(CEA; 68.9% sensitivity, 73.3% specificity) [23], carcinoantigen 19-9 (CA19-9; no diagnostic value) [24]
and CA125 (80.0% sensitivity, 66.0% specificity) [25]. However, the sensitivity and specificity of these
markers were not high enough to diagnose effectively all oral tumors.

Therefore, there is an urgent need to identify novel biomarkers for the early diagnosis of oral cancer.
In this context, the role of non-coding RNAs, of which miRNAs are the most studied, has been recently
acquiring remarkable importance in the development of several pathologies, including cancer [26-28].
In particular, several studies demonstrated that miRNAs, a class of small non-coding RNAs with
a length of 20-22 nucleotides, are involved in cancer, including that of oral cavity cancer, inducing
epigenetic modifications altering key cellular processes, such as cell differentiation, growth, apoptosis
and drug resistance [29,30]. Notably, miRNAs are able to regulate gene expression by controlling
mRNA translation, either by translational repression of the targeted mRNA or by enhancing its
degradation through an RNA interference mechanism [31]. Furthermore, a growing body of evidence
demonstrated that dysregulated miRNAs may be used for diagnostic and prognostic purposes. In fact,
it is well established that certain miRNAs are specifically associated with the presence of tumors, even
in the early stages, or associated with a worse prognosis [32,33].

Therefore, miRNAs may represent good candidate biomarkers also for oral cancer. On this matter,
during the last decade, a huge amount of molecular and bioinformatics data has been generated, with
the final goal of characterizing miRNAs’ expression profile in several cancers. These databases were
therefore used to identify new effective biomarkers identified through computational approaches [34].
Several studies analyzed the data deriving from miRNAs microarray or sequencing profiling in oral
cancer samples. However, the lack of integration between the different data matrix generated has
generated confusing data on this matter. For instance, Manikandan M and colleagues (2016) have
performed a miRNA microarray analysis in a discovery cohort (n = 29) and validation cohort (n = 61)
of primary OSCC tissue specimens identifying a set of miRNAs (let-7a, let-7d, let-7f, miR-16, miR-29b,
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miR-142-3p, miR-144, miR-203, miR-223 and miR-1275) potentially involved in oral cancer development
and progression [35]. Other microarray studies have identified miRNAs different from those identified
by Manikandan et al. In particular, Chamorro Petronacci and colleagues (2019) have recently identified
two potential miRNAs, miR-497-5p and miR-4417 associated with the presence of OSCC [36]. Yan
ZY and co-workers (2017) have identified seven key miRNAs (miR-21, miR-31, miR-338, miR-125b,
hsa-miR-133a, miR-133b and miR-139) associated with the tumor [37]. Therefore, it is evident that
there are no concordant data generated by the single and independent analysis of different miRNA
microarray datasets for oral cancer.

To our best knowledge, no previous studies have analyzed simultaneously different oral cancer
tissue miRNAs profiling datasets. In the present study, miRNA expression datasets, contained in both
the Gene Expression Omnibus DataSets (GEO DataSets) and The Cancer Genome Atlas (TCGA) Head
and Neck Cancer (HNSC), were analyzed to identify a panel of miRNAs used as potential diagnostic
and/or prognostic biomarkers for oral cancer.

2. Results

2.1. Identification of Oral Cancer-Associated miRNAs

The differential analysis performed by GEO2R on the two datasets of the GEO DataSets database
allowed the identification of two lists of de-regulated miRNAs in oral tumors compared to non-tumor
controls. By comparing these two lists of miRNAs, it was possible to identify 28 miRNAs differentially
expressed in the tumor tissue, 12 of which were up-regulated and 16 were down-regulated (Table 1).

Table 1. Up-regulated and down-regulated miRNAs in tumor samples compared to the healthy controls.

MiRNA ID GSE45238 GSE31277
Fold Change p-Value * Fold Change p-Value *
Up-regulated miRNAs
hsa-miR-196a-5p 8.096 9.45 x 10712 8.132 142 x107°
hsa-miR-503-5p 5.010 4.83x 1072 2.622 4.69 x 1074
hsa-miR-7-5p 3.505 9.41 x 10720 2.297 5.00 x 1074
hsa-miR-542-5p 3.348 9.21 x 10712 2.700 1.10 x 1074
hsa-miR-142-5p 3.323 3.98 x 10~8 2.633 212x 1073
hsa-miR-19a-3p 3.068 3.81 x 1077 2,910 4.75x 1074
hsa-miR-18a-5p 2.646 2.34x 10710 1.554 2.66 x 1073
hsa-miR-19b-3p 2.179 1.28 x 107° 2415 7.73 x 1074
hsa-miR-32-5p 1.997 1.76 x 107° 3.874 3.28 x107°
hsa-miR-196b-5p 1.791 2.05x 1078 1.874 2.00 x 1074
hsa-miR-33b-5p 1.581 9.26 x 1074 2.541 2,00 x 1073
hsa-miR-34b-3p 1.558 1.95x 1074 2.079 1.13x 1073
Down-Regulated miRNAs
hsa-miR-195-5p -1.778 1.25x 10712 -1.620 1.71x 107°
hsa-miR-378a-5p -1.799 9.47 x 10712 -2.194 445x 1073
hsa-miR-363-3p -1.869 1.56 x 1075 -1.951 416 x 107>
hsa-miR-100-5p -1.883 8.04 x 10714 -2.199 1.19x 1074
hsa-miR-328-5p -2.471 1.18 x 1078 -1.599 2.32x 1073
hsa-miR-99a-5p -2.732 4.83 x 10716 2441 7.82x107°
hsa-miR-218-5p -3.021 1.08 x 10710 -1.853 1.72x 1074
hsa-miR-432-5p -3.155 1.55x 10713 -1.718 3.14 x 1073
hsa-miR-379-5p -3.513 1.83 x 10711 -2.345 9.63 x 1074
hsa-miR-154-5p -4.021 4.01x 10713 -1.826 2.00 x 1073
hsa-miR-133a-3p —4.202 6.37 x 107° -3.446 8.47 x 1073
hsa-miR-487b-5p —4.366 6.96 x 1071 -1.899 9.71x 1073
hsa-miR-135a-5p -4.910 1.11x 1071 -3.324 1.90 x 1073
hsa-miR-411-5p ~5.574 3.25x 10716 -2.542 6.18 x 1073
hsa-miR-1-3p -9.783 347 x 1077 -5.786 216 x 1073
hsa-miR-375 -16.589 1.95x 10717 -3.198 512 x107*

* p-values were automatically obtained by using the GEO2R software by performing Student’s ¢-test.

The analysis of the expression data of miRNAs contained in the TCGA HNSC dataset allowed
us to obtain a list of 514 de-regulated miRNAs associated with the presence of a tumor (p < 0.01;
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Table S1). Furthermore, 21 of the 28 miRNAs identified with the GEO DataSets analysis were contained
in this list of 514 miRNAs (Table S1), thus confirming that the results obtained from the two analyses
were overlapping.

To further narrow the search towards miRNAs showing a strong diagnostic significance, the
25 most up-regulated and the 25 most down-regulated miRNAs were selected from the list of 514
miRNAs. The analysis of the TCGA HNSC dataset showed a list of 50 miRNAs that were strongly
associated with the presence of the tumor (Table 2).

