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Abstract: One of the goals of personalized medicine is to understand and treat diseases with greater
precision through the molecular profile of the patient. This profiling is becoming a powerful tool for
the discovery of novel biomarkers that can guide physicians in assessing, in advance, the disease
stage, and monitoring disease progression. Circulating miRNAs and exosomal miRNAs, a group
of small non-coding RNAs, are considered the gold standard diagnostic biomarkers for human
diseases. We have previously demonstrated that osteosarcoma-derived exosomes are able to influence
crucial mechanisms inside tumor niches, inducing osteoclast differentiation, and sustaining bone
resorption activity. Here we discovered, through Next-Generation Sequencing (NGS), eight novel
microRNAs in three different osteosarcoma cell lines, and assessed the selective packaging into the
exosomes released. We then investigated, as proof-of-principle, the presence of the novel microRNAs
in osteosarcoma patient samples, and found that 5 of the 8 novel microRNAs were more present
in circulating exosomes of osteosarcoma patients compared with the controls. These results raise
a question: Could the 8 novel microRNAs play a role for osteosarcoma pathogenesis? Although
still premature, the results are encouraging, and further studies with a validation in a larger cohort
are needed.

Keywords: microRNAs; exosomes; liquid biopsy

1. Introduction

Next-generation sequencing (NGS) and liquid biopsies, also through circulating microRNAs
(miRNAs), are both tools that may provide therapeutic strategies to oncologists, which contribute to
the development of precision medicine. Several research groups have already investigated circulating
miRNAs for their diagnostic and prognostic potential, suggesting them as useful cancer biomarkers [1–4].
In osteosarcoma (OS), some clinical studies have investigated the prognostic and diagnostic potential
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of microRNAs [5,6]. Moreover, the identification of novel circulating miRNAs, released through
exosomes into the blood from malignant cells, can provide novel biomarkers and therapeutic targets
for cancer patients [6]. OS is the most common type of primary bone tumor of the skeleton, occurring
mainly in children and adolescents, in the metaphyseal region of the long bones, typically in the distal
femur, proximal tibia, and humerus [7].

Multidisciplinary treatment, combined with surgery for localized tumors, have led to a five-year
survival rate of 60–70% in non-metastatic patients. However, approximately 20% of patients diagnosed
with metastatic OS at presentation, primarily in the lungs, are instead characterized by a worse clinical
outcome [8]. Among the novel approaches that do not require surgical biopsy, liquid biopsy is useful
in improving the prognosis, and monitoring disease course and survival rates of OS patients, offering
information on micro-metastasis at diagnosis and minimal residual disease, the latter only partially
detectable by conventional diagnostic methods [9].

In our previous study, we highlighted, by RNA sequencing methods, a packaging of specific
miRNAs within OS cell-derived exosomes. In detail, we first demonstrated the role of OS cell-derived
exosomes, inside the tumor microenvironment, in bone metabolism and tumor angiogenesis; we then
focused our attention on some of these specific exosomal miRNAs, and demonstrated their involvement
in osteoclast differentiation, bone resorption activity, and angiogenesis [10].

In the present study, in taking advantage of the NGS approach, we discovered and analyzed the
expression of eight novel miRNAs in OS cell lines and OS cell-derived exosomes. We also analyzed
their expression in a panel of human tissues and in a small group of OS patients. Notably, we found
selective packaging of some of these novel miRNAs into the exosomes released by OS cells and into the
circulating exosomes from plasma of OS patients. Although, the functional role of exosome-encapsuled
miRNAs must be investigated in depth, the results obtained lead us to hypothesize a role for these novel
miRNAs as having a circulating biomarker potential in OS, and for enabling personalized treatments
in precision medicine.

