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Abstract: Background: Seventy-five percent of fecal immunochemical test (FIT)-positive individuals
are false positives and undergo unnecessary colonoscopies. Here, we established a stool DNA (sDNA)
test that uses the Single Allele Base Extension Reaction (SABER) MassARRAY platform to improve
the accuracy of FIT-based CRC detection. Methods: Twenty-one variants in five CRC-associated
genes were selected for the sDNA panel. Cell line DNA and matched mutation-confirmed tissue and
stool samples from 34 patients were used for accuracy assessment (cohort 1). The clinical performance
of the sDNA assay was further evaluated in 101 independent FIT-positive stool samples (cohort 2).
Results: In cohort 1, we obtained a 62% mutation concordance rate in paired tissue and stool samples
of the CRC group, regardless of the FIT status. In cohort 2, 100% specificity in normal controls with
positive FIT results was observed. By weighting the FIT value and the presence of a given variant
type in stool and then summing the two scores, we found that a one-increment increase in the score
was associated with a 4.538-fold risk (95% CI = 2.121–9.309) for malignancy in the FIT-positive setting.
Conclusions: Our highly specific sDNA assay can help prioritize the most at-risk FIT-positive persons
to receive prompt colonoscopic confirmation of CRC.

Keywords: colorectal cancer; stool DNA; MassARRAY; risk-stratifying algorithm

1. Introduction

Colorectal cancer (CRC) is the most common cancer that affects both men and women.
The globally recognized CRC screening test is the fecal immunochemical test (FIT), which detects
the presence of blood in feces. However, FIT is not entirely reliable: it has a positive predictive
value of only 5% for CRC and 20% for advanced polyps in FIT-positive individuals [1], and 75% of
FIT-positive individuals have false positive results due to hemorrhoids or harmless small polyps.
Meanwhile, FIT-positive individuals are usually referred for colonoscopy for visualization of possible
lesions throughout the intestinal lumen [2]. Since 2004, the Taiwanese government has provided free
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biannual FIT for those 50–75 years of age. At 12 years after the inauguration of this program, 56.6% of
eligible individuals had actively participated, and a 44% reduction in CRC-related mortality had been
observed [3]. The implemented FIT screening strategy has thus enhanced public health. However, the
need for colonoscopic confirmation in the FIT-positive group, which has represented 8% of screened
individuals on average, has strained both finances and health workers [3]. There is thus an unmet need
for more specific supplementary tests that can help prioritize FIT-positive individuals with respect to
CRC risk.

Biomarkers are deposited in stool by active secretion or leakage from neoplasms or via exfoliation
of colonic epithelial cells. Various carcinogenesis-related alterations can be detected in stool, such as
somatic mutations in APC, KRAS, and TP53; microsatellite instability in BAT-26; methylation of
markers in SEPT9 and SFRP1 [4]; and DNA integrity [5]. Studies have shown that stool DNA (sDNA)
tests for the above-listed changes have sensitivities of 51.6% to 100% for CRC and 10.5% to 81.8% for
adenoma, with specificities around 95% [6]. However, the above-listed sDNA tests can be challenged
by the relative lack of human DNA amidst the food residue and microorganisms that comprise stool
(<0.1% of the total DNA, the rest of which corresponds to bacterial DNA). The sDNA tests reported
to date have thus required the collection of large stool samples and/or the addition of anti-DNA
degradation buffers.

In 2014, FDA approved CologuardTM as a screening tool for average-risk populations. This kit
examines two DNA methylation markers (NDRG4 and BMP3), seven KRAS mutation markers, one beta
actin normalization marker, and one conventional fecal hemoglobin marker to get a high sensitivity of
92.3% for CRC and 42.4% for advanced adenoma, with a specificity of 86.6% in 9,989 asymptomatic
individuals [7]. Although CologuardTM exhibits encouraging performance, large amounts of stool are
required and an exclusive central lab is needed to handle the sophisticated and expensive testing and
analysis. This limits the feasibility of using CologuardTM a first-line routine test. Moreover, researchers
subsequently found that CologuardTM false-positive individuals had the same cumulative cancer
incidence as the general population after long-term follow-up [8]. Thus, medical care resources may
have been wasted due to the relatively low specificity of the panel. Regarding the literature, it is
notable that most of the existing studies on sDNA assays have examined the detection rate in stool
samples of different subgroups (e.g., adenoma or CRC groups), whereas few have compared the
DNA alterations found in stool samples and their matched tissue samples [9]. This is an important
component that should be addressed when considering the validity and reliability of an sDNA assay.

