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Abstract: Epigenetic alterations are associated with major pathologies including cancer. Epigenetic
dysregulation, such as aberrant histone acetylation, altered DNA methylation, or modified
chromatin organization, contribute to oncogenesis by inactivating tumor suppressor genes and
activating oncogenic pathways. Targeting epigenetic cancer hallmarks can be harnessed as
an immunotherapeutic strategy, exemplified by the use of pharmacological inhibitors of DNA
methyltransferases (DNMT) and histone deacetylases (HDAC) that can result in the release from
the tumor of danger-associated molecular patterns (DAMPs) on one hand and can (re-)activate
the expression of tumor-associated antigens on the other hand. This finding suggests that
epigenetic modifiers and more specifically the DNA methylation status may change the interaction
of chromatin with chaperon proteins including HMGB1, thereby contributing to the antitumor
immune response. In this review, we detail how epigenetic modifiers can be used for stimulating
therapeutically relevant anticancer immunity when used as stand-alone treatments or in combination
with established immunotherapies.
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1. Introduction

Epigenetic modifications involve all molecular mechanisms affecting gene expression in a
reversible, transmissible, and adaptive way without altering the DNA sequence. Defined in 1942 by
Conrad Hal Waddington, epigenetic modifications were first described in the cellular differentiation
process [1]. Although all cells of a multicellular organism possess close-to-identical genomes, gene
expression varies according to tissue, allowing functional and phenotypical changes from one cell type
to another. This fundamental observation explains how environmental factors govern gene activity
and allow the expression of differential phenotypes from the same genetic code. Transgenerational
epigenetic inheritance may also explain the loss or the gain of inherited phenotypic characteristics
that are passed on to subsequent generations [2]. These phenomena are illustrated by biological and
physical differences that develop between cloned animals or twins [3,4].
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Epigenetic alterations compose a natural and fundamental regulatory system of the genetic
information contained in the DNA sequence of normal cells. This program is essential for terminal
differentiation processes as well as for the maintenance of homeostasis. Epigenetic modifications
occur physiologically at several levels and play a regulatory role in various cellular functions such
as transcription, RNA splicing, and nuclear export as well as translation. Three mechanisms are
considered to induce epigenetic changes, namely DNA methylation, histone modification, and
non-coding RNA-associated gene silencing. DNA methylation occurs in healthy cells via the addition
of methyl groups by DNA methyltransferases (DNMT1, DNMT2, DNMT3) on position 5 of cytosine
residues at CpG-rich promoter regions in order to silence specific genes (in the case of parental genomic
imprinting, repeated, or deleterious genes) [5,6]. Post-translational modifications of histones including
methylation, acetylation, phosphorylation, and ubiquitination also impact on the accessibility of
chromatin and on transcription [7,8] (Figure 1).
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Figure 1. Epigenetic modifications occur at several levels including transcription, translation, splicing,
and nuclear RNA release. Several mechanisms are considered to induce epigenetic changes, such as
DNA methylation, histone modification, and non-coding RNA-associated gene silencing. Epigenetic
modifiers from the group of histone deacetylase inhibitors (HDACi) and DNA methyltransferase
inhibitors (DNMTi) can (partially) revert such changes with multiple effects on tumors and the
immune system.

Epigenetic dysregulation can have severe consequences and may play a key role in the
manifestation of complex diseases such as cancer by inactivating tumor suppressor genes and
by activating oncogenic pathways. Aberrant DNA methylation is the major epigenetic change
leading to oncogenesis and can be subdivided into (i) transition of methylcytosine into thymine after
deamination leading to DNA mismatch [9], (ii) inactivation of suppressor genes by methylation of
CpG islands [10,11], (iii) changes in expression of genomic imprinting, (iv) genome instability after
demethylation of repeated sequences and transposon reactivation [12,13]. In addition, modifications
to RNA molecules contribute to cellular transformation, even if such changes occur in non-coding
functional RNAs. Indeed, microRNAs and other non-coding RNAs post-transcriptionally regulate
mRNA transcripts involved in all major cellular processes. Thus, the repression or overexpression of
microRNAs targeting tumor suppressor genes or oncogenes, respectively, promotes tumorigenesis [14].