2. Results

2.1. RNA Profiles of Osteosarcoma Cell Lines and Osteosarcoma Cell-Derived Exosomes

In order to discover novel microRNA specific for OS, we start with three OS cell lines: SAOS-2,
MG-63, U-2 OS, and the exosomes released by those cell lines. Exosomes were isolated and characterized
as previously described [10]. After assessing the RNA quality, we performed small RNA sequencing
on the MG-63 cell line and MG-63 exosomes; the U-2 OS cell line and U-2 OS exosomes; and the
SAOS-2 cell line and SAOS-2 exosomes. Due to the NGS approach, we were able to determine, not
only the differences in the expression of known miRNAs in the parent cells and the exosomes, but also
novel sequences expressed among the different cell lines in relation to their exosome miRNA cargo.
Novel miRNA profiles were analyzed in three OS cell lines: MG-63, U-2 OS, and SAOS-2, and their
exosomes through miRDeep2. 3116, 5916, and 3381, novel putative miRNA sequences from MG-63,
SAOS-2, and U-2 OS, respectively, remained after filtering for known contaminant and highly common
sequences, such as rRNA and tRNA, for all known miRNA sequences from miRBase v22 and for exon
(https://www.ncbi.nlm.nih.gov/sra/PRJNA575520). We further filtered the miRDeep2 results by score.
MiRDeep2 scores ranged from -10 to 10, with a higher number corresponding to increased likelihood
that the miRNA is genuine. A cut-off of 0 was used to be included in this study. We chose to validate
two miRNAs for MG-63, three for U-2 OS, and three for SAOS-2, with the highest raw counts for each
cell line (Table 1). In Supplementary Table S1 and Supplementary Material 2, we report the sequences,
the genomic locations and predicted structures of the 8 pre-miRNA candidates.

https://www.ncbi.nlm.nih.gov/sra/PRJNA575520
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Table 1. Sequence and location information for the eight candidate miRNAs.

Novel ID Location (hg19) Strand Mature Sequence

Candidate 1 chr9:136204572..136204654 − CCCCACACUGCUAAAUUUGAC
Candidate 2 chr3:14436198..14436257 + GGAAUAACGGGUGCUGUAGGCU
Candidate 3 chr9:89037929..89037970 − CCCCUCACUGCUAAAUUUGAC
Candidate 4 chrX:102411053..102411132 − CCAUCUGUGGGAUUAUGACUGA
Candidate 5 chr16:33962833..33962878 + UGCGCAGUGGCAGUAUCGUAGCC
Candidate 6 chr8:56821958..56822010 − UAUGUGCCUAGUGGCUGCUGUCU
Candidate 7 chr13:27259470..27259536 + UCUGGGCAACAAGGUGAGACC
Candidate 8 chr9:89037927..89037972 − AUGGAUUUUUGGAAAUAGGAGA

2.2. Validation of the Candidates’ Novel microRNAs

Once we obtained the 8 candidate microRNA sequences (Table 1) with a high score through
miRDeep2, we used custom Taqman assays to first validate on the SAOS-2, MG-63, and U-2 OS
cell lines and their exosomes (Supplementary Figure S1). We then measured the expression of the
candidate microRNAs across a panel of 10 different human tissue RNA (skeletal muscle, stomach,
testis, kidney, lung, brain, prostate, liver, spleen, and bone) to assess the presence in different body
parts and eventually the tissue specificity. Custom Taqman assays gave reproducible and consistent
results, and were able to amplify the target novel miRNAs in most of the tissue types tested. The liver,
kidney, and brain RNAs showed the highest candidate microRNAs expression, while skeletal muscle,
lung, spleen and bone showed the lowest candidate microRNAs expression (Figure 1).Cancers 2019, 11, x 4 of 10 
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Figure 1. Novel candidate miRNA validation. The graphs (A–H) show quantitative RT-PCR results of
the 8 novel candidate miRNAs expression, respectively, in 10 different human tissue types. Results are
displayed as mean levels to the average expression reported as 2ˆ-dCT, and are normalized to U6.

2.3. Candidate Novel microRNA Expression Circulating in Osteosarcoma Samples

Once validated in different human tissues, we wanted to investigate the presence of the candidate
microRNAs discovered in OS cell lines, and eventually the differential in samples of OS patients. As
proof-of-principle, to test the prognostic potential of the novel candidate microRNAs in liquid biopsies,
we analyzed plasma from 5 OS patients whose clinical features are reported in Table 2, and 3 controls
by digital PCR.

Table 2. Clinical characteristics of Osteosarcoma patients.

