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Abstract: Certain small noncoding microRNAs (miRNAs) are differentially expressed in normal
tissues and cancers, which makes them great candidates for biomarkers for cancer. Previously,
a selected subset of miRNAs has been experimentally verified to be linked to breast cancer. In this
paper, we validated the importance of these miRNAs using a machine learning approach on miRNA
expression data. We performed feature selection, using Information Gain (IG), Chi-Squared (CHI2)
and Least Absolute Shrinkage and Selection Operation (LASSO), on the set of these relevant miRNAs
to rank them by importance. We then performed cancer classification using these miRNAs as features
using Random Forest (RF) and Support Vector Machine (SVM) classifiers. Our results demonstrated
that the miRNAs ranked higher by our analysis had higher classifier performance. Performance
becomes lower as the rank of the miRNA decreases, confirming that these miRNAs had different
degrees of importance as biomarkers. Furthermore, we discovered that using a minimum of three
miRNAs as biomarkers for breast cancers can be as effective as using the entire set of 1800 miRNAs.
This work suggests that machine learning is a useful tool for functional studies of miRNAs for cancer
detection and diagnosis.

Keywords: miRNAs; cancer biomarkers; breast cancer detection; machine learning; feature selection;
classification

1. Introduction

MicroRNAs (miRNAs) are small non-coding RNA molecules involved in the regulation of gene
expression by partially base-pairing to complementary sequences of target messenger RNAs (mRNA),
which leads to cleavage and eventual degradation of the target mRNA or translational repression [1].
The objective of this research is to investigate the potential of using a machine learning approach to
validate clinically chosen relevant miRNAs as reliable biomarkers for cancer detection and diagnosis.

Calin et al. [2] were among the first who established the relationship between miRNAs and
cancers after discovering that mirl5 and mir16 are deleted or down-regulated in a majority of chronic
lymphocytic leukemia cases. McManus [3] reviewed examples that link miRNA expression to the
development of cancer, and proposed a general role of miRNAs in oncogenesis. Further studies
conducted on a variety of cancer types reinforced the causal relationship between miRNA and cancer
by demonstrating significantly altered expression profiles of miRNAs in cancer as compared to normal
tissue [4-6]. It was shown that alteration of only a single miRNNA can influence cell identity [7].
These observations led to the increasing interests to test the effectiveness of using miRNAs as
biomarkers for diagnosing cancer. However, it has been difficult to identify miRNAs that are clearly
important for cancer detection as some miRNAs are up-regulated in certain cancers and function
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as oncogenes while they are down-regulated in others, acting as tumor suppressors. Furthermore,
some miRNAs play pivotal roles in cancer development whereas others are less important. This means
that identifying relevant miRNAs will be context-sensitive and dependent on the location and type of
cancer that is being considered [7,8]. Therefore, computational analysis of large datasets of miRNA
and cancer may greatly improve identification of miRNA biomarkers.

Computational methods, especially machine learning, have been applied for cancer detection
and diagnosis using miRNAs as biomarkers. Lu et al. [5] used hierarchical clustering on 73 bone
marrow samples and determined that miRNA expression distinguishes tumors of different subtypes
within acute lymphoblastic leukemia. They constructed a k-NN classifier using lung cancer samples
as well as adjacent healthy samples from mice, which achieved a classification accuracy of 100%.
Rosenfeld et al. [9] constructed a miRNA-based tissue classifier to identify the source location of
metastatic tumors. By using k-NN and decision trees to classify tumors into 22 different tumor
origins (classes), they obtained an accuracy of 89% on the validation set. Prior work was also done
by Kotlarchyk et al. [10] on the subject of using feature selection on liver, breast and brain cancer
datasets. However, the previous studies were limited by the amount of miRNA data that was readily
available and the number of miRNAs that were known at the time. With the emergence of the Genomic
Data Commons (GDC) Data Portal provided by the National Cancer Institute, the amount of miRNA
expression data increased dramatically. With 34 different types of cancers available, more precise
experiments could be performed. Waspada et al. [11] used 22 different miRNA expression datasets
from the GDC Data Portal and achieved multiple objectives: (i) a multiclass classification combination
of all 22 cancer types, (ii) binary classification using only breast cancer data, (iii) binary classification
using breast cancer data with the addition of a feature selection step, and (iv) binary classification with
miRNAs selected according to clinical research. Cheerla et al. [12] constructed a SVM-RBF classifier
trained with various miRNA expression data across 21 different cancer types, achieving an accuracy
of 97.2%. They also used feature selection methods to reduce the number of miRNAs to 60 and
still achieved a 95.5% overall classification accuracy. Ali et al. [13] used Neighbourhood Component
Analysis to extract relevant miRNA features in order to perform subtype classification, achieving
around 95% accuracy. These studies demonstrated the potential of improved cancer detection and
diagnosis using miRNAs as biomarkers.