To address the existing need for a more specific assay method and address this gap in the literature,
we herein sought to construct an sDNA assay that is simple enough for routine implementation and
can be used to prioritize FIT-positive individuals for further colonoscopic assessment. We wanted to
develop a platform that: (1) uses a simple commercial kit to extract DNA from a small amount of stool;
(2) assesses gene variants that offer maximum coverage for the presence of early neoplasm and exclude
other non-relevant disorders; and (3) uses a detection platform that is as sensitive as possible while
remaining easy to apply. To check the accuracy of our developed method, we collected 34 stool samples
from patients with known tissue mutations that had been identified by next-generation sequencing
(NGS) in our previous studies [10,11]. The clinical performance of our sDNA test was validated in
101 independent FIT-positive samples. Finally, we improved the potential practical application of our
method by establishing a risk-stratifying algorithm.

2. Results

2.1. Accuracy and Analytical Sensitivity of SABER MassARRAY Assay, as Evaluated in LoVo Cell Line and
Tissue DNA

The sDNA panel consists of 21 variants in the five most frequently mutated genes in CRC and
polyp tissues of our Taiwanese patients (Table 1). The principle of Single Allele Base Extension
Reaction (SABER) MassARRAY method and assay design are depicted in Figure 1 and Table 2 (details
see Materials and Methods). First, we evaluated the accuracy of our MassARRAY platform in DNA
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from the LoVo cell line (which harbors two of the screened mutations) and 11 tissue samples with
one or two previously identified variants. The cell line DNA was serially diluted with wild-type
DNA (1:1 ratio) to yield samples containing 44.6% to 1.4% of the variant DNA. The specific extension
products corresponding to KRAS_c.38G > A and APC_c.3340C > T were successfully detected by
MassARRAY, corresponding to specific peaks at 5912.9 Da and 6909.6 Da, respectively (Figure 2A).
The extension ratios (ER) of the specific spots were positively correlated with the estimated allelic
frequencies. The ER of the variants at 1.4% of dilution points was greater than the zero point and
could easily be differentiated from the background signal (0.17 for APC_c.3340C > T and 0.34 for
KRAS_c.38G > A vs. 0 for the background). Therefore, the analytic sensitivity was at least as low
as 1.4% (Figure 2B) for the two tested variants. The other 16 variants were also detected as clearly
distinguishable peaks at their expected positions, with similarly low detection limits of around 2%
(Supplementary Materials Figure S1).

Table 1. Contents of the CGMH CRC stool DNA panel (21 variants in 5 genes).

Gene CDS Mutation AA Mutation CRC Polyps Mutation Frequency in
COSMIC

Validated
Sample ID (LOD%)

APC

c.2626C > T p.R876* 3 2 2% CRC-1445 (1.65%)
c.3340C > T p.R1114* 2 1 1% LoVo cell line (1.4%)
c.3871C > T p.Q1291* 0 2 <1% Polyp-44111 (3.64%)
c.3916G > T p.E1306* 0 2 1% Polyp-36137 (2.8%)
c.4348C > T p.R1450* 0 4 5% Polyp-13849 (26%)
c.4661dupA p.E1554fs 2 0 <1% CRC-1480 (14.9%)

KRAS

c.34G > T/A p.G12C/S 1 2
77%

CRC-1773 (2.4%)
c.35G > T/A p.G12V/D 12 8 CRC-1897(1.25%)

c.38G > A p.G13D 5 4 20% LoVo cell line (1.4%)
c.183A > C p.Q61H 1 2 <1% CRC-1897(1.75%)
c.436G > A p.A146T 2 1 <1% CRC-1425(2.54%)

TP53
c.524G > A p.R175H 4 0 11% CRC-1445(2.7%)
c.637C > T p.R213* 3 0 2% CRC-1738(4.87%)

PIK3CA

c.263G > A p.R88Q 2 0 1% CRC-1773(2.58%)
c.1035T > A p.N345K 2 0 <1% CRC-1723(2.57%)
c.1633G > A p.E545K 4 0 31% CRC-1480(3.04%)

c.3073A > G/C p.T1025A/P 2 0 <1% CRC-1801(1.99%)

SMAD4 c.1082G > A p.R361H 2 2 10% CRC-1425(1.71%)

CDS: coding DNA sequence; AA: amino acid; CRC: colorectal cancer; COSMIC: Catalogue of Somatic Mutations In
Cancer; *: stop codon; LOD: limit of detection.

Table 2. Clinical characteristics of the two patient cohorts.

Features
Cohort 1 Cohort 2

Normal Polyps CRC Normal Polyps CRC

Sample no 9 13 21 20 27 54

Gender (M/F) 5/4 9/4 13/8 8/12 20/7 31/23

Age (mean ± SD) 64 ± 8 59 ± 7.6 68 ± 11.6 56.9 ± 8.9 65.3 ± 6.9 61.9 ± 11.1

FIT positive rate (%) 100% 46% 52% 100% 100% 100%

Lesion location

Rectum 1 8 7 11

Left 7 9 16 21

Right 5 4 4 22

Lesion stage

Benign polyps 3 19

Advanced polyps 10 8

Early stage of CRC (stage I-II) 11 27

Late stage of CRC (stage III-IV) 10 27

Lesion size (max diameter)