Epigenetic modifications of histone proteins that play a main role in the process of transcription
have major repercussions on DNA replication, the detection and repair of DNA damage, and
consequently the susceptibly to malignant transformation. In line with this, the loss of acetylation
at Lys16 and loss of trimethylation at Lys20 residues of histone H4 associated with DNA repetitive
sequences, or allelic deletion of the H2AX variant, changes the interaction between chaperon proteins
and chromatin, thus impacting on genomic integrity and eventually the occurrence of cancer [15–17].
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In addition, epigenetic dysregulations can reinforce preexisting or induce genetic abnormalities such
as a decrease in the abundance of the tumor suppressor p53 that leads to the induction of allelic
mutations [10,11]. On the contrary, the transformation of cells with the K-ras oncogene can have as a
consequence epigenetic adaptations including DNA methylation, chromatin remodeling, and histone
modification [13].

Epigenetic regulators are strongly interconnected. Thus, the DNA methyltransferase DNMT1 acts
synergistically with DNMT3a and b, with histone methyltransferases SUV39H1 and EHMT2 as well as
with the histone deacetylase HDAC2 [18]. Nevertheless, this complex network includes some regulatory
checkpoints that can be detected, such as the hypermethylation of certain promoters, and can be
directly or indirectly targeted by therapeutic agents, such as the DNMT inhibitor 5-aza-2’-deoxycytidine
(decitabine) that is used for the treatment of myelodysplasia and acute myeloid leukemia [19,20].
Moreover, epigenetic variations are less stable than genetic modifications and are theoretically reversible.

Epigenetic modifiers exert various anticancer activities including the induction of apoptosis
and the inhibition of angiogenesis. However, several studies showed that epigenetic modifiers
have immunomodulatory properties, which impact on both innate and adaptive immune responses.
They may affect immune effectors at different levels through the upregulation of MHCI and II
expression, the production of cytokines, the elevated transcription of immuno-regulatory genes, and
the expression of costimulatory molecules [21–24]. Finally, some groups demonstrated that HDACi
may induce immunogenic cell death characterized by calreticulin exposure, ATP production, and
HMGB1 release [25].

Interestingly, pharmacological or genetic DNMT inhibition also results in the translocation
of the chromatin-binding protein high mobility group box 1 (HMGB1) from the nucleus to the
cytoplasm [26,27]. In the nucleus, HMGB1 serves a key role in chromatin opening and gene transcription;
once released (first to the cytoplasm and later to the extracellular milieu) HMGB1 ligates TLR4 on
dendritic cells and stimulates the presentation of antigens to T lymphocytes [28]. Epigenetic changes
are also implicated in the control of T cells exemplified by the finding that the methylation status
of IL-4 and INF
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genes is associated with the activation of CD4+ T cells [29,30]. Similarly, the
methylation status of CNS2, an intronic regulatory element, improves Foxp3 stability [31]. Altogether,
epigenetic agents acting on DNA methylation may exhibit clinical efficacy not only due to the impact
on chromatin remodeling but also via modulating gene expression and thus impinging on the activity
of immune effectors.

Thus, epigenetic therapy offers new medical perspectives to control and eradicate tumor cells in
clinical routine.

In this review, we provide an overview on epigenetic modifiers used as stand-alone agents
or in combination with antitumor therapies, focusing on their capacity to induce anticancer
immune responses.

2. Epigenetic Modifiers Used as Single Therapy

2.1. Histone Deacetylase Inhibitors (HDACi)

The histone acetylation status depends on the equilibrium between histone acetyltransferases
(HAT) and histone deacetyltranferases (HDAC), which add and remove, respectively, acetyl groups
on lysine residues. Acetylated histones increase chromatin accessibility and facilitate the binding of
transcription factors to DNA sequences. The imbalance between HAT and HDAC in favor of the latter,
which manifests in most types of cancer and is associated with an alteration in gene expression [32,33],
spurred the clinical development of HDACi with the aim to re-adjust the HAT/HDAC ratio. HDACi
can be grouped into four different chemical families according to their structures: Butyric acid
derived (such as valproic acid), hydroxamic acid derived (such as suberoylanilide hydroxamic acid
(SAHA)), benzamids (such as entinostat) and cyclic tetrapeptides (such as romidepsin). HDACi
have effects on cancer cell proliferation and differentiation, and certain HDACi, including vorinostat,
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romidepsin, belinostat, and panobinostat, have been approved by regulatory agencies for the treatment
of T-cell lymphoma and multiple myeloma [34]. Other HDACi are evaluated in clinical trials for the
treatment of hematological and solid malignancies. Besides ongoing advancements, HDACi exhibit
immunomodulatory activity by controlling cytokine secretion by tumor cells as well as by impacting
on macrophage and dendritic cell functions.