Patient ID Gender Age Site of
Origin

Histologic
Subtype metastasis Treatments

Patient 1 M 14 sx prox Tibia High Grade
Surface OS No Chir

Patient 2 M 17 dx distal
Femur OS G3 No CHT (CDDP/ADM

MTX HD × 2)

Patient 3 M 18 dx prox Tibia OS condrobastic
G3 No CHT (CDDP/ADM

MTX HD × 2)

Patient 4 M 19 sx Tibia OS fibroblastic Lung CHT (CDDP/ADM
MTX HD × 2)

Patient 5 M 16 dx Pelvis OS G3 Lung CHT (CDDP/ADM
MTX HD × 2)

We choose this approach because of such advantages as the partitioning of the PCR reaction
into thousands of individual reactions; the end-point measurement enables nucleic acid quantitation
independent of the reaction efficiency. In this set of samples, 5 novel candidate microRNAs (candidates
2, 4, 5, 6, and 8) out of eight showed a significant differential expression in OS samples compared with
the controls (Figure 2). One novel candidate microRNA (candidate 7) did not amplify in any sample;
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one novel candidate microRNA (candidate 3) showed no difference between the two groups, and novel
candidate 1 showed the highest expression in the control group compared with the OS group.
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Candidate 2 KEGG pathway p-value Genes 
 FoxO signaling pathway 6.37 × 10−5 SMAD2;SMAD4;CCND2;MAPK1;PIK3R1;IGF1 
 TGF-beta signaling pathway 1.208 × 10−3 SMAD2;SMAD4;MAPK1;ACVR1B;BMPR1B;SKP1 
 Hippo signaling pathway 1.29 × 10−3 FZD1;SMAD2;PRKCI;SMAD4;CCND2;NF2 
 Proteoglycans in cancer 1.41 × 10−3 FZD1;SMAD2;PDCD4;MAPK1;PIK3R1;IGF1 
 Hepatocellular carcinoma 1.75 × 10−3 FZD1;SMAD2;SMAD4;CDK6;MAPK1;PIK3R1 

Figure 2. Novel candidate miRNAs expression in osteosarcoma patient samples. The graphs (A–E)
show quantitative RT-PCR results of the novel candidate miRNAs 2/4/5/6/8 respectively that resulted
highly expressed circulating in osteosarcoma sample compared with the controls. Results are displayed
as mean levels to the average expression calculated as Target Copies per ng Imput RNA, and are
normalized to U6. One star (*) indicates p < 0.05, two-tailed Student’s test.

We further determined the biologic pathways affected by novel candidate miRNAs using
TargetScan web platform able to predict biological targets of microRNAs by searching for the presence
of sites that match the seed region of each miRNA. We reported in Table 3 the KEGG biological
processes significantly enriched (pathways with p < 0.05). All clearly involved with carcinogenesis for
each candidate microRNAs determined by Enrichr web platform.
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Table 3. Biologic pathways enriched by differentially expressed novel candidate miRNAs.

Candidate 2 KEGG pathway p-value Genes

FoxO signaling pathway 6.37 × 10−5 SMAD2;SMAD4;CCND2;MAPK1;PIK3R1;IGF1
TGF-beta signaling pathway 1.208 × 10−3 SMAD2;SMAD4;MAPK1;ACVR1B;BMPR1B;SKP1

Hippo signaling pathway 1.29 × 10−3 FZD1;SMAD2;PRKCI;SMAD4;CCND2;NF2
Proteoglycans in cancer 1.41 × 10−3 FZD1;SMAD2;PDCD4;MAPK1;PIK3R1;IGF1

Hepatocellular carcinoma 1.75 × 10−3 FZD1;SMAD2;SMAD4;CDK6;MAPK1;PIK3R1
Glioma 3.09 × 10−3 CDK6;MAPK1;PIK3R1;IGF1;CALM1

Pancreatic cancer 3.09 × 10−3 SMAD2;SMAD4;CDK6;MAPK1;PIK3R1
Breast cancer 3.35 × 10−3 FZD1;JAG2;CDK6;MAPK1;PIK3R1;IGF1;ESR1