This research aims at using a variety of feature selection techniques to select a subset of miRNAs
to identify important miRNA features that are crucial in the diagnosis of breast cancer, a cancer that
has accumulated ample amount of miRNA data [14]. The miRBase release 22 (version 22) recorded
1917 confirmed mature human miRNAs [15]. For all practical purposes, it is important to narrow
down this large number of miRNAs to find the most discriminative subset of miRNA features for
the specific tasks we are working on. Since these miRNAs correspond directly as features, we can
employ feature selection methods to remove irrelevant and redundant ones. In machine learning,
feature selection is a method of selecting a subset from a given feature set based on a certain set of
criteria without transformation of the original features, which preserves the interpretation of the results.
This prevents overfitting and improves classification performance especially with gene expression
data, which usually has a large number of features. In order to determine the best subset of features,
we focus only those miRNAs which have been verified clinically. This allows us to focus on miRNAs
that have been deemed relevant in the laboratory. We then apply feature selection methods on this
reduced subset of miRNAs to determine which are more important for cancer detection. Even though
quite a few miRNAs have been clinically shown to be linked to breast cancer, we aim to show with
a machine learning approach that not all miRNAs are equally important as a cancer biomarker, even
among those clinically selected ones.

2. Methodology

Our approach for validating clinically selected miRNAs for cancer detection and diagnosis is
summarized in Figure 1.
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Figure 1. Schematics for Cancer Detection with Machine Learning.

The algorithm is divided into two stages: training and verification. In the training stage, the first
step is to clean up the miRNA row data by removing rows with all zero values. We then keep only
those miRNAs that have been identified via wet lab as possible biomarkers for breast cancer detection.
These biomarkers are classified as clinically verified miRNAs. The list of clinically verified miRNAs
identified in the literature is shown in Table 1. Three feature selection methods, Information Gain,
Chi Squared, and LASSO, are applied to independently rank the importance of miRNAs. The resulting
feature vectors are then fed to classification algorithms. For this purpose, two classifiers, Random
Forest and Support Vector Machines (SVMs), are applied to train the model. Feature selection is
performed on the selected subset of the breast-cancer dataset and these miRNA features are ranked by
each feature selection method individually. From these ranked features, different subsets were selected
and were then fed into the classification algorithms. The performance of the miRNAs is then evaluated
based on certain performance metrics which will be introduced later.

In the next subsections, we discuss the techniques used for both feature selection and classification.

Table 1. Clinically Verified miRNA.

miRNA [14]
hsa-mir-10b hsa-let-7d hsa-mir-206 hsa-mir-34a
hsa-mir-125b-1 hsa-let-7f-1 hsa-mir-17 hsa-mir-27b
hsa-mir-145 hsa-let-7f-2 hsa-mir-335 hsa-mir-126
hsa-mir-21 hsa-mir-206 hsa-mir-373  hsa-mir-101-1
hsa-mir-125a hsa-mir-30a  hsa-mir-520c  hsa-mir-101-2
hsa-mir-17 hsa-mir-30b hsa-mir-27a  hsa-mir-146a
hsa-mir-125b-2  hsa-mir-203a  hsa-mir-221 hsa-mir-146b
hsa-let-7a-2 hsa-mir-203b  hsa-mir-222 hsa-mir-205
hsa-let-7a-3 has-mir-213  hsa-mir-200c
hsa-let-7c hsa-mir-155 hsa-mir-31
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2.1. Feature Selection

As has been mentioned before, the objective of feature selection is to identify the specific miRNAs
that are most effective in discriminating normal and cancerous tissues. Since the dimensionality of
expression data is large in relation to the number of samples, it is easy for classifiers to over-fit, therefore
a reduction in feature size will alleviate that problem. Another important aspect of feature selection
versus using certain dimensionality reduction techniques, such as Principal Component Analysis,
Discrete Cosine Transform and Wavelet Transform, is that we can preserve the original features as
opposed to mapping them to a different representation.

In this section, three popular feature selection techniques, Information Gain, Chi-Squared Feature
Selection, and Least Absolute Shrinkage and Selection Operator, are reviewed. For a detailed discussion
of these methods, readers are referred to [16-18].