<1 cm 6 0 22 0

1–3 cm 7 5 5 12

>3 cm 0 16 0 42
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Figure 1. Assay design and the detection principles of the MassARRAY stool DNA panel. (A) Two 
cohorts that included normal, polyp-bearing, and CRC patients with available FIT data and 
colonoscopy results were separately used to evaluate the accuracy and clinical performance of the 
developed stool DNA (sDNA) assay. DNA from tissue samples with known DNA with mutation 
profiles, as previously assessed using the Cancer Hotspot Panel on Ion Personal Genome Machine, 
were collected, along with the corresponding paired pre-operational stool samples, from normal, 
polyp and CRC patients in cohort 1. Cohort 2 stool samples were collected from a FIT-positive 
population. All stool mutations were detected using the Sequenome MassARRAY platform. (B) 
Illustration of the principles and procedures of the single allele base extension reaction (SABER), 
using KRAS p.G13D as an example. UEP: unextension primer peak; m/z: mass-to-charge ratio; ER: 
extension ratio. 

 
Figure 2. Accuracy and analytical sensitivity check of sDNA panel using the LoVo cell line. Two 
mutations, KRAS p.G13D and APC p.R1114*, are known to be harbored in the LoVo cell line and 
could be detected by the sDNA panel. (A) Mass spectrometric (MS) analysis of two mutations, with 
their mutant percentages shown. The marked rectangular boxes indicate the expected size of each 
mutant extension product. (B) Regression curves of the calculated extension ratio (ER) and mutation 
% values for the two mutants. 

Figure 1. Assay design and the detection principles of the MassARRAY stool DNA panel. (A) Two cohorts
that included normal, polyp-bearing, and CRC patients with available FIT data and colonoscopy results
were separately used to evaluate the accuracy and clinical performance of the developed stool DNA
(sDNA) assay. DNA from tissue samples with known DNA with mutation profiles, as previously
assessed using the Cancer Hotspot Panel on Ion Personal Genome Machine, were collected, along
with the corresponding paired pre-operational stool samples, from normal, polyp and CRC patients in
cohort 1. Cohort 2 stool samples were collected from a FIT-positive population. All stool mutations
were detected using the Sequenome MassARRAY platform. (B) Illustration of the principles and
procedures of the single allele base extension reaction (SABER), using KRAS p.G13D as an example.
UEP: unextension primer peak; m/z: mass-to-charge ratio; ER: extension ratio.
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Figure 2. Accuracy and analytical sensitivity check of sDNA panel using the LoVo cell line.
Two mutations, KRAS p.G13D and APC p.R1114*, are known to be harbored in the LoVo cell line and
could be detected by the sDNA panel. (A) Mass spectrometric (MS) analysis of two mutations, with
their mutant percentages shown. The marked rectangular boxes indicate the expected size of each
mutant extension product. (B) Regression curves of the calculated extension ratio (ER) and mutation %
values for the two mutants.
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2.2. Performance of MassARRAY Stool DNA Panel in Cohort 1 Samples and Concordance of Mutations
Detected in Stool and Matched Tissue Samples

To assess the reliability of the MassARRAY stool DNA panel, we selected archived stool samples
from 34 patients (21 with CRC and 13 with polyps, all having known tissue mutation profiles) and nine
healthy controls, and grouped the samples as cohort 1. Since the mutant DNA in stool is theoretically
derived from the lesion(s) in the colon, we expected that the mutations identified in stool would
correspond to those in the tissue sample. Therefore, we carefully selected 28 stool samples with
19 of the variants that can be detected by the sDNA panel (examples were not included for KRAS
p.G12C or PIK3CA p.T1025A). Mutation concordance was defined by the presence or absence of
the same mutation profile in paired tissue and stool samples (Table 3). All stool samples passed the
albumin internal control evaluation and no inhibitor issue was found in the stool DNAs. No mutation
was found in the nine control stool samples; the ER values of the 21 target variants in these control
samples were used to calculate the threshold to be used for each variant in patient stool samples.
Overall, the expected and measured mutation detection rates in stool were 0%, 77%, 82%, 90% and
0%, 0%, 45%, 50% in normal, adenoma, early-stage CRC, and late-stage CRC, respectively (Figure 3A).
Further comparison revealed that the mutual mutation pattern in paired tissue and stool samples had
a concordance rate of 23% (3/13) in polyps and 62% (13/21) in the CRC groups (Figure 3B). Among
the 19 expected variants, eight were detected in this trial (p.R876* and p.R1114* in APC; p.G12V
and p.G12C in KRAS; p.R175H and p.R213* in TP53; p.E545K and p.T1025A in PIK3CA). When we
analyzed the expected detection rate for each individual gene, we found that the SMAD4 mutation was
not detected in stool samples. PIK3CA was the most sensitive target, exhibiting the highest detection
rate in stool samples whose paired tissue samples had mutations in this gene (50%, 3/6). However,
KRAS has the highest positive rate in the CRC group (19%, 4/21), followed by PIK3CA (14%, 3/21).
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Table 3. Histological characteristics and mutations in paired tissue and stool samples from 13 polyps and 21 CRC patients.