Table 2. TCGA analysis of up-regulated and down-regulated miRNAs in the tumor compared to the
normal samples.

miRNA ID miRNA Name FC Cancer vs Normal p-Value *
Up-regulated
MIMAT0000226 hsa-miR-196a-5p 12.145 3.12x 1071
MIMAT0001080 hsa-miR-196b-5p 11.639 5.43 x 10~20
MIMAT0000267 hsa-miR-210-3p 9.733 1.18 x 107°
MIMAT0000089 hsa-miR-31-5p 7.684 8.42 x 10712
MIMAT0004784 hsa-miR-455-3p 7.165 9.21 x 10718
MIMAT0005923 hsa-miR-1269a 5.899 1.99 x 10~ 11
MIMAT0000102 hsa-miR-105-5p 5.510 9.64 x 10713
MIMAT0004504 hsa-miR-31-3p 5.298 1.59 x 107°
MIMAT0003882 hsa-miR-767-5p 5.294 5.40 x 10713
MIMAT0000281 hsa-miR-224-5p 4,789 5.39 x 10711
MIMAT0002874 hsa-miR-503-5p 4.044 3.86 x 10719
MIMAT0002819 hsa-miR-193b-3p 3.407 8.17 x 10715
MIMAT0005951 hsa-miR-1307-3p 3.395 1.14 x 1071
MIMAT0000076 hsa-miR-21-5p 3.209 3.05 x 10710
MIMAT0000266 hsa-miR-205-5p 3.040 1.64 x 107>
MIMAT0016895 hsa-miR-2355-5p 3.023 6.22 x 10714
MIMAT0004987 hsa-miR-944 3.020 7.56 x 1077
MIMAT0005797 hsa-miR-1301-3p 2.902 6.39 x 1077
MIMAT0000761 hsa-miR-324-5p 2.878 7.41 x 10712
MIMAT0000758 hsa-miR-135b-5p 2.859 4.08x1078
MIMAT0001341 hsa-miR-424-5p 2.856 457 x 10713
MIMAT0000072 hsa-miR-18a-5p 2.829 8.10 x 10710
MIMAT0001545 hsa-miR-450a-5p 2.828 1.20 x 10715
MIMAT0000688 hsa-miR-301a-3p 2.807 532 x 10713
MIMAT0003150 hsa-miR-455-5p 2.799 3.50 x 10712
Down-regulated
MIMAT0002870 hsa-miR-499a-5p -3.296 3.76 x 1075
MIMAT0000733 hsa-miR-379-5p -3.298 1.29 x 10710
MIMAT0002890 hsa-miR-299-5p —3.504 8.97 x 1077
MIMATO0000461 hsa-miR-195-5p -3.510 7.79 x 10714
MIMAT0022721 hsa-miR-1247-3p -3.553 3.40 x 1077
MIMAT0016847 hsa-miR-378¢ -3.670 4.61x1078
MIMAT0002171 hsa-miR-410-3p -3.684 9.33 x 10712
MIMAT0004603 hsa-miR-125b-2-3p -3.694 1.52 x 10718
MIMAT0004606 hsa-miR-136-3p -3.797 1.08 x 10712
MIMAT0004550 hsa-miR-30c-2-3p -3.881 1.03 x 10712
MIMAT0004552 hsa-miR-139-3p -3.937 3.02x 1071
MIMAT0000099 hsa-miR-101-3p -4.017 3.64 x 1072
MIMAT0000087 hsa-miR-30a-5p -4.132 6.93 x 10714
MIMAT0003329 hsa-miR-411-5p —4.160 2.03 x 10710
MIMAT0000265 hsa-miR-204-5p -4.519 1.28 x 10717
MIMAT0000681 hsa-miR-29¢-3p -4.539 5.24 x 10717
MIMAT0000064 hsa-let-7c-5p —4.674 3.68 x 10722
MIMAT0000462 hsa-miR-206 -5.228 462%x1073
MIMAT0000736 hsa-miR-381-3p -5.293 5.06 x 1078
MIMAT0000770 hsa-miR-133b -5.580 3.66 x 107+
MIMAT0000088 hsa-miR-30a-3p -5.696 2,66 x 10713
MIMAT0000097 hsa-miR-99a-5p —5.746 1.85 x 1027
MIMAT0000427 hsa-miR-133a-3p —7.055 2.93 x 1074
MIMATO0000416 hsa-miR-1-3p -10.663 8.80 x 1076
MIMATO0000728 hsa-miR-375-3p -18.183 1.33 x 1071

In bold the miRNAs in common with the results of the GEO DataSets analysis; * p-values were calculated by
Student’s ¢-test.
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In Table 2, in bold, are reported the miRNAs matching between the analyses of GEO DataSets
and TCGA datasets. These common-shared miRNAs are presumably more involved in neoplastic
transformation mechanisms underlying the development of oral cancers. As shown in Table 2, most
of these miRNAs presented the highest levels of up-regulation (miR-196a-5p and miR-196b-5p) and
down-regulation (miR-99a-5p, miR-133a-3p, miR-1-3p and miR-375-3p).

In summary, the two differential analyses between tumor samples and normal samples performed
on GEO DataSets and TCGA datasets, showed that 11 miRNAs, of which four up-regulated and seven
down-regulated, were strictly related to the presence of a tumor (Table 3).

Table 3. Summary table of GEO DataSets and TCGA HNSC datasets “Cancer vs Normal”
differential analyses.

GEO DataSets TCGA HNSC Datasets
. GSE45238 GSE31277

miRNA Name

FC Cancer FC Cancer " FC Cancer

vs Normal p-Value * vs Normal p-Value vs Normal p-Value **
Up-regulated
hsa-miR-196a-5p  8.096 9.45 x 10712 8.132 1.42x107° 12.145 3.12x1071°
hsa-miR-196b-5p  1.791 2.05x 1078 1.874 2.00 x 1074 11.639 5.43 x 10720
hsa-miR-503-5p 5.010 4.83x 1072 2.622 4.69 x 1074 4.044 3.86 x 10717
hsa-miR-18a-5p 2.646 2.34 x 10710 1.554 2.66 x 1073 2.829 8.10 x 10710
Down-regulated
hsa-miR-379-5p -3.513 1.83 x 1071 -2.345 9.63 x 1074 -3.298 1.29 x 10710
hsa-miR-195-5p -1.778 1.25 x 10712 -1.620 1.71x 1076 -3.510 7.79 x 10714
hsa-miR-411-5p ~5.574 3.25x 10716 -2.542 6.18 x 1073 -4.160 2.03 x 10710
hsa-miR-99a-5p -2.732 4.83 x 10716 -2.441 7.82x 1075 ~5.746 1.85 x 107
hsa-miR-133a-3p  -4.202 6.37 x 1070 -3.446 8.47 x 1073 -7.055 293 x 1074
hsa-miR-1-3p -9.783 3.47 x 1077 -5.786 216 x 1078 -10.663 8.80 x 107°
hsa-miR-375-3p  -16.589 1.95 x 1077 -3.198 512 x 107# -18.183 1.33 x 1071

* p-values were already calculated by GEO2R software; ** p-values were calculated by applying Student’s ¢-test.

As shown in Table 3, the miRNA miR-196a-5p and the two miRNAs miR-1-3p and miR-375-3p,
respectively up-regulated and down-regulated, presented the higher levels of over-expression or
down-regulation in all three datasets (two GEO DataSets and one TCGA).

For the further prediction analyses of target genes and altered molecular pathways, the 11
miRNAs reported in Table 3 were considered: hsa-miR-196a-5p, hsa-miR-196b-5p, hsa-miR-503-5p,
hsa-miR-18a-5p, hsa-miR-379-5p, hsa-miR-195-5p, hsa-miR-411-5p, hsa-miR-99a-5p, hsa-miR-133a-3p,
hsa-miR- 1-3p and hsa-miR-375-3p.

2.2. Levels of Interaction Between the 11 Selected miRNAs and Oral Cancer Altered Genes

Through the use of COSMIC and mirDIP, the majority of mutated and altered genes in oral cavity
tumors were identified and miRNA-gene interaction specificity was determined, respectively. First,
by using COSMIC the 10 most frequent mutations and gene alteration found in oral cancers were
identified. These altered genes were the TP53 genes (43%), FAT1 (28%), CASP8 (23%), TERT (22%),
NOTCH1 (20%), CDKN2A (16%), HRAS (10%), KMT2D (10%), FGFR3 (8%) and PIK3CA (8%).

