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Abstract: Glioblastoma is a highly lethal adult brain tumor with no effective treatments. In this review,
we discuss the potential to target cholesterol metabolism as a new strategy for treating glioblastomas.
Twenty percent of cholesterol in the body is in the brain, yet the brain is unique among organs in that
it has no access to dietary cholesterol and must synthesize it de novo. This suggests that therapies
targeting cholesterol synthesis in brain tumors might render their effects without compromising cell
viability in other organs. We will describe cholesterol synthesis and homeostatic feedback pathways
in normal brain and brain tumors, as well as various strategies for targeting these pathways for
therapeutic intervention.
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1. Pathological and Genetic Features of Glioblastoma

Glioblastoma (also called GBM) is the most common malignant primary brain tumor originating
from glial cells [1]. Of the three types of gliomas (ependymomas, oligodendrogliomas, and
astrocytomas), glioblastomas are WHO grade IV astrocytomas and have the worst prognosis. GBMs
cause 225,000 deaths per year worldwide, and are diagnosed at an average age of 64 [2]. The median
survival rate for GBM is 15 months from initial diagnosis even with the most current standard-of-care
therapy, which consists of maximal surgical resection, radiation therapy, and adjuvant chemotherapy
with temozolomide [3]. There are several obstacles to the development of efficient treatments against
glioblastoma. Surgical resection of GBM is virtually impossible as these tumors are highly invasive
and penetrate the normal brain. Full resection would require very fine tuned and precise imaging
tools, which would enable the removal of invading tumor cells. GBM is highly resistant to cytotoxic
drug regimens, including temozolomide, which only improves overall survival 2.5 months beyond
radiation and surgery alone [4]. Therefore, new strategies are necessary to develop treatments that
elicit durable responses in GBM patients.

Various rodent models have been developed for the accurate representation of preclinical
GBM models, but those systems have multiple drawbacks such as immune system deficiency and
incompatible stroma and microenvironment that might interfere with the testing new drugs [5].
Existing animal models fall under three categories. The first involves genetically engineered mouse
models: for example, mice expressing v-src kinase driven by an astrocyte-specific Glial Fibrillary
Acidic Protein (GFAP) promoter or tp53-null mice with astrocyte-specific loss of NF1 both develop
high-grade astrocytomas [6,7]. Mouse models of glioblastoma have also been generated using viruses
expressing oncogenes injected into the mouse brain. For example, Pax3-Tv-a; Trp53 fl/fl mice injected
with RCAS-PDGFB and RCAS-Cre virus, with or without RCAS-H3.3K27M, develop a tumor similar to
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diffuse pontine glioma [8]. A more recent technical development is the injection of patient-derived
glioblastoma stem-like cells in immunocompromised mice. While many laboratories have adopted this
technique for studying glioblastoma in vivo, two recent examples include injecting cells derived from
isocitrate dehydrogenase 1 (IDH1)-mutant tumors into SCID (Severe Combined Immunodeficiency)
mice to study vulnerability of this tumor genotype to 2-hydroxyglutarate depletion [9], and
injecting cells from recurrent glioblastoma into NOD-SCID (Non-Obese Diabetic SCID) and NOG
(NOD/Shi-scid /IL-2Rynull) mice then treating them with a STAT3 (Signal Transducer and Activator of
Transcription 3) inhibitor [10]. These animal models have led to many novel discoveries in glioma cell
biology and metabolism, but thus far have not led to any new clinical advances.

Our most promising avenues for developing robust strategies to target GBM are likely to lie within
recent efforts to genomically and proteomically catalog this disease. Indeed, a study published by The
Cancer Genome Atlas (TCGA) Research Network in 2014 showed that the most frequently altered
pathways in GBM are the RTK/PI3K/MAPK (90% of tumors), p53 (86%), and Rb pathways (79%) [11].
Because nearly all glioblastomas have at least one genomic alteration in the RTK/PI3K/MAPK axis,
and because there are numerous small molecule inhibitors targeting this pathway that are already
FDA-approved or at least in early-stage clinical trials, it appears inhibition of RTKs, PI3Ks, or MAPKs
should be highly effective. Unfortunately, no RTK, PI3K, or MAPK pathway inhibitor thus far has
improved patient survival beyond that of the current standard-of-care [4,12,13]. That said, the TCGA
datasets have provided a trove of mutations, gene expression and proteomic profiles, and copy
number variations that can be explored for novel therapeutic targets. A recent review published by
Alphandery et al. has covered all the most recent glioblastoma treatments that are commercialized or
under industrial development for glioblastoma treatment [2].