Candidate 4 KEGG pathway p-value Genes

Cell adhesion molecules 3.61 × 10−4 NLGN3;CNTNAP1;CD4;NLGN2;PECAM1;NRXN3
Focal adhesion 6.73 × 10−4 PPP1CB;PPP1CC;RAP1A;COL4A4;ITGB8;MAPK1;CRK

TGF-beta signaling pathway 1.08 × 10−3 SRC;MAPK1;CRK;CD44;PFN2
Renal cell carcinoma 1.12 × 10−3 PPP1CB;PPP1CC;FGF7;ITGB8;MAPK1;PIP4K2C;CRK

Rap1 signaling pathway 1.32 x 10−3 PPP1CB;PPP1CC;PRKAB2;RAPGEF1;MAPK1
ErbB signaling pathway 4.50 × 10−3 ZFYVE16;SP1;MAPK1;INHBA;RGMB
VEGF signaling pathway 8.46 × 10−3 PPP1CB;PPP1CC;RAP1A;MAPK1
Proteoglycans in cancer 9.37 × 10−3 RAP1A;RAPGEF1;MAPK1;CRK

Candidate 5 KEGG pathway p-value Genes

Bladder cancer 1.22 × 10−2 VEGFA
VEGF signaling pathway 1.75 × 10−2 VEGFA

Renal cell carcinoma 2.05 × 10−2 VEGFA
Pancreatic cancer 2.22 × 10−2 VEGFA

HIF-1 signaling pathway 2.69 × 10−2 VEGFA
Focal adhesion 2.69 × 10−2 VEGFA

Proteoglycans in cancer 2.96 × 10−2 VEGFA
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Table 3. Cont.

Candidate 6 KEGG pathway p-value Genes

Proteoglycans in cancer 2.45 × 10−3 PPP1R12A;ARHGEF12;FZD5;ERBB4;KDR;IGF1R
MAPK signaling pathway 3.93 × 10−3 GABRB2;CACNA1C;GABARAP;TRAK2

Focal adhesion 1.13 × 10−2 PDGFRA;CACNB4;ERBB4;KDR;CACNA1C;IGF1R
Rap1 signaling pathway 5.11 × 10−2 PDGFRA;PPP1R12A;KDR;PARVA;IGF1R

Candidate 8 KEGG pathway p-value Genes

Hippo signaling pathway 2,00 × 10−4 PPP1CB;LATS2;DLG3;FZD4;TCF7;YWHAZ;TGFBR1;
TGF-beta signaling pathway 2.14 × 10−3 CREBBP;TCF7;BAIAP2;TGFBR1;WASF3

Breast cancer 5.62 × 10−3 CREBBP;RPS6KB1;NEO1;ACVR2B;TGFBR1
Colorectal cancer 7.87 × 10−3 HDAC4;BECN1;RPS6KB1;ADCY2;CALM2;TGFBR1
Prostate cancer 9.07 × 10−3 CREBBP;FZD4;TCF7;ADCY2;CALM2
Gastric cancer 1.09 × 10−2 RPS6KB1;FZD4;NCOA3;TCF7;PGR;LRP6

Wnt signaling pathway 2.19 × 10−2 NRP1;CREBBP;CDC27;ADCY2;TGFBR1;CREB5
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3. Discussion

In the management of OS, a proper diagnosis and staging of the disease is a major prerequisite
for effective surgical and pharmacological treatments. Conventional diagnostic approaches, such as
tissue biopsy and imaging, remain the most common diagnostic tests. Nevertheless, tissue biopsy may
sometimes be difficult to obtain and not be easily repeatable. In addition, information concerning
micro-metastasis or minimal residual disease can sometimes be lost with conventional diagnostic
methods [11]. Liquid biopsy may be highly advantageous, given the difficulty of recovering the bone
sample for disease staging. In fact, it is a non-invasive and also time-saving approach; moreover, it may
offer more precise and accurate information on early detection, therapeutic decisions, and response to
therapy in OS [12,13].