Then, through mirDIP it was possible to establish the interaction levels with the selected 11
oral cancer-associated miRNNAs and the genes identified by using COSMIC (Table S2). For the 10
interacting genes, also gene expression levels were analyzed using the TCGA HNSC IlluminaHiSeq
pancan normalized dataset (Table S3). This analysis revealed that all the identified miRNAs were able
to target the commonly mutated genes in oral cancers. In fact, the majority of the interactions occurred
with medium-high specificity underlining the strong correlation between deregulated miRNAs in
cancer patients and the aforementioned genes involved in fundamental cellular and cancer pathways
(Figure 1). However, the analysis of the TCGA HNSC IlluminaHiSeq pancan normalized dataset
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showed that only six out of the 10 (TP53, FAT1, CASPS, TERT, CDKN2A and PIK3CA) genes were
significantly de-regulated in oral cancers (Table S3).

Most d and altered genes in oral carcinoma
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-

hsa-miR-375-3p

Figure 1. mirDIP analysis of interaction levels between selected miRNAs and the main mutated and
altered genes in oral cavity tumors.

The most interesting data showed in Figure 1 were relative to the KMT2D gene where it is possible
to note how all up-regulated miRNAs were able to target this gene by reducing its expression levels.
This is important if we consider that KMT2D is a tumor suppressor gene, therefore its down-regulation
due to the suppressive action of up-regulated miRNAs triggers cellular neoplastic transformation.
Taking into account the miRNAs, it can instead be noted that, generally, the 11 selected miRNAs
have medium levels of interaction with the target genes (medium interaction orange). However, the
down-regulated hsa-miR-195-5p and hsa-miR-375-3p miRNAs showed the highest interaction levels
with the analyzed genes (Figure 1). The expression levels of the 10 targeted genes showed that the
FAT1, CASP8, TERT, CDKN2A and PIK3CA genes were significantly up-regulated in tumor samples,
while TP53 was significantly down-regulated.

2.3. Correlation Analysis Between the 11 Selected Tumor-Associated miRNAs and Ene Expression

The correlation value of each miRNA with different genes was obtained by using the bioinformatics
tool miRCancerdb. This tool is a free easy-to-use database of microRNA-gene/protein expression and
correlation in cancer where the correlation levels are calculated using the Pearson correlation coefficient
(p). Therefore, the correlation levels are denoted by “r” [38].

In particular, for each miRNA a list of miRNAs-correlated genes, ranging from 4493 to 9042, was
obtained through miRCancerdb analysis. Subsequently, these lists of genes were compared showing a
total of 121 genes in common and altered by the 11 selected miRNAs. However, only the genes shared
by the 11 miRNAs and belonging to the first quartile of the genes most positively and negatively
correlated to each miRNA were considered (Figure 2). This selection unveiled the correlation levels of
105 different genes (Figure 2A).
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Figure 2. Panel (A) miRCancerdb analysis of genes whose expression is positively and negatively
related to the 11 selected miRNAs; panel (B) mirDIP analysis of interaction levels between miRNAs
and related genes.

In Figure 2A, the heat map showed that the down-regulated miRNAs miR-133a-3p and miR-1-3p
were those with the highest positive correlation levels; instead, the miRNA with lower negative
correlation levels was the up-regulated miRNA miR-18a-5p. Moreover, it can be observed that FYCO1,
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SORBS1 and GPDIL genes were strongly positively correlated with the selected miRNAs; on the other
hand, ASA1, NFIC and SECISBP2L genes were the least correlated with the analyzed miRNAs.

To further confirm the correlation levels existing among miRNAs and genes, the mirDIP tool was
used. In Figure 2B, the interaction levels between the 11 selected miRNAs and the positively and
negatively correlated genes are showed (Figure 2B). The figure shows that for eight genes there were
no interactions with the selected miRNAs (KIAA1370, CHP, WDR67, ZNF642, LASS5, ORC6L, C200rf20,
Clorf135). Overall, such analysis revealed that miR-195-5p, miR-503-5p, miR-18a-5p (up-regulated)
and miR-375-3p (down-regulated) showed highest interaction levels with the 105 genes. On the other
hand, the genes CPEB3, CPEB4, MAGI1, PHACTR2, PDLIM5, NFIC, SLMAP and SECISBP2L were
strongly targeted by the 11 selected miRNAs (Figure 2B).

2.4. Determination of the Functional Roles of Tumor-Associated MiRNAs Through Pathway and GO
Enrichment Analyses

For the pathway prediction analysis, all the 11 tumor-associated miRNAs were inputted into the
bioinformatics prediction tool DIANA-mirPath. The analysis revealed that for the miRNAs miR-503-5p,
miR-133a-3p and miR-1-3p there were not modulated pathways and targeted genes according to the
TarBase Version 7.0 database of DIANA-mirPath. For the remaining miRNAs the cumulative pathway
analysis showed that, overall, the miRNAs were able to alter 48 different pathways and over 2100
genes. However, the pathways involved in the tumor processes were 22 and the modulated genes
amounted to 345 univocal genes (Table 4).

Table 4. Pathways involved in neoplastic transformation and modulated by the 11 computationally

selected miRNAs.
No. KEGG Pathway Up-Regulated miRNAs Down-Regulated miRNAs
p-Value * #Genes #miRNAs p-Value * #Genes #miRNAs
1 Bladder cancer (hsa05219) 225%x 1073 14 3 278 x 1073 19 5
2 Cell cycle (hsa04110) 1.11 x 1072 27 3 5.48 x 1073 43 6
Central carbon metabolism in cancer _
3 (hsa05230) / / / 459 x 1072 20 5
4 Chronic myeloid leukemia (hsa05220) 3.61x107* 22 3 1.99 x 1072 25 5
5 Colorectal cancer (hsa05210) 753 x 1075 18 3 / / /
6  FoxO signaling pathway (hsa04068) 7.64x 1073 28 3 450 x 1073 44 6
7  Glioma (hsa05214) 2.56x 1073 16 3 3.70 x 1073 23 5
8  Hippo signaling pathway (hsa04390)  1.74 x 10711 41 3 4.22x1078 51 6
9 Melanoma (hsa05218) 1.48 x 1072 15 3 / / /
10  mTOR signaling pathway (hsa04150) / / / 1.82 x 1072 22 5
11 Non-small cell lung cancer (hsa05223) 2.54 x 1072 14 3 / / /
12 p53signaling pathway (hsa04115) 1.84 x 1073 19 3 653 x 1074 28 6
13 Pancreatic cancer (hsa05212) 2.90 x 1072 17 3 479 x 1072 23 5
14 Pathways in cancer (hsa05200) 1.33 x 1073 62 3 1.68 x 1074 111 6
15  Prostate cancer (hsa05215) 3.73 x 1072 19 3 3.83x 1073 33 6
16  Proteoglycans in cancer (hsa05205) 213 x 1074 35 3 1.11 x 10712 73 6
17 Renal cell carcinoma (hsa05211) / / / 1.65 x 1072 23 6
18  Small cell lung cancer (hsa05222) 2.34 x 1072 19 3 1.65 x 1072 29 5
19 (Thcs;:(;zg;%;‘lgmlmg pathway 8.01 x 1076 19 3 6.45x 103 2 6
20  Thyroid cancer (hsa05216) 3.68 x 1072 7 3 / / /
21  TNF signaling pathway (hsa04668) / / / 1.88 x 1072 36 6
22 Viral carcinogenesis (hsa05203) 1.53 x 1072 35 3 3.77 x 107 65 6

* p-values were already calculated by the DIANA-mirPath by automatically applying the Fisher’s Exact Test.