Histological
Classification

Sample
ID

Sample Features Expected Mutations by Stool Panel Measured Mutations by Stool Panel Concordance (Y/N)

Stage Location Size-W (cm) FIT APC KRAS TP53 PIK3CA SMAD4 APC KRAS TP53 PIK3CA SMAD4

Adenoma

91739 Tubular Left 0.7 + Y

45248 Tubular Left 1.2 − p.R1114* N

88633 Tubular Right 0.1 + p.E1306* N

30523 2 Tubular Right 0.2 + Y

17766 3 Tubulovillous Left 0.9 + Y

90511 Tubulovillous Left 1.1 − p.Q61H N

18039 Tubulovillous Left 2.2 + p.R876* N

44111 3 Tubulovillous Right 1.4 − p.Q1291* p.G12V N

28808 Tubulovillous Right 1.5 − p.G12D N

29563 Villous Rectum 2.2 − p.R876* p.G13D N

60570 Villous Left 1.7 − p.R1450* p.G12S N

34335 Villous Left 0.1 − p.G12D/
p.G13D N

13849 Villous Right 0.2 + p.R1450* p.G12V N

Early stage of
CRC

1325 II Rectum 3.5 + p.R213* N

1387 II Rectum 3.5 − p.G12V p.E545K p.E545K/
p.T1025A Y

1736 II Rectum 3.8 + p.G12V p.G12V Y

1454 I Left 2 − p.R1114* p.R1114* Y

1317 II Left 2.3 + Y

1455 I Left 3.1 − Y

1465 II Left 3.5 + p.G12V p.G12V Y

1371 I Left 4 + p.R175H N

1423 II Left 4.1 − p.G12D N

1801 II Right 2.8 + p.R876* p.G12V p.T1025A p.T1025A Y

1453 II Right 8 − p.G13D p.E545K N
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Table 3. Cont.

Histological
Classification

Sample
ID

Sample Features Expected Mutations by Stool Panel Measured Mutations by Stool Panel Concordance (Y/N)

Stage Location Size-W (cm) FIT APC KRAS TP53 PIK3CA SMAD4 APC KRAS TP53 PIK3CA SMAD4

Late stage of
CRC

1897 III Rectum 2.7 − p.Q61H/
p.G12D N

1425 III Rectum 4 + p.A146T p.R361H N

1657 III Rectum 4.2 + p.G12V N

1539 IV Rectum 4.3 − Y

1738 III Rectum 4.8 + p.R213* p.R213* Y

1840 III Left 3.4 + p.G12V p.R175H p.G12V p.R175H Y

1480 III Left 4.6 − p.E1554fs p.G12D p.E545K p.E545K Y

1773 III Left 5 + p.G12S p.R88Q p.G12S Y

1445 III Right 2.3 − p.R876* p.R175H p.R876* Y

1723 III Right 3.9 − p.R876* p.N345K N

Note 1: The superscript of the sample ID indicates the polyp number in the sample. Note 2: The red letter highlights the extra mutation found in stool in sample 1387.
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Figure 3C–E summarize our efforts to correlate the stool DNA detection rate with various clinical
variables. We found that: (1) the stool mutant detection rate was lowest when the lesion was located
on the right side of the colon and highest in the rectum (Figure 3C); (2) the detection rate paralleled
the lesion size, with a detection rate of 0% in stool from patients with a lesion size < 1 cm, 25% in
those with a lesion size of 1-3 cm, and 44% in those with a large neoplasm (Figure 3D); and (3) sDNA
positivity was independent of the FIT status (p = 0.452). In 17 FIT-negative cases among the patients of
this cohort, the stool samples of four were identified as having mutations in PIK3CA or APC (Figure 3E
and Table 3).

2.3. Validating the Performance of the sDNA Panel in Cohort 2

To further validate and understand the performance of our sDNA assay, we prospectively collected
101 FIT-positive stool samples as cohort 2. As illustrated in Figure 4A, the detection rate of stool mutant
DNA increased from patients with benign polyps (11%) to those with late-stage CRC (44%), and 100%
specificity was observed in the normal control group. Unlike the findings in cohort 1, the most
prevalent mutations in cohort 2 were found in KRAS (Figure 4B). In total, 10 variants were detected in
stool samples (p.R876*, p.R1114* and p.R1450* in APC; p.G12A, p.G12D, p.G12V, p.G13D and p.A146T
in KRAS; p.R175H in TP53; p.E545K in PIK3CA).The mutation detection rate was independent of the
lesion location (Figure 4C), but it was found to be affected by lesion size (Figure 4D).Cancers 2019, 11, x 8 of 14 
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Figure 4. Clinical validation of the sDNA test in cohort 2. (A–D). Detection rate versus various
clinicopathological factors and gene mutations. (E). A risk-stratified scoring system was constructed
by integrating the FIT value (FIT ≥ 500 ng/mL, weighting factor = 1), the presence of mutations in
APC, KRAS (weighting factor = 1 for either), TP53, PIK3CA, and SMAD4 (weighting factor = 2 for each).
The gradient color represents the score.