2. Dysregulated Metabolic Pathways in Glioblastoma

One strategy lacking from conventional GBM therapies is metabolic pathway targeting. Significant
pre-clinical research has been done in this field to understand how tumor cells differ from their
counterparts. For example, work from Calvert et al. using in silico and wet-bench analyses shows
that non-mutated isocitrate dehydrogenase 1 (IDH1) is commonly overexpressed in the primary
GBM and genetic and pharmacological inactivation leads to attenuation of GBM tumor growth [14].
Large-scale genomics studies have also revealed that IDH1 mutations occur in gliomas even before
other mutations such as TP53 [15,16]. Glutamate and alpha-ketoglutarate are fundamental metabolites
that are necessary for growth and proliferation of GBM cells. A study published by Franceschi et al.,
showed that glutamate dehydrogenase 2 (GLUD2, an enzyme responsible for glutamate oxidative
deamination), inhibits GBM cell growth and could be a target to control tumor progression [17].
In contrast with previous work showing the importance of the tricarboxylic acid (TCA) cycle and
amino acid metabolism in GBM, in this review we will discuss the role of cholesterol metabolism in
influencing tumor cell growth and proliferation and as a potential therapeutic target.

3. Feedback Pathways in Cholesterol Biosynthesis

Cholesterol is critical for cell growth and function. It is important not only as a component of
the plasma membrane and lipid rafts, it also serves as a precursor for steroid hormones, bile acids,
and vitamin D [18-20]. In the last few years, researchers have explored the impact of cholesterol
metabolism on immune response. For example, Yang et al. demonstrated that by modulating
cholesterol metabolism in CD8 + T cells, higher antitumor activity could be achieved [21]. Another
study published by Wang et al. showed that an analog of cholesterol can act as a negative regulator
for TCR signaling [22]. Cells usually obtain cholesterol via different mechanisms. One is through
direct synthesis via the transcriptional activity of sterol regulatory element binding proteins (SREBPs),
which promote the transcription of enzymes involved in cholesterol and fatty acid biosynthesis
pathways, including HMG-CoA reductase (HMGCR) [23]. Ground-breaking work by Brown and
Goldstein, who later won the Nobel prize for the discovery, defined cholesterol as a key molecule
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regulating its own synthesis via the activation of a negative feedback mechanism (Figure 1) [24].
In the presence of cholesterol, SREBP is sequestered in the endoplasmic reticulum (ER) by the SREBP
cleavage-activating protein (SCAP), whose function is inhibited by the ER-resident insulin-induced
gene (INSIG1, INSIG2) [25]. When cholesterol levels drop below homeostatic levels, SCAP is separated
from INSIGs via a conformational change [26] and carries SREBPs into the Golgi where their active
sites are cleaved and activated as transcription factors [27]. SREBPs include three members: SREBP1a,
SREBP1c, and SREBP2 [28]. SREBP2 is encoded by the srebf2 gene and SREBP1a and SREBP1c are
encoded by the srebfl gene. SREBP1c regulates the transcription of the genes that are associated with
biosynthesis of fatty acids; SREBP2 mainly regulates genes involved with cholesterol biosynthesis.
Activity of SREBP1a partially overlaps between SREBP1c and SREBP2.
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Figure 1. Cholesterol homeostasis in normal cells. Cells obtain cholesterol primarily through one of
two mechanisms: (1) by synthesizing it de novo from acetyl CoA generated from glycolysis and (2)
through exogenous uptake by low density lipoprotein receptors (LDLR). Cholesterol can negatively
regulate its own levels through (3) the inhibition of proteolytic processing and nuclear import of sterol
regulatory element binding proteins (SREBP2), leading to a decrease in activity in the mevalonate
pathway or (4) through its conversion to oxysterols that activate liver X receptors (LXRs). LXRs lower
cellular cholesterol levels by (5) inducing the transcription of the E3 ubiquitin ligase, IDOL, which
ubiquitinates LDLR, and (6) by upregulating expression of the cholesterol efflux pump, ABCA1. SCAP:
SREBP cleavage-activating protein; ER: endoplasmic reticulum.