As shown in Table 4, the identified miRNAs play a key role in the modulation of different
pathways involved in neoplastic development and in different types of tumors, highlighting their
potential pro-oncogenic role when de-regulated (Table 4). The pathways found highly modulated
were: “Pathways in cancer (hsa05200)”, “Cell cycle (hsa04110)”, various signal transduction pathways,

including “FoxO signaling pathway (hsa04068)”, “p53 signaling pathway (hsa04115)” and “Hippo
signaling pathways (hsa04390)”.
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Within these pathways, MAPK1 (18 counts), CCND1 (17 counts), AKT3 and PIK3CA (15 counts),
PIK3CB (14 counts), NRAS (13 counts), BRAF (12 counts), CDK4 and CDKN1A (11 counts) and E2F2
(10 counts) genes were found commonly altered by the selected miRNAs. All these genes, when
de-regulated, were notoriously involved in cancer development and progression.

To further confirm the functional roles of miRNAs and their modulated genes, gene enrichment
analyses were performed on both miRCancerdb and DIANA-mirPath lists of genes by using both GO
PANTHER and STRING software.

Both enrichment analyses were performed on the list of the 105 miRCancerdb genes correlated to
the 11 cancer-associated miRNAs giving back similar results regarding the three ontological categories
“biological process”, “molecular function” and “cellular component”. Figure 3 shows the results of the
GO PANTHER and STRING analyses (Figure 3).
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Figure 3. Gene Ontology enrichment of the 105 genes identified through miRCancerdb. Panel (A,D)
GO PANTHER and STRING analyses of the “biological process” category; panel (B,E) GO PANTHER
and STRING analyses of the “molecular function” category; panel (C,F) GO PANTHER and STRING
analyses of the “cellular component” category.

Regarding the “biological process” category, it was demonstrated that most of the
miRNAs-modulated genes are involved in the regulation of biological (29.9% and 78.7%, GO PANTHER
and STRING, respectively) and cellular (17.8% and 75.6%, GO PANTHER and STRING, respectively)
processes (Figure 3A,D). In Figure 3B,E, the genes were clustered according to their “molecular function”
and the results showed that the genes were all involved in protein binding, cyclic compounds and
nucleotides binding (STRING analysis Figure 3E). While the GO PANTHER analysis for the same
category (molecular function) showed that the genes were mainly involved in the binding and, to a
lesser extent, in the catalytic, molecular and transport activities (Figure 3B). Finally, with regard to
the “cellular component” category, the majority of the genes were components of the cell (39.3% and
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93.3, GO PANTHER and STRING, respectively) and organelles (23.1% and 84.8%, GO PANTHER and
STRING, respectively; Figure 3C,F).

The same GO enrichment analyses were performed on the 345 genes identified by DIANA-mirPath
showing similar results to those described above (Figure 4).

M GO PANTHER | BIOLOGICAL PROCESS D ‘ STRING | BIOLOGICAL PROCESS

Biological regulation 20.0% e

Metabolic pracess Biological regulation

Cellular process Regulation of biolagical process

cell component organization or biogenesis Regulation of callular process

Developmental process Response to stimulus

Respanse to stimulus Cellular response to stimulus

Localization Regulation of metabelic process

Multicellular organismal process Positive regulation of biological process

R ized 1345
Call proliferation SEORnEec REnes Positive regulation of cellulsr process

23% Assigned genes: 682

Biological adhesion Regulation of cellular metabelic process

0 50 100 150 200 250 0 50 100 150 200 250 300 350 400

Number of genes Wiinbarof genes
B | GO PANTHER ‘ MOLECULAR FUNCTION E STRING | MOLECULAR FUNCTION

avares [ -
lon binding 51.6%

Molecular trasducer activity 11.6% Catalytic activity ‘ 48.7%
Transeription regulator activity 9.1% arganic eycic compound binding. | NN - 2>
Heteracyclic compound binding _ 44,6%
Molacular function regulator - 7.6% R ERARE _ e
strusural meleculs sty [ 2o Anion binding [N 3s.1%
Recognized genes: 345 Catalytic activity acting on protein I 51 9%
Transportar activi 11% i 3
= ~ Asslened snesia% Carbohydrate derivative binding. [N =1 >
.
0 50 100 130 200 0 50 100 150 200 250 300 350
Number of genes Number of genes
C | GO PANTHER ‘ CELLULAR COMPONENT F STRING CELLULAR COMPONENT
Protein-containing complex _ 17.7% ittt
Intracellular part
Organelle 15.2%
Organelle
Membrane 12.5%

Intracallular erganalle
Extracellular region - 5.7% Cytoplasm

supramelecular complex l 20% Membrane-bounded crganelle

Cytoplasmic part
Cell junction I 15% e B

Recognized genes: 345 Intracellular membrane-bounded crganelle
G ‘ 0.2% Assigned genes: 401 ]
0 50 100 150 200 0 50 100 150 200 250 300 350 400
Number of genes Number of genes

Figure 4. Gene Ontology enrichment of the 345 genes identified through DIANA-mirPath. Panel (A,D)
GO PANTHER and STRING analyses of the “biological process” category; panel (B,E) GO PANTHER
and STRING analyses of the “molecular function” category; panel (C,F) GO PANTHER and STRING
analyses of the “cellular component” category.

Figure 4 (Panel A and D) shows that, in the “biological process” category, the genes identified by
DIANA-mirPath were involved in the regulation of the biological and cellular processes as observed in
Figure 3. Similarly, in the “molecular function” and “cellular component” categories, the 345 genes
were involved, respectively, in molecular binding and catalytic activities (Figure 4B,E), and were
components of the cell and intracellular organelles (Figure 4C,F).

2.5. Identification of Oral Cancer Stage-Related miRNAs

The same differential analysis performed to find the oral cancer-associated miRNAs was also
performed between high-grade tumor samples (254 stage III and IV samples—high-grade) and
low-grade tumor samples (94 Stage I and II samples—low-grade) in order to find oral cancer
stage-related miRNAs with a prognostic significance. This second differential analysis showed
that 36 miRNAs were de-regulated in high-grade samples compared to low-grade (p < 0.01; Table 5).
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Table 5. TCGA analysis of up-regulated and down-regulated miRNAs in high-grade compared with
low-grade tumors.

miRNA ID miRNA Name FC High-Grade vs Low-Grade p-Value **
Up-regulated
MIMAT0001536 hsa-miR-429 1.279 3.20 x 1073
MIMAT0003233 hsa-miR-551b-3p 1.205 1.31 x 1073
MIMAT0004697 hsa-miR-151a-5p 1.172 3.78 x 1073
MIMAT0003246 hsa-miR-581 1.078 3.88 x 1073
MIMAT0019931 hsa-miR-4775 1.064 1.31x 1073
Down-regulated