The original goal for designing the sDNA panel was to enable FIT-positive individuals at high
risk for CRC to be prioritized for prompt colonoscopy while reducing unnecessary procedures for
lower-risk individuals. Therefore, the high specificity of the test is welcome. However, there is typically
a trade-off between specificity and sensitivity, and the rather low sensitivity of the sDNA panel in
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detecting CRC and precursor adenoma could delay the observation of neoplasms. We speculated that
since the quantitative FIT value and the number and type of mutations correlated well with disease
severity, we might be able to generate a scoring system that incorporates the two kinds of information.
Lee et al. [12] reported that CRC mortality was positively associated with the FIT concentration;
patients with 100+ µg hemoglobin/g of feces had a 2.53-fold mortality rate compared to those with a
normal level of hemoglobin (<20 µg) in their stool. The 100 µg hemoglobin level used by Lee et al. [13]
is equivalent to 500 ng/mL in the present study. Our previous tissue genome studies revealed that
alterations in APC and KRAS appeared earlier during the formation of adenoma, whereas mutations
in TP53, PIK3CA and SMAD4 were acquired for tumor transformation and play driver roles in tumor
biology [11]. Therefore, to construct the risk-stratifying algorithm we gave a weight factor of 1 to a FIT
value >500 ng/mL and the presence of a mutation in APC and/or KRAS, and a weight factor of 2 to
the presence of a mutation in TP53, PIK3CA, and/or SMAD4. These weighted values were summed
to obtain a score. Supplementary Materials Table S2 lists the FIT values, the variants detected by our
MassARRAY sDNA panel, and the summed score of each of the 101 participants in cohort 2.

Figure 4E presents the score distribution, which ranged from normal samples to those representing
late-stage CRC, by gradient color. Samples with no mutation and FIT <500 ng/mL had a score of 0
(no color), while a single late-stage CRC sample with FIT ≥ 500 ng/mL and a total of five mutations
across APC, KRAS, TP53, and PIK3CA had a total score of 7 (red color). If we simply stratified the
FIT-positive cases as benign (normal + benign-adenoma) or malignant (advanced adenoma + all stages
of CRC) based on their summed scores, the area under the receiver operating characteristic curve was
0.781 (95% confidence interval [CI] = 0.691–0.871, p < 0.001). Logistic regression after adjustment for age
and gender showed that there was a 4.589-fold increase in the malignancy risk (95% CI = 2.228–9.450,
p < 0.001) for each score increment in the FIT-positive population.

3. Discussion

The ability of FIT to identify as many high-risk individuals as possible at the initial screening
phase can help reduce cancer mortality [14]. The average 67% of colonoscopy confirmation procedure
after positive FIT results has limited the positive impact of this screening technique [3], but FIT-positive
individuals who did not comply with colonoscopy were found to have a 1.64-fold increased risk of CRC
death compared with those who complied [3]. This indicates the need for a tool that can help clinicians
identify and prioritize individuals with the highest risk for developing malignancy, while allowing
lower-risk individuals to take a wait-and-see approach that will reduce unnecessary procedures. In this
study, we established a simple SABER MassARRAY-based stool DNA assay that incorporated the
21 most frequent CRC-related mutations of the COSMIC database that also showed a high incidence in
the Taiwanese population. The average analytical sensitivity of most variants was 1–2%, as assessed
in serially diluted cell line DNA and tissue DNA. With the exception of certain variants that proved
relatively analytical insensitive (such as APC c. 4348 C > T and APC c. 4661dupA in Supplementary
Materials Figure S1) or barely amounts of variants detected in stool, we observed 62% concordance of
the mutations detected in tissues and their matched stool samples. The results obtained using stool
samples from 101 independent FIT-positive individuals also indicated that our sDNA assay increased
the accuracy of FIT with higher specificity. We also introduce a risk-stratifying algorithm that combines
the results from our assay with the FIT value to generate a score that could potentially assist physicians
in persuading noncompliant individuals to accept the invasive confirmation procedure.