2.1.1. Information Gain

Information Gain (IG) is a feature selection method based on Information Theory, which measures
the reduction of entropy that occurs by having knowledge of a feature, A. For a dataset X with n class
labels, the Shannon entropy, which is a measure of unpredictability, is given by the following equation,

H(X) =— Z pilog, pi. 1)
i=1

where p; is the probability of class 7 in the data set X. IG is the reduction of entropy that is achieved by
knowing the feature A, shown by the following equation,

IG(X, A) = H(x) — H(X|A). @)

where,

H(X|A) = fﬁ 3)

><

where X; is a subset of X containing a distinct value of A, v is the number of distinct values present in
A and H(X;) is the entropy of the i-th subset created by splitting X on feature A. Therefore, IG can be
seen as the difference between the prior entropy and the entropy after splitting the original dataset
based on the feature A.

2.1.2. Chi-Squared Feature Selection

Chi-squared (CHI2) is another feature selection method which evaluates features with respect to
the classes. It is a statistical test to determine the dependency of a feature on the class label. We can
discard features that do not show dependency and extract the relevant features that are useful for
classification. The range of continuous valued features needs to be discretized into intervals.

C 32
_ Z Z 1] Ez]) (4)
i=1j=1 El]
where C is the number of classes, I is the number of intervals, Ej; is the expected number of samples,
Ajj is the number of samples of the C; class within the j-th interval. The larger the value of X2, the
more information the corresponding feature provides.

2.1.3. Least Absolute Shrinkage and Selection Operator

Least Absolute Shrinkage and Selection Operator (LASSO) is a regularization and variable
selection method for statistical models. LASSO minimizes the sum of squared errors while also
being subject to a constraint on the sum of the absolute values of the regression coefficients, which is
described by,
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N 14
min Z(yi — Bo — xiT[S)zs.t. Z |,8]| <t. (5)
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Where N is the number of cases, p is the number of features, (8, Bo, ,/3]-) are regression coefficients,
y; is the i-th predicted output and x; is the i-th set of features. By tuning the parameter ¢, we can choose
the best performing features, as the less predictive coefficients will go to zero.

2.2. Classification

After feature selection, one can apply classification algorithms to determine if the target is
cancerous or not. In this section, two classifiers, Random Forest and Support Vector Machine (SVM),
are overviewed [11,18].

2.2.1. Random Forest

The Random Forest (RF) algorithm is an ensemble classifier that generates multiple decision trees,
including weak classifiers learned on a random sample from the data. The classification of a new
sample is done by majority voting of the decision trees. Random Forest is constructed in the following
manner. Assume that the given training set has N cases, each with M features. Each decision tree
is grown as follows: First, n samples are selected at random with replacement from the training set.
At each node of the tree, m << M of the features are selected at random. The best split on these
m features, based on some objective function (for instance, Information Gain), is used to perform
a binary split on that node. This process is repeated until a predefined minimum node size is reached.
Classification of new data is done through majority votes by aggregating the predictions of all the
decision trees.

2.2.2. Support Vector Machine

Support Vector Machine (SVM), a supervised machine learning method, aims to design
an optimum hyperplane that separates the input features into two difference classes for binary
classification. The best solution maximizes the margin, defined by so-called support vectors, between
both classes. Given the miRNA data consists of n feature vectors, (x;,y;), where y; € {+1,—-1},
one can construct an optimization problem in which the distance between the margins is maximized
by minimizing the following equation,

1 2
5wl ©6)

under the following constraint,
yi(wx;+b)—12>0. (7)

where w is the weights vector which dictates the margin size and b is the bias, which shifts the
hyperplane boundary. In the case of non-linearly separable data, kernel functions can be used to map
the input space to a higher dimensional feature space to allow for a linear separation. A popular kernel
function, the Radial Basis Function (RBF), is given as follows:

k(i yi) = exp (—vllxi — x| ?) ®)

where 7 is a hyperparameter that controls the error due to bias and variance. We will use both linear
SVM as well as SVM with a radial basis function kernel (RBF) in our experimentation.

3. Results

The microRNA expression dataset for breast cancer was obtained from the National Cancer
Institute’s Genomic Data Commons Data Portal [19]. This dataset consists of 1207 patient samples with
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1881 miRNA features, containing 1103 primary solid tumor samples, 7 metastatic samples and 104
healthy samples. The dataset is imbalanced as there are many more number of cancerous samples
compared to healthy samples.