In this paper we identified eight novel microRNAs in OS cell lines (MG-63, SAOS-2, and U-2 OS)
and their released exosomes. The eight sequences remained after filtering for known contaminant
from 3116, 5916, and 3381, novel putative miRNA sequences, obtained by MG-63, SAOS-2, and U-2 OS,
respectively. We chose to validate two miRNAs for MG-63, three for U-2 OS, and three for SAOS-2,
with the highest raw counts for each cell line. To assess the tissue specificity, we analyzed, by custom
TaqMan assays, the expression of the eight candidate microRNAs across a panel of 10 different human
tissue RNAs (skeletal muscle, stomach, testis, kidney, lung, brain, prostate, liver, spleen and bone).
The candidate microRNAs were found highly expressed in the liver, kidney, and brain, while skeleton
muscle, lung, spleen and bone showed the lowest candidate microRNAs expression.

To fill the current gaps and needs advanced by clinical oncologists, we decided to investigate the
presence of the novel candidate microRNAs circulating in OS patients, and compare them with controls.
Five of eight novel candidate microRNAs were found highly and significantly expressed in OS samples
compared with the controls. This fact, together with the low expression of these microRNAs in the
healthy bone tissue, make the novel candidates potential disease biomarkers.

Through TargetScan web platform, we identified the putative genes regulated by these five
candidate microRNAs. We further determined, through the web platform Enrichr, the biologic
pathways predicted and potentially affected. The KEGG biological processes significantly enriched
(pathways with p < 0.05), reported in Table 3, resulted clearly involved with carcinogenesis for each
candidate; Among these, candidate microRNA 5 is predicted to bind and strongly regulate VEGFA
which expression is crucial for OS growth and metastasis [14]. Another example is candidate microRNA
2, predicted to bind SMAD2 and SMAD4, genes already related with Osteosarcoma [15], and resulting
potentially interesting for further in vitro studies.

Overall, these results allowed us to hypothesize that these 8 novel candidate miRNAs could
potentially represent biomarkers for OS. As a result, we plan to carry out future clinical studies on
large cohorts of OS patients in order to better analyze and compare the expression of novel miRNAs
in patient subgroups, distinguishing metastatic patients from non-metastatic ones. We suppose that
such information could correlate the expression of miRNAs with the disease progression. At the same
time, functional studies, by in vitro assays, may shed light on the molecular mechanisms beyond the
possible pathologic role of these microRNAs.

4. Materials and Methods

4.1. Ethics Approval

The Bioethics Committee of the IFO_AOO - AOO - Istituti Fisioterapici Ospitalieri on February 16,
2017 (resolution number899/17) or osteosarcoma patients approved this study.

The aim of the study, study stages, and sample collection procedures were explained to all subjects.
All subjects gave their written informed consent to participate in the study, including for blood sample
collection and use of clinical data for research.
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4.2. Cell Lines and Reagents

SAOS-2, MG-63, and U-2 OS cell lines were purchased from ECACC (Sigma-Aldrich, Milano, Italy),
and grown in DMEM high glucose (Thermo Fisher Scientific, Cambridge, MA, USA) supplemented
with 10% fetal bovine serum (FBS, Lonza Group, Basel, Switzerland).

4.3. Exosome Purification

Exosomes released by OS cells (SAOS-2, MG-63, and U-2 OS) during a 48-hour culture period were
isolated from conditioned culture medium supplemented with 10% FBS, previously ultra-centrifuged
by differential centrifugations as previously described. Exosome protein content was determined by the
Bradford assay [16]. Exosomes from plasma of OS patients were isolated with Total Exosome Isolation
Kit (Thermo Fisher Scientific, Cambridge, MA, USA), according to the manufacturer’s instructions.

4.4. Small RNA Library Construction and Sequencing

To test the quality and assess the quantity of total RNA extracted, we used the RNA ScreenTape
assay on a 2200 TapeStation system (Agilent Technologies, Santa Clara, CA, USA). For small RNA-Seq,
1 µg of total RNA per sample was used for library preparation using TruSeq Small RNA Sample Prep
Kits (Illumina, San Diego, CA, USA). Size-distribution was measured with the DNA ScreenTape assay
on a 2200 TapeStation system (Agilent Technologies, Santa Clara, CA, USA). A total library pool of
4 nM was sequenced using a MiSeq Reagent Kit v3 150 cycle on a MiSeq System (Illumina, San Diego,
CA, USA).