As detection tools, sDNA tests have proven more reliable than FIT, since they reflect the genomic
alterations seen during CRC development. However, the utilized markers and the obtained results
have varied. Where most of the other stool panels have screened for only KRAS mutation [13,15], our
stool DNA panel can achieve a higher detection rate by examining mutations in five genes involved
in different stages of carcinogenesis. In the present study, 13 variants distributed in four genes were
detected in the stool samples of patients with CRC or polyps (p.R876*, p.R1114* and p.R1450* in
APC; p.G12S, p.G12A, p.G12D, p.G12V, p.G13D and p.A146T in KRAS; p.R213* and p.R175H in TP53;
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p.E545K and p.T1025A in PIK3CA). Of them, 54% (7 variants) were located in APC, TP53, and PIK3CA.
Recently, Youssef et al. [16] used NGS to survey the mutation patterns in 87 CRC stool samples, and
found 20 mutations in 11 genes. Of them, APC and TP53 were the most frequently mutated genes.
Those findings highlight the importance of examining multiple CRC-related variant genes instead of
solely focusing on KRAS.

The nature of sDNA testing overcomes the dilemma of obtaining a false-negative FIT result from
a single non-bleeding stool sample. Theoretically, free DNA and that found in exfoliated apoptotic
colonocytes will continuously shed into stool. Moreover, the genetic alterations observed in the stool
were reported to be similar in FIT-positive and -negative CRC patients [9]. Therefore, it is not surprised
that four of the 17 FIT-negative cases in cohort 1 had positive sDNA findings. Consistent with the
previous proposal that the mutation pattern in stool should be more informative than that in the
original lesion [17] due to tumor heterogeneity [18], one CRC stool sample of cohort 1 harbored a
PIK3CA p.T1025A mutation that was not detected in the matched tissue. The discrepancy could reflect
that multiple subclones with different mutations can arise and develop simultaneously [19], such that
there are local differences in the mutation profile. In such cases, sDNA will be more likely to represent
the overall mutational profile, making sDNA assays more reliable and sensitive than FIT.

In terms of clinical practice, a screening assay should involve a robust and feasible platform and
be generally affordable. However, the only FDA-approved stool DNA kit, CologuardTM, requires
36 g of stool and a lengthy, complicated sample processing procedure to accomplish the detection of
nine biomarkers. Itzkowitz et al. [20] constructed a sDNA assay for detecting hypermethylation
of the vimentin gene and a marker of DNA integrity, but the method required the immediate
addition of DNA preservation buffer to fresh stool and gel-based purification of DNA. The method
described in the present study requires only 200 mg of stool and a relatively simple DNA extraction
procedure. Regarding platform selection, there are several highly sensitive technologies that can
detect rare variants against an overwhelming wild-type background, such as peptide nucleic acid
(PNA)-mediated clamping PCR, BEAMing, and digital melting-curve analysis [21,22]. Recently,
various matrix-assisted laser desorption ionization-time of flight (MALDI-TOF)-based assays were
approved as ultrasensitive mutation detection methods and evaluated for their ability to detect lung
cancer-related EGFR mutations in cell-free DNA [23]. To our knowledge, however, this is the first study
in which a MassARRAY platform has been used to detect CRC-related mutations in stool. We herein
demonstrate a SABER MassARRAY-based method that is feasible for clinical application, with an
analytical sensitivity of 1–2% and validated accuracy. The two-step serial PCR reactions allow the
specific and efficient amplification of targets, enabling our method to accommodate a wide range of
original variant concentrations. This is critical, as the proportion of human DNA in stool ranged from
undetectable to 9.929% in our study population (Supplementary Materials Table S3).

The detection rate of mutants in sDNA depends on several factors. First, the mutation detection
rate depends on the rate in the local lesion. In our previous tissue study, we detected mutations in only
88% of CRC tumors and 60% of polyps using the Cancer Panel with 2855 COSMIC hotspots. Therefore,
it is reasonable that we observed fewer mutants in stool when we detected only 21 target variants.
Second, the mutation detection rate depends on the size and location of the neoplasm. Obviously, the
larger the lesion, the more likely it will be to release mutant DNA into the stool. Ahlquist et al. [24]
performed a case-control study using archived stool samples from 133 patients with adenomas ≥1 cm
and found that the detection rate increased with adenoma size (54% ≤ 1 cm, 63% > 1 cm, 77% >
2 cm, 86% > 3 cm, and 92% > 4 cm). We observed the same phenomenon herein, as the detection
rate was <5% when the lesion size was <1 cm but 40–44% in CRC with tumors > 3 cm (Figure 3D,
Figure 4D). However, the location of the lesion did not seem to seriously impact the detection rate.
Although it seems possible that the unprotected shed mutant DNA could be destroyed during its
travel from the proximal intestine to the anus, we do not observe any significant correlation between
the detection rate and the anatomical subsite (Figure 4C), which was consistent with a previous
report [24]. Third, the mutation detection rate depends on the sensitivity of the method. Our sDNA
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panel examined 21 variants in five genes, opening the possibility for our results to be affected by
the unequal performance of the variants in the multiplex extension reactions. Indeed, the LoVo cell
line sensitivity test showed that KRAS p.G13D amplified better than APC p.R1114* (Figure 2). Our
validation of stool samples from patients known to harbor the 20 expected mutations showed that only
10 of the mutations were successfully detected. In the future, therefore, it could be useful to seek ways
to equalize the analytical sensitivity and/or increase the concentration of mutant DNA in stool.