Cholesterol can be enzymatically modified to form metabolites such as oxysterols. One species of
oxysterol, 25-hydroxycholesterol (25-OHC), has been shown to be associated with suppression of
proliferation [29]. The suppression in proliferation can be rescued by the addition of exogeneous
cholesterol, indicating that the presence of 25-OHC inhibits SREBP activation and suppresses
cholesterol biosynthesis [26]. 25-OHC also has anti-inflammatory effects: animal models have
demonstrated that it inhibits transcription and inflammasome-mediated activation of interleukin-1§3
(IL1B) by inhibiting the activation of SREBPs [30]. Of interest for this review, recent studies have shown
that 25-OHC also suppresses the immune response in the human glioblastoma cell line, U87-MG, and
thus might increase tumor growth by modulating the immune system [31].
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Oxysterols also regulate the activity of liver X receptors (LXRs), which are nuclear receptors that
are activated by oxysterols. LXRa is expressed highly in liver, adrenal glands, intestine, adipose tissues,
macrophages, lungs, and kidney, while LXRf is ubiquitously expressed [32]. The LXRs maintain
cholesterol homeostasis by maintaining the balance between biosynthesis, uptake via low density
lipoprotein receptors (LDLRs), and efflux via the ATP-binding cassette transporters, ABCA1 and
ABCGT1 (Figure 1). LXRs inhibit LDLR protein expression through induction of an E3 ligase that
ubiquitinates LDLRs called IDOL (inducible degrader of LDLR, which is encoded by the MYLIP
gene [33]. The importance of LXRs in the central nervous system and in brain development was
recently reviewed by Courtney et al. [34].

4. Cholesterol in the Normal Brain

The brain contains about 20% of the cholesterol of the whole body, rendering it the most
cholesterol-rich organ [35]. Previous studies have shown the possibility of circulating cholesterol,
in some manner, affecting the function of the central nervous system (CNS): for instance, low
circulating cholesterol levels might be linked with violent behavior [36-38]. It is also postulated
that brain development and intelligence is related to the levels of circulating cholesterol of a newborn
infant [39,40]. However, a series of experiments conducted later provide no direct evidence for
lipoprotein cholesterol crossing the blood-brain barrier (BBB) [41-44]. Thus, it is believed that the BBB
prevents the entry of lipoproteins into the brain, and the accumulation of brain cholesterol is mainly
achieved through de novo synthesis. In addition, several proteins related to cholesterol metabolism
have been found in the brain, such as the apolipoproteins ApoE and ApoAl, LDLRs, scavenger receptor
class B type I (SRB1, encoded by the SCARBI1 gene), and ABC transporters. Whether they play the
same role in the brain as in other organs is still under investigation.