MIMAT0004594 hsa-miR-132-5p -1.141 4.88x 1073
MIMATO0000727 hsa-miR-374a-5p -1.148 7.65x 1073
MIMAT0022272 hsa-miR-664b-3p -1.159 9.42 x 1074
MIMAT0000415 hsa-let-7i-5p -1.180 2.57 x 1073
MIMATO0003338 hsa-miR-660-5p -1.202 519 x 1073
MIMATO0004775 hsa-miR-502-3p -1.206 4.61x 1073
MIMAT0000082 hsa-miR-26a-5p -1.209 4.96 x 1073
MIMAT0004694 hsa-miR-342-5p -1.213 4.45x 1073
MIMATO0004766 hsa-miR-146b-3p -1.222 7.84x 1073
MIMAT0025849 hsa-miR-6718-5p -1.223 3.61 x 1074
MIMAT0004682 hsa-miR-361-3p -1.224 8.00 x 1074
MIMAT0004597 hsa-miR-140-3p -1.232 5.38 x 1075
MIMAT0004673 hsa-miR-29¢-5p —-1.234 1.88 x 1073
MIMAT0002808 hsa-miR-511-5p —-1.246 9.53 x 1073
MIMAT0000250 hsa-miR-139-5p —-1.248 2.75x 1073
MIMAT0004585 hsa-let-7i-3p -1.251 7.09 x 1073
MIMAT0019071 hsa-miR-4532 -1.256 3.56 x 1072
MIMAT0019927 hsa-miR-4772-3p -1.258 6.01 x 1073
MIMATO0000258 hsa-miR-181c-5p -1.267 1.17 x 1073
MIMATO0004570 hsa-miR-223-5p -1.285 7.97 x 1073
MIMATO0000086 hsa-miR-29a-3p -1.290 1.94 x 1073
MIMAT0004552 hsa-miR-139-3p -1.314 2.04 x 1073
MIMAT0000433 hsa-miR-142-5p -1.329 3.76 x 1073
MIMATO0000646 hsa-miR-155-5p -1.349 5.08 x 1073
MIMATO0000274 hsa-miR-217-5p -1.354 6.83 x 1073
MIMATO0000449 hsa-miR-146a-5p -1.375 1.56 x 1073
MIMAT0000280 hsa-miR-223-3p -1.397 1.40 x 1073
MIMAT0000681 hsa-miR-29¢-3p -1.430 1.90 x 103
MIMATO0000451 hsa-miR-150-5p —-1.644 3.98 x 1074
* MIMAT0000427 hsa-miR-133a-3p -2.168 6.39 x 1073
MIMATO0000462 hsa-miR-206 -3.070 1.29 x 1073

In bold, miRNAs detected in the differential analysis “Cancer vs Normal” performed in both the TCGA and GEO
Datasets; * miRNA included in the list of 11 selected miRNAs; ** p-values were calculated by Student’s ¢-test.

As shown in Table 5, among the 36 identified miRNAs, 31 were down-regulated and five were
up-regulated. Furthermore, among the 31 down-regulated miRNAs, three were in common with those
obtained by the lists of differentially expressed miRNAs in tumor samples compared to the normal
one, i.e. miRNAs miR-139-3p, miR-142-5p and miR-29¢c-3p, which therefore may have both diagnostic
and prognostic significance in oral cancers. Furthermore, the down-regulated miRNA miR-133a-3p
was in common with the list of 11 miRNAs obtained from the comparison between GEO DataSets and
TCGA analyses (Table 3) suggesting that these miRNAs may have both a diagnostic and prognostic
role for oral cancer.
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2.6. Prognostic Value of Oral Cancer Stage-Related miRNAs

The OncoLnc analysis performed on the 36 differently expressed miRNAs in high-grade oral
cancers revealed the real prognostic significance of each miRNA in terms of patients’ overall survival
(OS). As shown in Figure 5, of 36 miRNAs analyzed only nine were statistically associated with
patients” OS (log-rank test, p < 0.05). These prognostic miRNAs were all down-regulated miRNAs, i.e.,
miR-181c-5p, miR-342-5p, miR-361-3p, miR-29¢c-5p, miR-142-5p, miR-146a-5p, miR-150-5p, miR-146b-3p
and miR-206 (Figure 5).
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Figure 5. Survival analysis performed by OncoLnc. Panel (A) down-regulated miRNAs statistically
associated with patients” overall survival (OS) whose expression is concordant with survival curves;
panel (B) miRNAs statistically associated with patients” OS whose expression levels are not concordant
with the survival curves.

However, two of these miRNAs, miR-146b-3p and miR-206, have shown results of dubious
interpretation. In fact, despite these miRNAs are down-regulated in high-grade tumors, their
down-regulation is not associated with a worse OS, but with a better prognosis (Figure 5B).

To confirm the Kaplan-Meier results obtained by using OncoLnc, the OS curves were also calculated
by using GraphPad v.6 and analyzing the TGCA HNSC survival data previously downloaded from the
UCSC Xena Browser. Overall, this analysis revealed the same results previously obtained.

The TCGA HNSC data were also used for the identification of miRNAs able to predict the risk of
oral cancer recurrence. For this purpose, GraphPad Kaplan-Meier curves showed that two out of 36
tumor stage-related miRNAs were statistically linked to the patients’ recurrence-free survival (RFS). Of
these miRNAs, miR-581 was up-regulated and miR-let-7i-3p was down-regulated. Unexpectedly the
over-expression of the up-regulated miR-581 was not associated with a worse prognosis, but with a
minor RFS (Figure 6).
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Figure 6. Recurrence-free survival analysis performed on the TCGA HNSC data.

Other five miRNAs, miR-151a-5p, miR-6718-5p, miR-660-5p, miR-4772-3p and miR-217-5p, showed
a weak correlation with RFS when de-regulated, however no statistical significance was reached.

These analyses allowed us to identify 11 miRNAs significantly associated to both tumor grade
and patients’ OS and RFS, of these only eight were related to patients” OS (seven miRNAs) and RFS
(one miRNA), respectively.

2.7. Determination of the Functional Roles of the 11 Tumor-Grade Associated miRNAs Through Pathway and
GO Enrichment Analyses

As previously described for the analysis of the 11 selected miRNAs associate to the presence
of tumor, the miRCancerdb and mirDIP analyses were performed for the 11 miRNAs associated to
patients’ prognosis in order to identify the miRNAs-correlated and -targeted genes. The miRCancerdb
analysis showed that 19 different genes were positively and negatively correlated to the 11 selected
miRNAs (Figure 7A).
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Figure 7. Panel (A) miRCancerdb analysis of genes whose expression is positively and negatively
related to the 11 selected miRNAs; panel (B) mirDIP analysis of interaction levels between miRNAs
and related genes.

The heat map showed that the down-regulated miRNAs miR-150-5p and miR-206 are those with
the highest positive correlation levels. Of note, these two miRNAs were also those with the higher
levels of down-regulation among the 36 differentially expressed miRNAs showed in Table 5. Figure 7
also shows that the miRNAs miR-181c-5p and miR-146a-5p were those more negatively correlated
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with the identified genes. By considering the genes, it was observed that CARD8 and RASGAP3
genes were those that were more positively correlated with the selected miRNAs, while the four genes
WDFY2, MAPK6, ESRP1 and PVRL1 were all negatively correlated with the 11 miRNAs with similar
correlation levels.

The mirDIP analysis performed on the 19 genes and the 11 miRNAs showed that for the PVRL1
gene no interaction levels were available. Overall, the analysis revealed the existence of medium
interaction levels between miRNAs and genes. However, the down-regulated miR-29¢-5p and let-7i-3p
showed lower interaction levels with most of the 19 genes, while the miR-181c-5p was the miRNA
with the higher interaction levels. On the other hand, the CARDS gene was the most targeted by the 11
selected miRNAs, while the UCP2 was the less targeted (Figure 7B).

After the gene targets analysis, the DIANA-mirPath analysis of the 11 prognostic miRNAs revealed
that for the miRNA miR-581 there were not modulated pathways and targeted genes according to the
TarBase Version 7.0 database of the mirPath tool. For the other 10 miRNAs the cumulative pathway
analysis showed that, the miRNAs were able to modulate 44 different pathways and over than 1300
genes. The selection of the 21 pathways involved in the tumor processes showed that the selected
miRNAs were able to modulate 292 univocal genes (Table 6).

Table 6. Tumor pathways modulated by the 11 computationally selected miRNAs associated to
patients’ prognosis.