4. Materials and Methods

4.1. Selecting Genes and Variants for the sDNA Panel

In previous studies, we used NGS to obtain the mutated gene spectra for 53 formalin-fixed
paraffin-embedded (FFPE) polyp samples and 50 fresh CRC tissue samples [10,11]. Here, we used
our previous data to select the top five CRC-related genes (APC, KRAS, TP53, PIK3CA, and SMAD4)
and identify 21 variants in these genes that were present in both polyps and tumor tissues, or in more
than two patients with either polyps or tumors. We then used these variants to construct the sDNA
panel (Table 1). Of the selected variants, most had high frequencies reported in the COSMIC database
(≥1% [25]), whereas six were rare in the COSMIC database but frequent in our Taiwanese group.

4.2. LoVo Cell Line

The LoVo cell line was derived from a large intestinal carcinoma. Whole-exome screening
identified a total of 3685 substitution/indel frameshift mutations in this cell line, which were recorded
in the COSMIC database [25]. Among them, the APC p.R1114* and KRAS p.G13D mutations were
identified in 44.6% of cell line DNA (in-house NGS data) and could be detected as a positive control in
our sDNA panel. Therefore, to test the sensitivity of our developed assay, we subjected LoVo DNA
to 2-fold serial dilution with wild-type human blood DNA, yielding 22.3%, 11.5%, 5.58%, 2.79% and
1.39% of mutant DNAs.

4.3. Assay Design and Study Subjects

To validate the analytical and clinical performance of the sDNA test, we use two cohorts of stool
samples. Cohort 1 contained stool samples from 21 CRC patients, 13 patients with polyps, and nine
normal controls. All of the included patients had known tissue mutations that we had previously
identified by NGS of the Cancer Hotspot Panel [10,11]. We used this cohort to check the reliability
of the assay by comparing the detection of mutants in paired tissue and stool samples (Figure 1A,
cohort 1). For cohort 2, we prospectively enrolled 101 outpatients who presented at clinics for positive
FIT results during 2014–2017. Upon colonoscopy, 20 of them were classified as normal, 27 had polyps,
and 54 were diagnosed with CRC (Figure 1A, cohort 2).

Demographic features of the patients in the two cohorts are listed in Table 2. The classification
of advanced adenoma included polyps with histological finding of tubular adenoma (largest
diameter ≥1 cm), tubulovillous adenoma, and villous adenoma. The location of each lesion was
classified as the right side (tumors at the cecum, ascending colon, hepatic flexure, and transverse
colon), the left side (tumors at the splenic flexure, descending colon, and sigmoid colon), or the rectum.
All patients provided written informed consent, and the study was approved by the Institutional
Review Board of Chang Gung Memorial Hospital (101-4609A3; 102-5224B; 103-7047B).

4.4. Extraction of DNA from Stool Samples

Participants provided fresh stool samples (~1 g) before the day of colonoscopy or surgery. Stool
samples (without any preservative) were frozen at −20 ◦C on the day of collection. Stool DNA was
extracted using a QIAamp DNA Stool mini kit (QIAGEN, Germantown, MD, USA) according to
the provided protocol, with a slight modification intended to enhance the final sDNA concentration.
Briefly, 200 mg of stool was placed in a 2 mL tube, mixed with 1 mL Inhibit EX Buffer, thoroughly
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vortexed for 1 minute, heated for 5 minutes at 70 ◦C, and followed by centrifugation at 12,000 rpm for
1 min. The supernatant (400 µL) was transferred to a new Eppendorf tube containing 30 µL 20 mg/mL
proteinase K, and then subjected to serial washing and a final elution of DNA with 60 µL of Buffer ATE.
The DNA yield was quantified by calculating the A260/280 ratio using a NanoDrop Spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA).

4.5. RNaseP Real-time PCR for Quantitation of Human DNA

To identify the proportion of human DNA in the total stool DNA, we established an RNaseP
real-time PCR method. Each PCR reaction volume of 20 µL included 5 µL stool DNA, 10 µL KAPA
probe fast qPCR kit Master Mix (2×) Universal (KAPA Biosystems, Wilminton, MA, USA), 0.4 µL 50X
TaqMan RNase P MGB assay set 4 (Applied Biosystems, Waltham, MA, USA), and 4.6 µL nuclease-free
water. The PCR conditions consisted of 10 min at 95 ◦C followed by 40 cycles of 15 s at 95 ◦C and
1 min at 60 ◦C, as performed using a QuantStudio 12K Flex Real-Time PCR System (Thermo Fisher
Scientific). The calibration curve for the amount of human DNA was constructed using 10-fold serially
diluted human DNA obtained from blood (from 50 ng to 50 pg).