Cholesterol metabolism in the brain is well-regulated through the coordinating work of a
series of proteins. The mechanisms of acquiring cholesterol include de novo synthesis and uptake
of cholesterol from the external environment by LDLR, SRB1, and Niemann-Pick C1-like protein
(NPC1L1) [45]. The synthesis of cholesterol in brain, as in other organs, starts from the conversion
of acetyl-CoA to 3-hydroxy-3-methylglutaryl-CoA with HMG-CoA as the rate-limiting enzyme.
SREBPs in the endoplasmic reticulum sense the levels of cholesterol and regulate the activity of
HMG-CoA [46]. Meanwhile, the uptake of cholesterol can be achieved through taking up lipoproteins
from the extracellular environment. One example is the binding of particles that contain ApoE
to LDLR, which are then processed through the clathrin-coated pit pathway to endosomes and
lysosomes [47]. Moreover, Niemann-Pick type C1 and C2 are also required to move cholesterol
to the plasma membrane [48]. The excretion of cholesterol out of the cell may be driven by the
chemical gradient between leaflet and lipoprotein receptors in the plasma membrane. Cholesterol
can also be exported from the cells by ABC transporters. Hundreds of ABC transporters have been
found in both prokaryotes and eukaryotes. Of the 48 ABC transporters in human genome, 13 ABC
transporters (ABCA1, ABCA2, ABCA3, ABCA4, ABCA7, ABCAS, ABCB1, ABCB4, ABCD1, ABCD2,
ABCGI1, ABCG2, and ABCG4) have been studied in human brain [49]. As mentioned previously,
LXRax and LXRf can regulate the expression of ABCA1 and ABCG1 to control the efflux of cholesterol
and phospholipids. It was found that LXR agonists enhance cholesterol efflux in astrocytes [50]. In
addition, cholesterol in the brain and other organs can be hydroxylated by various enzymes to form
hydroxylated sterol molecules and excreted from cells by diffusion [36]. Sterols in the brain, especially
in the adult, are essentially non-esterified cholesterol. The presence of cholesteryl esters in the brain
correlates with the occurrence of disease, such as multiple sclerosis [51].

5. Cholesterol Metabolism in Embryonic vs. Adult Brain

About 70-80% of the cholesterol in the brain is found in myelin sheaths, and the rest exists in the
membranes of cell organelles. The total cholesterol levels in the brain are low during the perinatal
period and at the time of birth, which is thought to limit the development of the CNS to allow the
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baby’s head to pass through the pelvis and birth canal. The cholesterol concentration of the whole brain
increases from about 6 mg/g at birth to 23 mg/g in young adults [47]. Animal experiments demonstrate
that the rate of cholesterol synthesis in the brain correlates with the rate of cholesterol accumulation and
the final concentration of cholesterol found in those regions [44,52-54]. Therefore, de novo synthesis,
not exogenous lipoprotein cholesterol import, is the major pathway for the accumulation of cholesterol
in the brain during early development. Furthermore, studies also show that cholesterol synthesis
during early development is accompanied by the synthesis of myelin basic protein and cerebroside [54].
These findings indicate that the accumulation of cholesterol in the brain associates with myelination.
The synthesis of brain cholesterol slows down when neuron myelination is complete in adulthood,
and the half-life of cholesterol lengthens to between 6 months and 5 years [55]. In contrast with early
development when cholesterol is synthesized de novo, in adulthood nerve cell bodies can take up
cholesterol using LDLR-related protein. Cell culture studies have shown that media from glial cells
which contains cholesterol and ApoE stimulates the extension of axons, and LDLR inhibitors prevent
the extension [56]. Furthermore, the formation of synapses of retinal ganglion cells requires glial cells
to produce cholesterol and ApoE [57,58]. Therefore, cholesterol is probably mainly synthesized in both
neurons and glial cells in the adult brain.

6. Cholesterol Excretion from the Brain

To maintain cholesterol homeostasis in the brain, especially during adulthood, the excretion of
cholesterol is important. 24(S)-hydroxycholesterol is the major hydroxylated sterol excreted from
brain [59]. In addition, the enzyme that synthesizes this oxysterol, cholesterol 24-hydroxylase (encoded
by the gene CYP46A1), is primarily expressed in brain compared to other organs. The hydroxylated
cholesterol can cross the BBB and go to the liver to be converted to bile acids and excreted from
the body.