The dataset included raw read counts as well as counts normalized to reads per million mapped
reads (RPM). The metastatic samples were combined with the solid tumor samples as one class, since
metastatic cancer tissue retained most of the genomic features of the source tumor [20]. The log2 of
the RPM values was taken plus a pseudo count of 1 and then the values were standardized to zero
mean and unit variance. Zero values were also removed which further reduced the number of miRNA
features to 1626. Then miRNAs that were not identified by Table 1 were removed.

The dataset was run through the classifiers first without feature selection and then with
feature selection using different feature selection methods (IG, LASSO and CHI2, see Section 2.1).
In the experiment, we grouped miRNAs into subsets of 3, 5, and 10 members and test their effectiveness
in identifying cancer using different feature selection procedures with different classifiers. Also, 10-fold
validation was performed throughout. The 10-fold validation is a technique in which in each trial,
90% of the data samples are used for training and the remaining 10% for testing; the process is repeated
10 times, ensuring that all samples are tested once. We chose to only utilize cross-validation and
neglect the other steps outlined by the Data Analysis Protocol (DAP), which is outlined by the US-FDA
MAQC-II initiative [21]. This is because the focus of this paper is to demonstrate that a small subset of
miRNAs can be used to detect cancer with 10-fold validation [22].

Due to the nature of the unbalanced dataset, using only accuracy as a performance metric may
misrepresent the performance of our classifiers. In the experiment, we establish the outcomes using the
following measures: True positive (TP), False Positive (FP), True negative (IN) and False negative (FN).
Here the positive class means a tumorous sample and the negative class is non-cancerous (healthy).
Specificity is defined as,

TN
TN + FP ©)
which is the proportion of non-cancerous samples correctly identified. Sensitivity is,
TP
TP+ FN (10)

which tests the ability for the cancerous samples to be correctly identified. In addition, Accuracy
is simply,
TP+ TN
TP+TN+FP+FN
which tests the overall ability to different between healthy and cancerous samples. We also calculate
Area Under Curve (AUC).
Table 2 shows the performance of different feature selection techniques vs different classifiers.

(11)

In the table, the first column indicates which classifier was used in the experiment. The second one
lists the feature selection method along with the number of miRNAs in each group. For instance,
IG-10 means that Information Gain is used for feature selection, and miRNAs are grouped into 10 each.
Other columns show the performance of the feature selection algorithm teamed up with the classifier.

Examining Table 2, we can see that the performance metric that fluctuates the most is the specificity.
Since it is possible to achieve a high accuracy even while misclassifying all of the minority class,
we need to look at a performance metric that can give us a more meaningful result. Note that the
classification accuracy across all selections is practically the same, which confirms its ineffectiveness
as a performance metric. The difficulty of this dataset lies in correctly classifying its minority class.
We can see a trend of improved sensitivity values when feature selection is used for the RF and
SVM-RBEF classifiers. This reinforces the notion that there are redundant and irrelevant features present
in the dataset and that we may be able to achieve better results with a handful of features rather than
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the original 1881. We also observed a marked improvement in terms of Specificity by applying any
type of feature selection (across all subsets).

Table 2. Performance Metrics across different thresholds of miRNA Features (3, 5, 10).

Classifier ~Method Accuracy Sensitivity Specificity AUC

0.996 1.000 0.952 0.999

1G-10 0.995 0.998 0.962 0.996

IG-5 0.996 0.997 0.977 0.998

IG-3 0.997 0.997 0.990 0.999

RE CHI2-10 0.995 0.999 0.952 0.995
CHI2-5 0.996 0.999 0.979 0.996

CHI2-3 0.996 0.997 0.981 0.999

LASS-10 0.996 0.998 0.971 0.997

LASS-5 0.995 0.997 0.965 0.998

LASS-3 0.994 0.997 0.962 0.999

0.989 1.000 0.875 0.938

1G-10 0.994 0.998 0.952 0.995

1G-5 0.996 1.000 0.990 0.985

IG-3 0.998 0.998 0.990 0.980

CHI2-10 0.994 0.999 0.951 0.995
SVM-RBE CHI2-5 0.996 0.998 0.983 0.993
CHI2-3 0.998 0.999 0.990 0.980

LASS-10 0.995 0.998 0.962 0.996

LASS-5 0.995 0.999 0.974 0.985

LASS-3 0.996 0.999 0.962 0.980

0.997 0.999 0.971 0.985

1G-10 0.997 0.999 0.971 0.997

IG-5 0.997 0.999 0.985 0.989

IG-3 0.998 0.999 0.990 0.981

SVM CHI2-10 0.997 0.999 0.971 0.997
CHI2-5 0.996 1.000 0.988 0.987

CHI2-3 0.998 0.999 0.990 0.991

LASS-10 0.994 0.997 0.962 0.996

LASS-5 0.995 0.999 0.956 0.993

LASS-3 0.997 1.000 0.962 0.981

Examining the results from Table 2, one can also see that even using a small fraction of the entire
feature set, one may obtain very good classification results. This means that clinically one may only
need to focus on just a few miRNAs to diagnose a patient. In the next section, we ranked the importance
of individual miRNAs under different feature selection techniques. Table 3 show the test results. In this
table, miRNAs are ranked in a top-down order under different feature selection algorithms. This means
that the miRNAs listed in the top of the table provide better detection performance.