4.6. Establishment of a MassARRAY-based Method for Detecting Rare Mutations

The low proportion of mutation analysis was performed using the Sequenom MassARRAY
platform (Agena Bioscience, San Diego, CA, USA). Briefly, the target region was PCR amplified
from DNA with which contained a mixture of wild-type and variant DNA. A second round of PCR
was then performed using an extension primer designed to anneal one nucleotide upstream of the
mutated nucleotide, plus three of the four dideoxy nucleotide terminators (excluding the wild-type
nucleotide). The terminated products were then separated with the unextension primer in matrix
assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and the variant
type was identified based on the unique mass which incorporated into the last position of the amplicon.
This method is called a ‘single allele base extension reaction’ (SABER) (Figure 1B). Theoretically, the
MassARRAY SABER reaction can detect and analyze as little as 1% of target DNA against a large
background of wild-type DNA [26].

In this study, we used the Assay Designer software package (v.4.0) to design 16 specific PCR
primer pairs and 18 extension primer sequences to detect 21 variants in five CRC-related genes
(Supplementary Materials Table S1). Extracted stool DNA (2 µL) was amplified in 35-µL multiplex
PCR reactions containing 1.4 units of Taq polymerase, 2.5 pmol of each PCR primer, and 25 mM of
each dNTP (PCR Accessory and Enzyme kit, Agena). Thermocycling was performed at 94 ◦C for 4 min
followed by 45 cycles of 94 ◦C for 20 s, 56 ◦C for 30 s, and 72 ◦C for 1 min, and a final extension at 72 ◦C
for 3 min. To avoid interference due to the similarity in the masses of the terminated products, each
PCR product was divided among four reaction wells for the primer extension reaction and detection.
Unincorporated dNTPs were deactivated using 0.3 U of shrimp alkaline phosphatase and SABER
was initiated by adding the iPLEX Pro enzyme, SABER terminator mix, and extension primer mix.
The reaction conditions consisted of 95 ◦C for 30 s, 40 cycles of 95 ◦C for 5 s plus five inner cycles of
52 ◦C for 5 s and 80 ◦C for 5 s, and a final extension at 72 ◦C for 3 min. A cation exchange resin was
added to remove residual salt, and 7 nL of the purified primer extension product was loaded onto
the matrix pad of a SpectroCHIP (Agena) and analyzed using a MassARRAY Analyzer 4. The mass
detection window ranges from 4300 to 9000 Dalton and the areas of the mutation peak and unextended
primer peak were acquired with the TYPER 4.0 software (Agena), and were used to calculate the
extension ratio (ER) (Figure 1B). To prevent false-negative results caused by PCR inhibitors, an internal
amplification control targeting a 150-bp region of the albumin gene was monitored for each sample.
The threshold of each mutation point was defined as the mean plus 4SD of the wild-type ER value.
Any sample with an ER value larger than the threshold was designated as being positive for the
given mutation.
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4.7. Statistical Analysis

Pearson’s Chi-square was used to calculate the significance of the between-group differences in
the mutation detection rate. A p-value less than 0.05 (two-tailed) was considered statistically significant.
To generate the risk-stratified score, we gave each variant a weighting factor. A FIT value > 500 ng/mL
and any mutation in APC or KRAS was given a factor of 1 for each instance. Mutations in TP53,
PIK3CA, and SMAD4 were given a factor of 2 for each instance. The factors were summed to obtain
a weighted score. Logistic regression and receiver operating characteristic curve analysis were used
to evaluate the discriminatory power of this scoring system. All statistical analyses were conducted
using SPSS Statistics 22 (SPSS Inc., Chicago, IL, USA).

5. Conclusions

In 2018, due to the rising incidence of CRC in younger individuals, the American Cancer Society
(ACS) recommended that average-risk adults be screened for CRC beginning at age 45, which was
5 years earlier than the previous recommendation [27]. The guideline also recommended that positive
results on screening tests should be followed up with timely colonoscopy. The implementation of
this newly revised guideline will increase the demand for colonoscopy in FIT-positive individuals,
meaning that physicians will need, more than ever before, objective data that may be used to prioritize
patients for receipt of colonoscopy. In the present study, we introduce a simple and highly specific
SABER MassARRAY system for detecting mutations in stool DNA. We calculated a risk-stratifying
score, and found that there was a 4.538-fold increase in malignancy risk for each unit increase in the
score. This score could thus serve as an effective means to guide patients and encourage them to
adhere to subsequent surveillance. This work will contribute to patient management decisions and
further cost-effectiveness analysis [28] in a larger cohort study with is warranted.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/3/423/s1,
Figure S1: Accuracy check of MassARRAY stool DNA panel, performed using diluted DNA from tissues with
known mutations; Table S1: A. PCR primer sequences and amplicon sizes for the CGMH stool DNA panel. B.
Extension primer sequences and their distributions in the four wells; Table S2: FIT value and variants detected
using the stool DNA panel in 101 participants of cohort 2; Table S3: Proportion of human DNA in the tool DNA of
cohort 1.
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