N. KEGG Pathway p-Value * #Genes #miRNAs
1 PI3K-Akt signaling pathway (hsa04151) 8.22x 1073 82 10
2 Cell cycle (hsa04110) 1.91 x 107° 45 10
3 Proteoglycans in cancer (hsa05205) 6.81 x 107> 48 9
4 Transcriptional misregulation in cancer (hsa05202) 2.00 x 1072 46 9
5 FoxO signaling pathway (hsa04068) 2.66 x 1073 43 9
6 Hippo signaling pathway (hsa04390) 9.14 x 1074 39 9
7 Melanoma (hsa(05218) 7.56 x 1073 22 9
8 Viral carcinogenesis (hsa05203) 1.08 x 107 62 8
9 Prostate cancer (hsa05215) 6.33x 1073 29 8
10 Small cell lung cancer (hsa05222) 2.63x1073 29 8
11 Renal cell carcinoma (hsa05211) 6.92 x107° 27 8
12 Chronic myeloid leukemia (hsa05220) 7.67 x 1074 26 8
13 Glioma (hsa05214) 1.74 x 1074 23 8
14 TGF-beta signaling pathway (hsa04350) 7.03 x 1074 23 8
15 Pancreatic cancer (hsa05212) 3.18 x 1072 21 8
16 Non-small cell lung cancer (hsa05223) 8.22x 1073 18 8
17 p53 signaling pathway (hsa04115) 2.00 x 1073 26 7
18 Central carbon metabolism in cancer (hsa05230) 1.96 x 107° 24 7
19 Colorectal cancer (hsa05210) 4.50 x 1072 19 6
20 Acute myeloid leukemia (hsa05221) 3.52 x 1072 17 6
21 Endometrial cancer (hsa05213) 4.46 x 1072 16 6

* p-values were already calculated by the DIANA-mirPath by automatically applying the Fisher’s Exact Test.

The DIANA-mirPath analysis showed that all the selected miRNAs were involved in the
modulation of the “PI3K-Akt signaling pathway (hsa04151)” and the “Cell cycle (hsa04110)”, both
involved in various neoplastic processes when altered (Table 6). Of note, “Cell cycle (hsa04110)”
pathways were also strongly altered by the 11 cancer-associated miRNAs previously analyzed (Table 4).
The genes altered by these miRNAs were all involved in neoplastic processes, such as CCND1 (18
counts), MAPK1 (16 counts), MAP2K1 (14 counts), PIK3CB and PIK3R3 (16 counts), AKT2 and AKT3
(15 counts), CDK4 and CDK6 (11 counts), etc.
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The genes identified through miRCancerdb and DIANA-mirPath analyses were finally analyzed
with GO PANTHER and STRING to establish for which molecular processes and functions these
miRNAs were enriched.

For the 19 genes identified by miRCancerdb analysis only the GO PANTHER evaluation was
performed because the gene ontology enrichment performed by STRING requires a wide number of
analyzed genes. The GO PANTHER analysis showed that most of selected genes were involved in the
cellular processes (23.3% of genes) and in biological regulation (20.0% of genes) for the “biological
process” category (Figure 8A). Regarding the “molecular function” category, the analysis demonstrated
that the 43.5% and 17.4% of genes were involved in binding and molecular regulatory functions,
respectively (Figure 8B); while for the “cellular component” category, the results showed that the 19
genes constitute mainly part of the cell, of the organelles and of the cell junctions (37.5%, 25.0% and
18.8% respectively; Figure 8C).
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Figure 8. Gene Ontology enrichment of the 19 genes identified through miRCancerdb. Panel (A)
GO PANTHER analysis of the “biological process” category; panel (B) GO PANTHER analysis of the
“molecular function” category; panel (C) GO PANTHER analysis of the “cellular component” category.

The same enrichment analysis was performed on the 292 genes identified by DIANA-mirPath
carrying out both GO PANTHER and STRING analyses.

The results obtained for the “biological process” category showed that the identified genes were
mainly involved in the cellular processes (23.3% of genes) and in biological regulation (20.0% of genes)
as observed for the 19 genes identified by miRCancerdb (Figure 9A,D). Furthermore, both the analyses
(GO PANTHER and STRING) showed that the 292 genes were involved in molecular binding and
catalytic activities (Figure 9B,E), as observed in the previous evaluations. Regarding the “cellular
component” category, it was finally demonstrated that the genes were part of the cell and of the
intracellular organelles (Figure 9C,F).
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Figure 9. Gene Ontology enrichment of the 345 genes identified through DIANA-mirPath. Panel (A,D)
GO PANTHER and STRING analyses of the “biological process” category; panel (B,E) GO PANTHER
and STRING analyses of the “molecular function” category; panel (C,F) GO PANTHER and STRING
analyses of the “cellular component” category.

3. Discussion

During the last decade, the advancement of bioinformatics and high-throughput technologies
led to the development of omics sciences, as well as to the collection of thousands of petabytes of
molecular data related to various human diseases, including tumors [39].

The increase in the number of available bioinformatics data allowing the understanding of various
physio-pathological aspects of tumors. However, the huge amount of data, either deriving from
individual basic science experiments, or collected by large international consortia, such as TCGA and
ENCODE, are often incorrectly analyzed, thus generating conflicting results [40—42].

In order to best analyze the so-called “Big Data”, in recent years different researchers have created
several bioinformatics software useful for a fast and efficient analysis of a large number of data thus
interpretation through a process named “data mining” [43,44].

Thanks to the availability of new software for the computational analysis of Big Data, numerous
studies tried to establish the molecular mechanisms responsible for neoplastic transformation, as well
as to identify novel molecular targets or biomarkers useful for the management of tumors [45].

In recent years, several genetic, epigenetic and proteomic data were also generated for oral cancer.
These data allowed the researchers to obtain important information regarding the main molecular and
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clinical-pathological characteristics of this kind of tumor. However, the analysis of the data contained
in the various oral cancer datasets generated conflicting data difficult to interpret due to the lack of
data integration among the different data matrices [46]. Furthermore, despite the increasing number of
bioinformatics studies, no effective diagnostic and prognostic biomarkers have been yet identified for
oral cancers, making this pathology one of the most aggressive, since in most cases it is not promptly
diagnosed [47].

Therefore, the aim of the present study was to identify new specific diagnostic and prognostic
biomarkers for oral cancer through the analysis and integration of different miRNAs profiling datasets,
using several computational approaches.

For this purpose, two of the biggest worldwide genomics databases, TCGA and GEO DataSets
were analyzed in order to select miRNA expression profiling datasets. In particular, the analysis
of the TCGA HNSC “miRNA mature strand expression RNAseq by Illumina Hiseq” dataset and
of two GEO DataSets miRNA microarray matrices allowed the identification of a panel of miRNAs
with diagnostic and prognostic value for oral cancer patients. From these datasets, a group of 11
de-regulated miRNAs was identified by comparing cancer patients with healthy controls. Among
these miRNAs, the up-regulated miR-196a-5p and miR-196b-5p and the down-regulated miR-99a-5p,
miR-133a-3p, miR-1-3p and miR-375-3p were the most de-regulated and therefore these miRNAs
may be used to improve the actual diagnostic strategies for oral cancers. Indeed, different research
groups are currently investigating all these miRNAs because their deregulation is associated with the
development of different cancers. In particular, Sutliff and colleagues (2019) demonstrated that the
de-regulation miR-196 family (miR-196a-5p and miR-196b-5p) is associated with the development of
lung cancer [48].

Furthermore, other studies have demonstrated that the miR-196 family and other miRNAs,
including miR-375 and miR-133a-3p, may play a key role as diagnostic biomarkers for head and neck
cancers, especially for the tumors of the oral cavity [49-51]. In addition to these five miRNAs, the
miRNAs miR-139-3p, miR-142-5p and miR-29¢-3p are also noteworthy because beyond their diagnostic
role, they have also an important prognostic role. On this regard, the analysis of miRNA expression
levels in high-grade tumors compared to the low-grade tumors contained in the TCGA HNSC dataset
revealed that the down-regulation of these three miRNAs, together with the aforementioned miRNA
miR-133a-3p, was associated with a more aggressive and infiltrating phenotype. Accordingly, these
results are supported by several studies performed on different tumors where it has been shown that
the de-regulation of these miRNAs is associated with a more aggressive tumor phenotype [32,52-54].