7. Cholesterol Metabolism in the Liver vs. Brain

The liver plays an important role in cholesterol metabolism. In contrast with brain, hepatic
cholesterol can be obtained from the diet. Dietary cholesterol is obtained by intestinal epithelial cells
via endocytosis. Cholesterol can then be esterified and loaded into nascent chylomicrons together
with triacylglycerol. The chylomicrons are released from intestinal cells into the circulation by the
lymphatics [60]. Triacylglycerol in the chylomicrons is hydrolyzed by lipoprotein lipase in blood
vessels, and the cholesterol left behind in the chylomicron remnants are taken up and utilized by
the liver [60,61]. The cholesterol from liver and dietary origins can be packed into particles of very
low-density lipoproteins (VLDLs), which leave the liver and transport cholesterol to other tissues [62].
Another difference between liver and brain cholesterol metabolism is that cholesterol can be recycled
through enterohepatic circulation, which does not exist in the brain (Figure 2). Cholesterol can be
oxidized in the liver to form bile acids which along with cholesterol is excreted from the liver into the
bile [63,64]. The excretion of bile acid involves ABCB11 [65]. Only about 5% of bile acids are lost in
the feces, and the rest are reabsorbed into enterocytes. Bile acid is important for the digestion and
absorption of dietary fats.

In summary, cholesterol is involved in cell membrane formation and signaling, and is the
precursor of many steroid molecules such as steroid hormones, vitamins, and bile salts. Thus,
the metabolism of cholesterol is tightly regulated throughout the body. Although the liver is the
primary organ regulating cholesterol homeostasis, the brain cannot uptake cholesterol from peripheral
blood and diet due to the BBB (Figure 2). Brain cholesterol is primarily derived from de novo synthesis,
and cholesterol levels start to accumulate after birth. Upon reaching adulthood, brain cholesterol levels
are maintained at constant levels. Therefore, the excretion of cholesterol from the brain becomes more
active in adulthood. Brain cholesterol can be hydroxylated and pass through the BBB to form bile
acids in the liver. Moreover, for some types of nerve cells cholesterol must be acquired through the
binding of low-density lipoproteins LDLs and LDLRs since cholesterol is mainly synthesized in glial
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cells and neurons in the adult brain. Disturbed homeostasis of brain cholesterol can lead to diseases
such as dementia.
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Figure 2. Cholesterol metabolism in liver vs. brain. The brain obtains cholesterol exclusively from de
novo synthesis. On the contrary, hepatic cholesterol can be obtained by de novo synthesis and through
dietary intake. Dietary cholesterol can be esterified and loaded into chylomicrons in the intestine.
The chylomicrons are released into circulation and hydrolyzed by lipoprotein lipase (LPL) to form
chylomicron remnants. Cholesterol left behind in the chylomicron remnants are taken up and utilized
in the liver. The cholesterol synthesized in liver and from dietary origins can be packed into very
low-density lipoprotein (VLDL) and exported from liver. Cholesterol can also be oxidized in the liver
to form bile acids which excreted from liver into the bile via the ABCB11 transporter. Cholesterol in
the brain can be hydrolyzed to form hydroxycholesterol which crosses the blood-brain barrier (BBB)
and goes to the liver to be converted to bile acid. Cholesterol in the liver can be recycled through
enterohepatic circulation, which does not exist in the brain. About 5% of the bile acids are lost in the
feces, and the rest are reabsorbed into enterocytes.

8. Cholesterol Metabolism Pathways Are Altered in Brain Tumors

The brain has different ways to satisfy the requirements of cholesterol compared to peripheral
organs. An epidemiological study investigated the relationship between dietary intake of cholesterol
and the incidence of cancer, and found that high dietary cholesterol levels increase the risk of several
cancers including stomach, colon, rectum, pancreas, lung, breast, kidney, bladder, and non-Hodgkin’s
lymphomas, but not brain tumors [66]. This result is not surprising: since cholesterol cannot pass the
BBB, high plasma cholesterol levels are unlikely to affect cholesterol metabolism in the brain [66].