Table 3. Top Ranked Features Under Different Feature Selection Techniques.

Info Gain CHI2 Lasso
hsa-mir-10b hsa-mir-10b hsa-let-7a-3
hsa-let-7c hsa-let-7c hsa-let-7c
hsa-mir-145 hsa-mir-145 hsa-let-7d

hsa-mir-125b-1  hsa-mir-125b-2  hsa-mir-101-1
hsa-mir-125b-2  hsa-mir-125b-1 hsa-mir-10b
hsa-mir-335 hsa-mir-335 hsa-mir-125b-2
hsa-mir-126 hsa-mir-126 hsa-mir-145
hsa-mir-125a hsa-mir-125a hsa-mir-206
hsa-let-7a-2 hsa-let-7a-2 hsa-mir-27b
hsa-let-7a-3 hsa-let-7a-3 hsa-mir-335
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We can see that the subsets of Info Gain and CHI2 are remarkably identical, while overlap
six features Lasso, as shown in Table 3.

We can also use feature selection to rank those clinically-selected miRNAs. After ranking, we can
verify our results by taking different subsets and testing their performance for cancer detection.
We begin by choosing the top four miRNA features in subsets of IG and CHI2, ranked 1-3 as Subset #1.
We then slide down by choosing ranked 2—4 miRNAs as Subset #2, and so on. In this way, we obtain
eight different subsets, shown in Table 4. We choose four miRNAs as our threshold to mirror our
previous experiment as that served as a good limit before performance degradation.

Table 4. Subset Selection of Ranked miRNA.

Subset 1 Subset 2 Subset 3 Subset 4 Subset 5 Subset 6 Subset 7 Subset 8
hsa-mir-10b hsa-let-7¢ hsa-mir-145 hsa-mir-125b-1  hsa-mir-125b-2 hsa-mir-335 hsa-mir-126 hsa-mir-125a
hsa-let-7¢ hsa-mir-145 hsa-mir-125b-1 hsa-mir-125b-2 hsa-mir-335 hsa-mir-126 hsa-mir-125a hsa-let-7a-2
hsa-mir-145  hsa-mir-125b-1  hsa-mir-125b-2 hsa-mir-335 hsa-mir-126 hsa-mir-125a hsa-let-7a-2 hsa-let-7a-3

We can now evaluate these data sets with both RF and SVM algorithms. The Specificity has been

plotted across the eight subsets, shown in Figure 2.

Interestingly, we observe a downward trend as the subset index (the horizontal axis) goes up,
which demonstrates a decrease in classifier performance as we go from Subset #1 to #7. The results
strongly suggest that miRNAs that are ranked higher are better biomarkers for breast cancer detection
than the ones on the bottom in the list.

100

Random Forest
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95

Ne)
)

o
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80

1 2 3 4 ) 6 7 8
Figure 2. Specificity Across Different Clinical miRNA Subsets.

75

4. Conclusions

Our results in this work validate clinically-chosen miRNAs as biomarkers for breast cancer
detection with a machine learning approach. It demonstrates that by ranking miRNAs using feature
selection methods, one is able to determine the best performing miRNAs for breast cancer detection
among those clinically verified ones. Our tests have also demonstrated that with merely three selected
miRNAs as biomarkers, the classifiers can still produce nearly optimal results in breast cancer detection,
in comparison to the use of many more miRNAs.
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There are multiple avenues to pursue regarding further work. Specifically, one may extend the
framework to identify discriminative miRNAs that indicate different stages of cancer progression if
features are available in the datasets. One can also extend these ideas for other cancer types. These other
datasets may have common characteristics which can be leveraged using machine learning techniques.
With machine learning, one may be able to overcome the problems caused by very small number of
samples in cancer datasets. More importantly, the ability of machine learning to classify breast cancer
related miRNAs demonstrated here may lead to future development of robotic methods for de novo
identification of miRNA biomarkers for other diseases with or without laboratory data.
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