Furthermore, the OncoLnc analysis revealed that among the 36 tumor-stage associated miRNAs
only eight were related to patients’ OS and RFS (seven and one, respectively). Of note, all these miRNAs
were found all down-regulated in high-grade tumors compared to low-grade. In particular, the most
statistically significant miRNAs associated with OS, and therefore to a worse prognosis, were the
miRNAs miR-150-5p, miR-181c-5p and miR-146a-5p. Regarding the RFS, only the miRNA miR-let-7i-3p
was a good indicator of disease recurrence. These data are also supported by several studies since
the miR-7i (both 3p and 5p strands) is associated with a poorer prognosis when down-regulated [55].
Furthermore, other studies showed that the down-regulation of other miRNAs, such as miR-375 and
miR-181c, is associated with a cancer aggressive phenotype [56,57].

Therefore, these first computational data demonstrated that by using an integrated computational
approach for the analysis of miRNAs datasets it is possible to identify a set of miRNAs potentially used
as specific biomarkers for oral cancers. As described above, the validity of the obtained results is further
strengthened by the results obtained by other research groups in independent experimental studies.

Once identified which miRNAs bear a diagnostic and/or prognostic significance, it was also
established which genes and pathways they were able to modulate to uncover their functional roles. As
described in previous studies, the DIANA-mirPath analysis showed that the computationally selected
miRNAs were strictly related to cancer development since they were able to alter key oncogenic
pathways [32-34,58]. On this regard, the oral cancer-associated miRINAs identified in the present
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study were able to alter several intracellular signal transduction pathways, including mTOR, p53
and TGF-3 pathways, whose implication in the development of oral carcinoma has been widely
demonstrated [59-61]. Similarly, the selected miRNAs were also able to target genes frequently
down-regulated or over-expressed in oral cancers. Some of these genes, including AKT, BRAF,
PIK3CA, NRAS, GSK3, CNNDI, etc., are involved not only in oral cancers but, generally, in several
solid tumors [62-65]. The subsequent gene ontology enrichment analyses further demonstrated that
the miRNAs’ targeted genes were involved in the biological process linked to the cell proliferation,
biological regulation, protein binding, catalytic activities and metabolic processes.

Similarly, the prediction and GO enrichment analyses performed on the 11 miRNAs associated to
the patients” OS and RFS revealed that all the miRNAs with a significant diagnostic and/or prognostic
role were able to modulate several cancer pathways by modulating numerous genes known to be
involved in neoplastic transformation.

Overall, the computational approaches adopted in the present studies allowed us to identify a set
of specific miRNAs for the diagnosis of oral cancer and the definition of patients’ prognosis through
the integrated analysis of different bioinformatics datasets that allowed us to understand the functional
role of each miRNA. However, the results obtained from this study represent only the starting point for
identifying effective markers for oral carcinoma. Therefore, further experimental and functional studies
will have to be performed on a large number of samples in order to evaluate the expression levels
of these putative miRNAs biomarkers and to validate their predictive role for oral cancer. With the
advancement of both bioinformatics and high-throughput and high-sensitive molecular technologies
this future goal can be easily achieved thanks to the detection of even small variations in the expression
levels of selected miRNAs indicative of the presence of a possible pathological state [66—68].

4. Materials and Methods

4.1. Oral Cancer MicroRNA Datasets Selection

In order to identify miRNAs potentially involved in the development and progression of oral
cancer, several oral cancer miRNAs datasets were taken into account. Firstly, the oral cancer datasets
of microRNA profiling by array were selected by checking within the datasets registered in the
GEO DataSets portal publicly available on NCBI (www.ncbi.nlm.nih.gov/geo/) [69]. In particular,
for the selection of the suitable datasets an advanced search was carried out by inserting the search
terms “((“non coding RNA profiling by array”[DataSet Type]) and oral carcinoma) and “Homo
sapiens”[porgn:__txid9606]”. With this first approach, a list of all oral cancer datasets containing
miRNA expression levels was obtained. Of these datasets, only those that respect the following
inclusion and exclusion criteria were selected for the subsequent evaluations:

Inclusion criteria, i) datasets containing miRNA expression levels of oral cancer tissues, excluding
tumor arising in the hypopharynx, larynx, esophagus and tonsil; ii) datasets reporting miRNAs
expression levels of both tumor and normal tissue samples; iii) datasets containing the miRNA
expression data of at least 30 samples (tumor + normal).

Exclusion criteria, i) datasets constructed only with tumor samples; ii) datasets containing
information about miRNAs of oral cancer or normal cell lines; iii) datasets containing information on
miRNAs expression levels of serum samples.

The search criteria for the selection of the datasets contained in the GEO DataSets database
allowed us to preliminarily identify 37 different datasets of oral carcinoma microRNA profiling by
array (published up to December 2018). However, most of these datasets did not respect the exclusion
and inclusion criteria because they were datasets reporting the miRNA expression data relative to
tumor cell lines and not from oral cancer patients. Hence, after the application of the abovementioned
criteria only two datasets were selected for performing the differential analyses (Table 7).
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Table 7. Features of the two selected datasets from GEO DataSets.

Serle.s n. Normal n. Cancer Samples Platform Author Ref Total
Accession Number

Frosh F GPL8179 Illumina Shiah SG et
GSE45238 40 40 re%sssgszen Human v2 MicroRNA  al, Cancer 80
expression beadchip Res 2014
Fresh Frozen GPL9770 Illumina Severino P et

GSE31277 15 15 Tissu miR arravs version 1.0 al, BMC 30
ssues ys version 1. Cancer 2013

In addition to the datasets contained in the GEO DataSets database, also the TCGA Head and Neck
Cancer (HNSC) database was selected. Among the 25 datasets available in the TCGA HNSC database,
the “Phenotype” and “miRNA mature strand expression RNAseq by Illumina Hiseq” HNSC datasets
were downloaded for the analyses by using the UCSC Xena Browser (https://xenabrowser.net/) portal
where all the HNSC molecular profiling data, generated by the TCGA consortium, were deposited,
including those of oral cancer. In particular, the first dataset contained the clinical-pathological data
of 604 samples (530 cancer patients and 74 normal individuals) while the second one contained the
miRNAs expression profile of 529 samples. Since the TCGA HNSC database also contains tumor
samples obtained not only from the oral cavity but also from other sites (oropharynx, hypopharynx,
larynx and tonsil), for the purposes of this study only the data of samples derived from alveolar ridge,
base of tongue, buccal mucosa, floor of mouth, hard palate, lip, oral cavity and oral tongue were
analyzed. In this way, the number of analyzed samples was reduced to 399. By selecting only samples
of the oral cavity also the number of samples with available miRNAs expression profile it was reduced
passing from 529 to 351 samples.

4.2. Differential Analysis of miRNAs Expression Between Groups

Two distinct differential analyses were performed by using the datasets selected from the GEO
DataSets and TCGA databases. A first differential analysis was performed to both GEO DataSets and
TCGA data matrices by integrating the different GEO DataSets platform and by comparing the miRNAs
expression levels of tumor samples with a normal one in order to identify new diagnostic biomarkers.

The second differential analysis was conducted only for the TCGA dataset comparing the
expression levels of miRNAs of advanced tumors with that of low-grade tumors to identify miRNAs
able to define the prognosis of patients.

In particular, the data matrices of each dataset selected from GEO DataSets were downloaded to
identify the down-regulated or up-regulated miRNAs in oral cancer. The differential analysis between
cancer and normal samples was performed by using the GEO2R tool [69]. The fold change value
(FC) obtained for each miRNA was indicated as base-2 logarithm of FC (logFC) in order to normalize
the data derived from different microarray platforms. Then, for each dataset only the differentially
expressed miRNAs with a statistical significance p < 0.01 were taken into account. The lists of the
de-regulated miRNAs of the two selected GEO DataSets platforms were subsequently compared in
order to select only the miRNAs shared by the two datasets and with a logFC value greater than +1.5.

In parallel, other differential analyses of miRNAs expression levels between tumor vs normal
samples and between high-grade vs low-grade tumors of TCGA HNSC dataset were performed.