The brain obtains cholesterol primarily through de novo synthesis, which involves the mevalonate
and Bloch and Kandutsch-Russell pathways [67-69]. Taking advantage of the Glioblastoma Bio
Discovery Portal [70], our group found a correlation between upregulation of mevalonate and
cholesterol pathway and poor survival of GBM patients [71]. Mechanistic studies demonstrated that
densely-plated glioma cells increase the synthesis of cholesterol by enhancing oxygen consumption,
glycolysis and the pentose phosphate pathway, and pharmacological inhibitors acting downstream of
the mevalonate pathway induce glioma cell death [71]. Moreover, the study from our group also
found that densely plated normal astrocytes but not tumor sphere glioma cells downregulate genes in
the cholesterol biosynthetic pathway including farnesyl diphosphate synthase, farnesyl-diphosphate
farnesyltransferase 1, and squalene epoxidase, (FDPS, FDFT1, and SQLE, Figure 3) [71]. A study
conducted later by Kim et al. showed that inhibition of FDPS by pharmacological inhibitors and
siRNA (small interfering RNA) prevents the formation of secondary spheres of glioma stem cells, and
FDPS mRNA was associated with malignancy in glioblastoma patients [72]. In addition to mRNA and
protein levels, Abate et al. demonstrate that the activity of FDPS is also upregulated in GBM tumor
tissue [73].
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Figure 3. Cholesterol homeostasis in glioblastoma cells. Glioblastoma cells maintain cholesterol under
conditions in which normal cells turn it off through multiple mechanisms of dysregulation (highlighted
in red). They keep cholesterol biosynthesis on by constitutive activation of the mevalonate pathway
(1), and by upregulating SREBPs under hypoxia (2). They are also highly dependent on appropriate
levels of LXR activity—hyperactivating LXR with synthetic agonists overstimulates ABCA1 expression
and cholesterol efflux, killing glioblastoma (GBM cells) (3). In sum, this provides them with cholesterol
in an organ that is blocked from obtaining it from the circulation due to the blood-brain barrier.

Another study demonstrates that GBM is dependent proper cholesterol homeostasis for survival:
instead of inhibiting the synthesis of cholesterol, Villa et al. tested the effect of LXRs on treating
GBM [74]. LXR is a transcription factor that facilitates the efflux of cholesterol by increasing ABCA1
expression. Villa et al. showed that limiting cholesterol levels by treating cells with LXR agonists
induced glioma cell death. In vivo experiments showed that LXR agonists inhibited GBM growth
and prolonged the survival of mice [74]. As a key transcription factor in the regulation of sterol
homeostasis, other groups have evaluated the effects of SREBPs on GBM development [75,76].
Lewis et al. showed that under hypoxia and serum-deprivation conditions, SREBP is upregulated to
maintain the expression of fatty acid and cholesterol biosynthetic genes in GBM cells, and inhibiting
SREBP activity under hypoxia led to GBM cell death [75]. These studies demonstrate that cholesterol
metabolism pathways are upregulated in GBM patients and targeting cholesterol metabolism and /or
homeostasis may be a promising strategy in treating GBM.

9. Targeting Cholesterol Metabolism as a Glioblastoma Therapy

Cancer cells have an increased demand for cholesterol and cholesterol precursors. Therefore,
a reasonable assumption is that prevention of tumor-cell growth can be achieved by restricting
either cholesterol availability or cholesterol synthesis [77]. Loss of cholesterol feedback inhibition
mechanisms that regulate cholesterol synthesis is an important feature of malignant transformation.
The cholesterol synthesis pathway has numerous proteins that are potential targets to disrupt
cancer progression [78]. The therapeutic potential of targeting these cholesterol synthesis genes
is under preclinical investigation [79,80]. The unique metabolic requirements of the brain might make
glioblastoma particularly suitable for cholesterol pathway targeting [71].

Liver X-receptors (LXRs) act as transcriptional master switches that coordinate the regulation of
genes such as ABCAI and ABCGI1, which are involved in cellular cholesterol homeostasis [81,82]
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LXR-623 is a synthetic ligand for LXRoc and f that upregulates ABCAI and ABCG1 expression in blood
cells [83]. In a study published by the Mischel lab, LXR-623 killed GBM cell lines in an LXR (3- and
cholesterol-dependent fashion but not healthy brain cells. Upon further investigation of LXR-623,
the group found that the drug penetrated the blood-brain barrier and retained its anticancer activity.
In addition, mice harboring GBM tumors derived from human patients and treated with LXR-623 had
substantially reduced tumor size and improved survival [74].