4.5. Small RNA-Seq in Silico Analysis

We used the Trimmomatic software [17], v. 0.3633 to remove adaptors, low-quality bases, and
reads with less than 16 nucleotides. The parameter “ILLUMINACLIP TruSeq3-SE.fa:2:30:10” was used
to remove read adaptors according to Illumina-specific sequences. A sliding window cut was applied
to remove bases with average quality below 22 using the parameter “SLIDINGWINDOW:3:22,” and
reads with less than 16 nucleotides were removed using “MINLEN:16.”

Alignment of miRNA sequencing reads to the human reference genome build hg19 was performed
using Bowtie v. 1.2.2 [18]. More stringent read length filtering was carried out by miRDeep2 [19] before
the identification of novel miRNAs, discarding reads with length less than 18 nucleotides and greater
than 23 nucleotides. We used the miRDeep2 v.2.0.1.1 software (Berlin Institute for Medical Systems
Biology at Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Germany) default parameters,
using the Fasta format sequences of all mature and hairpin miRNA sequences obtained from miRBASE
v.22 database.

4.6. Real-time PCR Validation and Digital PCR of Novel microRNAs

For miRNA validation, total RNA from 10 human tissues (H. Skeletal Muscle, H. Stomach, H. Testis,
H. Kidney, H. Lung, H. Brain, H. Prostate, H. Liver, H. spleen from Gentaur S.r.l. Italy and H. Bone from
OriGene Technologies GmbH, MD, USA) were reverse transcripted with TaqMan MicroRNA Reverse
Transcription Kit, according to the manufacturer’s instructions (Thermo Fisher Scientific, Cambridge,
MA, USA). Custom TaqMan microRNA Assay are listed in Supplementary Table S2). Novel candidate
miRNA expression results are displayed as 2ˆ−dCT, and are normalized to U6 (Thermo Fisher Scientific,
Cambridge, MA, USA). Twenty ng of RNA extracted from plasma of OS patients and controls were
reverse transcripted with TaqMan MicroRNA Reverse Transcription, according to the manufacturer’s
instructions (Thermo Fisher Scientific, Cambridge, MA, USA). The Droplet Digital™ PCR (ddPCR)
reactions were prepared in 20 µL total volumes, according to the manufacturer’s instructions (Bio-Rad
Laboratories, Irvine, CA, USA). The thermal cycling conditions of the droplets generated were as
follows: 95 °C for 10 min (1 cycle); then 40 cycles of 94 °C for 30 s, and 60 °C for 1 min, 98 °C for 10 min,
and then held at 4 °C. After thermal cycling, droplets were analyzed for positive and negative signals
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using the QX200 droplet reader (Bio-Rad Laboratories, Irvine, CA, USA). Data analysis was done when
the number of droplets produced was more than 20,000. For data analysis, QuantaSoft Version 1.7.4
software (Bio-Rad Laboratories, Irvine, CA, USA) was used to statistically analyze the obtained data.
Novel candidate miRNA expression was normalized on U6 (Thermo Fisher Scientific, Cambridge, MA,
USA) and the results are displayed as Target Copies per ng Imput RNA [20].

4.7. miRNA Pathway Analysis

To identify potential target genes and pathways of the differentially expressed novel candidate
miRNAs found, we conducted in silico analysis using TargetScan web platform [21], in order to identify
the putative genes and Enrichr web platform [22] to determine the putative pathways.

5. Conclusions

We have identified eight novel microRNAs, through NGS, in three osteosarcoma cell lines and
demonstrated the selective packaging into their released exosomes. Below, the expression of the novel
miRNAs was confirmed in circulating exosomes from plasma of osteosarcoma patients. The exact
role of the novel miRNAs will be assessed through future clinical and molecular studies. The data
obtained suggest these novel miRNAs as having a circulating biomarker potential in osteosarcoma
cancer, assuming a role in personalized medicine.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/12/1924/s1,
Figure S1: Novel candidate miRNA validation. Table S1: Sequence and location information for the eight pre-miR
candidate. Table S2: List of Custom Assay ID for novel candidate miRNA validation. The sequencing raw data
are available online at https://www.ncbi.nlm.nih.gov/sra/PRJNA575520.
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