For the differential analyses, the samples were clustered according to the presence or absence
of tumor (Tumor (348 samples) vs Normal (51 samples)) and according to the tumor stage (T3-T4
(319 samples) vs. T1-T2 (32 samples)). After patients’ stratification, the down-regulated and
up-regulated miRNAs were identified by calculating the fold change value obtained through the
differential analysis between the different clusters of samples. Of note, for some of the oral cancer
patients the miRNA expression levels were missing (NA value). Therefore, in order to avoid the
identification of non-representative miRNAs, for further analysis only the differentially expressed


https://xenabrowser.net/

Cancers 2019, 11, 610 20 of 25

miRNAs with reported expression data for at least 50% of the patients and with p-value of p < 0.01
were selected.

Moreover, with reference to the differential analysis between tumor and normal samples, only
the 25 most up-regulated and down-regulated miRNAs were considered to obtain more significant
data; while for the differential analysis between high-grade and low-grade tumors all the differentially
expressed miRNAs were considered.

Finally, the annotation of the TCGA HNSC miRNAs was performed using miRBase V.22
(http://www.mirbase.org/) by converting the miRNA IDs ‘MIMATO00" in “hsa-miR-".

4.3. Analysis of the Interaction Levels Between the Selected miRNAs and Oral Cancer-Altered Genes

After the identification of the most de-regulated miRNAs in tumor samples compared to
normal samples, their functional roles were studied using different bioinformatics approaches.
At first, using the data reported in the Catalogue of Somatic Mutations in Cancer (COSMIC)
(http://cancer.sanger.ac.uk/cosmic), the most mutated and altered genes of oral cavity tumors were
identified. Subsequently, for each of the COSMIC genes, the specificity of miRNA-gene interaction was
highlighted by using the bioinformatics prediction software miRNA Data Integration Portal (mirDIP;
(http://ophid.utoronto.ca/mirDIP). In particular, this software is able to integrate the data related to
26 different databases for miRNAs (including miRBase, microrna.org and DIANA microT-CDS v5)
allowing the users to centralize the data related to the miRNAs-target genes interactions obtaining more
robust data. The levels of interaction between the miRNAs and the targeted gene are expressed as very
high, high, medium and low according to the integrated score calculated by the mirDIP algorithm that
combines the confidence scores from all available predictions data of the 26 different databases [70,71].
Furthermore, the expression levels of the 10 interacting genes identified with COSMIC were analyzed
by performing the differential analysis of the gene expression data contained in the TCGA HNSC
IlluminaHiSeq pancan normalized dataset.

4.4. Analysis of TCGA HNSC Genes Positively and Negatively Correlated with the Selected
Tumor-Associated/Grade-Associated miRNAs

In addition to the COSMIC analysis, a global correlation analysis was also performed on the genes
contained in the TCGA HNSC dataset whose expression is modulated, positively or negatively, by the
selected tumor-associated miRNAs. In particular, for this analysis the bioinformatics tool miRCancerdb
(https://mahshaaban.shinyapps.io/miRCancerdb/) was used. miRCancerdb is a free R software for
the correlation analysis between gene expression and miRNAs levels with a web interface based on
data contained in the TCGA and TargetScan databases [38]. In particular, through miRCancerdb, for
each selected miRNA was obtained the correlation value (p) with different genes. The lists of genes
generated for each miRNA were subsequently combined using the tool Draw Venn Diagrams of the
Bioinformatics & Evolutionary Genomics (BEG) (http://bioinformatics.psb.ugent.be/webtools/Venn/) to
identify the genes correlated and shared among all miRNAs.

However, since miRCancerdb uses interaction data between miRNAs and genes derived exclusively
from the TargetScan database, the previously described mirDIP tool, that uses 26 different miRNA
databases, was also used to establish the levels of miRNAs-genes interaction. These analyses were
performed for the 11 miRNAs associated to the presence of oral cancer and for the 11 miRNAs that
after OncoLnc analysis were associated to both tumor grade and patients” OS and RFS.

4.5. Prediction Pathway Analysis, Gene Ontology (GO) and Functional Roles of Tumor-Associated Selected
miRNAs

To better understand the functional role of the tumor-associated selected miRNAs, a pathway
prediction analysis was performed. For this purpose, the bioinformatics tool DIANA-mirPath v.3
was used [72]. With this computational approach it was possible to identify the main molecular
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pathways altered by selected miRNAs, especially those related to tumor development and hence to
oral carcinoma.

Finally, the functional role of the selected miRNAs was determined by performing the pathways
enrichment analysis of the lists of genes obtained from the miRCancerdb and DIANA-mirPath v.3
analyses. For this purpose, both GO PANTHER version 14.0 (http://pantherdb.org/) and STRING
version 11.0 (https://string-db.org/) software were used [73,74]. The two software were used to perform
a more robust analysis. In fact, STRING database uses a number of functional classification systems
including GO, Pfam and KEGG and therefore provide more comprehensive results than those obtained
with the GO PANTHER analysis. Furthermore, the data derived from the biological functional
prediction analyses performed with DIANA-mirPath, GO PANTHER and STRING tools are already
normalized with data used as reference or negative control, therefore, no additional datasets were used
for the normalization of the data.

The DIANA-mirPath, GO PANTHER and STRING analyses were performed for the 11 selected
miRNAs associated to the presence of oral cancer and for the 11 miRNAs that after OncoLnc analysis
were associated to both tumor grade and patients” OS and RFS.

4.6. Kaplan-Meier Estimate of Overall Survival (OS) and Recurrence-Free Survival (RES) in Patients with
Down-regulated and Up-regulated Tumor Stage-Related miRNAs

In order to establish the prognostic significance of the tumor stage-related miRNAs identified, the
bioinformatics tool OncoLnc (http://www.oncolnc.org/) was used [75]. OncoLnc is a tool able to derive
the mortality data from the TCGA datasets, including that of HNSC, allowing the user to obtain the
Kaplan-Meier survival curves for each miRNA. The software identifies which of the selected tumor
stage-related miRNAs were correlated to a patients” overall survival (OS). The OncoLnc analysis was
performed according to the instruction given by the software developers that suggest to perform the
analysis between the expression levels of bottom quartile samples and top quartile samples.

To further confirm the OS Kaplan-Meier results obtained by OncoLnc, the survival curves were
also calculated by using the TGCA survival data downloaded only for the oral cancer (excluding tumor
arising in hypopharynx, oropharynx, larynx and tonsil) analyzed with GraphPad v.6.

Furthermore, to our best knowledge no bioinformatics tools are available for the analysis of TCGA
recurrence-free survival data; therefore, the RFS curves were calculated by using the TGCA HNSC
progression data analyzed with a GraphPad survival curve sheet. In particular, RFS was calculated
from the date of diagnosis to patient progression, or to the end of follow-up, whichever occurred first.
The times of follow-up were different from patient to patient up to a maximum follow-up time of 5480
days, however, for some patients RFS data were not available.

4.7. Statistical Analyses

The miRNAs expression data derived from the GEO DataSets were already normalized by the
GEOZ2R software, while the fold change values of TCGA HNSC miRNA expression levels were
calculated through differential analysis. Student’s t-test was performed to select the differentially
expressed miRNAs of the TCGA dataset with a statistical significance. The GEO2R software already
calculated the p-values of the GEO DataSets data. For the Kaplan-Meier analyses, GraphPad survival
sheet and log-rank non-parametric test were used. Data with a p-value of <0.05 and <0.01 were
considered statistically significant.

5. Conclusions

In conclusion, in the present study the integrated analysis of different miRNNA expression datasets
and the use of several tools for the interpretation of bioinformatics data allowed us to identify a set
of miRNAs that, after in vitro and in vivo validations, may be used in clinical practice for the early
detection of pre-cancerous and cancerous oral lesions.
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