Statins are HMG-CoA reductase inhibitors that have anti-tumor effects and synergize with certain
chemotherapeutic agents to decrease tumor development [80,84]. Several clinical trials have examined
the potential chemo-preventive and therapeutic efficacy of different formulations of statins, including
simvastatin, pitavastatin, and lovastatin [85-89]. For example, a short-term biomarker study showed
lowered breast cancer recurrence in simvastatin-treated patients through the reduction of serum
estrone sulfate levels [90]. Moreover, pitavastatin reduces GBM tumor burden in xenografts [86].
Bisphosphonates and tocotrienols are another class of drugs which act as downstream inhibitors of the
cholesterol synthesis pathway. Early investigations have shown that they can slow down cancer cell
and tumor growth similar to statins [91].

Protein geranylgeranylation, a branch of the cholesterol synthesis pathway, was also found to
be essential for maintaining stemness of basal breast cancer cells and to promote human glioma cell
growth. GGTI-288, an inhibitor of the geranylgeranyl transferase I (GGTI) reduced the cancer stem cell
subpopulation in primary breast cancer xenografts [79,92]. Moreover, high dependency of malignant
glioma cells on the isoprenoid pathway for post translational modification of intracellular signaling
molecules make this pathway a potential candidate for drug targeting. Recent work published by
Ciaglia et al. shows antitumor activity of Né6-isopentenyladenosine (iPA) on glioma cells. Its mechanism
of action is primarily driven through AMPK-dependent epidermal growth factor receptor (EGFR)
degradation, which further adds value to its candidacy as a potent antitumor drug [93,94]. Thus,
multiple preclinical studies demonstrate that targeting the cholesterol synthesis pathway could be
useful for modulating cancer growth, either through directly inhibiting cholesterol synthesis, or though
inhibiting the production of mevalonate pathway-derived moieties used in protein post-translational
modifications of oncogenes.

10. Cholesterol and its Derivatives as Anti-Glioblastoma Agents

Steroids and their derivatives or triterpene precursors such as betulinic, oleanolic, and ursolic
acids and stigmasterol have shown strong anti-cancerous properties [95-97]. Cholesterol derivatives,
for example, sodium cholesteryl sulfate, cholesteryl chloride, cholesteryl bromide, and cholesteryl
hemi-succinate, have been reported to possess inhibitory activities against DNA polymerase and DNA
topoisomerase and to inhibit human cancer cell growth [98].

Another promising approach in use is a cholesterol-based anticancer agent containing
carborane as the anticancer unit for boron neutron capture therapy (BNCT). The cholesteryl
1,12-dicarba-closo-dodecaborane 1-carboxylate (BCH) mimics the native cholesteryl ester in structure
and was found to be effectively taken up by brain glioma cells in vitro. BNCT delivers boron-10
packed in liposomes. To increase the delivery with an enhanced specificity to tumor tissue, these
boron-10 were packed inside cholesterol-anchored folate in EGFR-folate receptor targeted liposomes or
consist of cholesterol-anchored anti EGFR antibodies. Once the boron-10 is delivered to its designated
location, low energy radiation is passed in the form of a thermal neutron that triggers fission reactions,
resulting in the production of high linear energy transfer (LET) x-particles which are highly lethal to
the cells [99].

11. Cholesterol-Based Intracerebral Delivery of Chemotherapeutics in Brain Tumors

The absence of compelling treatment alternatives results in poor prognosis of glioblastoma. It is
vital to deliver adequate amounts of therapeutic agents to the brain tumor site. However, delivery of
therapeutic agents to the tumor site is technically very challenging due to the presence of the BBB [100].
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Many attempts have been made to overcome this. It is well established that LDL receptors are present
on the BBB capillary endothelial cells and, therefore, could be utilized for transporting cholesteryl-based
or other compounds to the brain.

Conjugation of a cholesterol moiety to an active medicinal compound for either cancer diagnosis
or treatment is an attractive approach for targeted drug delivery. Approaches to intracerebrally
administer agents within the brain parenchyma through local delivery to tumor tissue are on the
rise [101]. The advantage of this approach is it results in high drug concentrations at the tumor site
with restricted exposure to non-neoplastic tissues and organs.

12. Conclusions

The unique metabolic demands and dysregulated metabolism of GBM makes it particularly
suitable for cholesterol pathway targeting [71,97,102]. Genomic analyses performed by the TCGA
provide correlative evidence suggesting an involvement of the cholesterol homeostasis pathways
in cancer development, especially in glioblastoma [103]. A vast number of genetic and phenotypic
alterations in cholesterol homeostasis pathways have been identified in cancer cells [104]. These
include increases in gene copy numbers and upregulation of cholesterol synthesis gene expression,
enhanced cholesterol import by LDL receptors, and decreased transport of cholesterol, all of which
promote increased cellular cholesterol levels to aid cancer cell proliferation [104-107].

First and the foremost, the genetic alterations influencing the cholesterol pathways in cancer
development need further investigation. Many cholesterol synthesis genes or mitochondrial cholesterol
importers are upregulated, however their effects on cancer development remain unknown. Out of
these, several genetic alterations were associated with known chromosomal amplification sites that
harbor well-characterized oncogenes. For example, HMGCS2 and NOTCH2, and SQLE and MYC,
were co-localized to the same amplicons. Possibly, oncogenes and cholesterol synthesis genes act in
tandem to promote disease progression. However, limited success has been achieved in restricting
tumor growth by targeting these critical genes with their pharmacological inhibitors (Table 1). Due to
a lack of evidence to support their efficacy in treating different forms of tumors, this needs further
exploration. A second question needing attention is whether tumors could be classified into subclasses
based on genetic abnormalities occurring in cholesterol homeostasis genes. This might facilitate
development of precision medicine-based approaches for treating subgroups of cancer. For examples,
the efficacy of statins, squalene synthesis inhibitors, farnesyl or geranylgeranyl transferase inhibitors
might be more effective for certain patients with characteristic genetic signatures.

Table 1. Commercial drugs targeting cholesterol pathways.

Drug Mechanism
Ciprofibrate PPAR«x agonist
Clofibrates PPAR agonist
Fenofibrate PPAR«x agonist
Gemifibrozil PPAR« agonist
Anacetrapib CETP inhibitor
Avasimibe ACAT inhibitor
Berberine Increases LDLR expression
Lapaquistat acetate FDFT1 inhibitor
Ezetimibe NPC1L1 inhibitor
Atorvastatin HMGCR inhibitor
Fluvastatin HMGCR inhibitor
Pitavastatin HMGCR inhibitor
Rosuvastatin HMGCR inhibitor
Simvastatin HMGCR inhibitor
Pitavastatin HMGCR inhibitor

PPAR« = peroxisome proliferator activated receptor alpha; CETP = cholesteryl ester transfer protein; ACAT = sterol
O-acyltransferase 1; LDLR = low density lipoprotein receptor; FDFT1 farnesyl-diphosphate farnesyltransferase 1;
NPCIL1 = NPC1 like intracellular cholesterol transporter 1, HMGCR = 3-hydroxy-3-methylglutaryl-CoA reductase.
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Conjugation of the cholesterol moiety to an active medicinal compound for cancer disease
diagnosis and treatment is an attractive approach for targeted drug delivery. Several anticancer
agents have also shown promise in cholesterol formulation for brain delivery. However, a greater
understanding of the biodistribution and pharmacokinetics of these cholesteryl drug conjugates is
essential for their practical use. For example, once active drug molecules are conjugated to cholesterol
moieties, their chemical properties such as hydrophilicity/lipophilicity and molecular weight are
significantly altered, which can change their biodistribution, pharmacokinetics, and efficacy. Hence,
a thorough analysis of the interactions of these cholesteryl conjugates with cells, receptors, and
membranes is necessary prior to their use in a clinical setting. Nevertheless, the use of cholesteryl
drug conjugates for targeted delivery provides a novel approach for treating a variety of cancers,
including glioblastoma.

In summary, it appears that deregulation of cholesterol homeostasis is an important contributing
factor to cancer development and particularly to brain tumors. Studies are needed to link
population-based epidemiological data, results from the TCGA database, and preclinical mechanistic
evidence to more thoroughly dissect the involvement of cholesterol in cancer development, which
would be helpful in devising new strategy for therapeutic intervention.
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