2.1.1. Selective Histone Deacetylase Inhibitors

In different models of solid and hematopoietic tumors, the use of selective HDACi targeting class I
HDAC (mocetinostat, entinostat, and romidepsin) as single agent elicited beneficial effects on different
antitumor effectors, increasing T lymphocyte infiltration or upregulation of MICA/MICB on the tumor
cell surface, thus enhancing natural killer (NK) cell activity through an increase in the ligation of the
activating receptor NKG2D, which interacts with MICA and MICB [35–38] (Table 1). Moreover, several
cytokines that bridge innate and adaptive immune responses are upregulated by HDACi altogether
contributing to anticancer immunity [35,39,40].

Table 1. Selective histone deacetylase inhibitor.

Epigenetic Modifiers Type of Cancer Effect on Immune System Notes Reference

Mocetinostat, entinostat Hodgkin lymphoma

Upregulation of CD252 surface
expression by inhibition of HDAC11.

Repression of the production of
IL-10-producing type-1 Treg cells.

In vitro: HL human Hodgkin lymphoma
cells. [39]

Entinostat
Colon neuroblastoma,

osteosarcoma,
fibrosarcoma

Increased expression of MICA and
MICB on tumor cells and NKG2D on

primary human NK cells.
Enhanced tumor cell lysis.

In vitro: HCT-15 human colon
adenocarcinoma cells,

COL human neuroblastoma cells,
CCH-OS-D human osteosarcoma cells,
CCH-OS-T human osteosarcoma cells,

HT1080 human fibrosarcoma cells.

[38]

Entinostat Liver

Enhanced non-specific immune
response of exosomes with

upregulation of HSP70 and MICB
mRNA levels and proteins.

Increased NK cell cytotoxicity and
peripheral blood mononuclear cell

proliferation.

In vitro: Exosomes in HepG2 human
hepatoma G2 cells. [37]

Romidepsin Lung

Upregulation of multiple T cell
chemokines in tumor cells,
macrophages and T cells.

Upregulation of T cell chemokines,
enhanced T cell infiltration and T-cell

dependent tumor regression.

In vitro: LKR mouse K-ras mutant lung
adenocarcinoma cells.

In vivo: LKR cells implanted in
129S4/SvJaeJ mice.

[35]

Romidepsin Melanoma

Enhanced melanocyte protein Pmel-1
expression in cancer cells promoting
tumor specific T-cell-mediated killing

of B16/F10 murine melanoma cells.
Enhanced CTL-mediated B16/F10 cell

killing in vivo.

In vitro: B16/F10 mouse melanoma cells.
In vivo: B16/F10 inoculated in C57BL/6

mice.
[36]

Tubastatin A Nexturastat
A

Mocetinostat
Melanoma Upregulation of MHC class I

expression and melanocyte antigens

In vitro: HEMn-LP, SKMEL21, WM793:
Human melanocyte cells, WM164 and

WM983A: Two BRAF-mutated
melanoma cells

In vivo: B16-F10-luc murine melanoma
cells injected into C57BL/6 mice.

[41]

CTL, Cytotoxic; T, lymphocyte; HL, Hodgkin lymphoma; IL, interleukine; MICA/B, MHC class I-related chain A/B;
NK, natural killer.

2.1.2. Non-Selective Histone Deacetylase Inhibitors

Most HDACi are not specific and target several classes of HDAC. Thus, the antitumor activity of
these non-selective HDACi often cannot be clearly associated with the inhibition of a specific set of
HDAC. Trichostatin A (TSA) is a class I and II HDACi known to interfere with cell cycle progression in
the G1 and G2-M phases, leading to growth arrest and eventually cell death. TSA was ascribed with
antitumor activity due to the induction of apoptosis-related genes.



Cancers 2019, 11, 1911 5 of 20

Most malignant cells evade the immune system due to a loss or dysfunction of the
antigen-presenting machinery. HDACi showed relevant immunomodulatory properties at
non-apoptotic doses. Several data suggest that HDACi may impact on the regulation of both
innate and adaptive immune responses. Indeed, certain HDACi are known to alter dendritic cells
function by decreasing the expression of costimulatory molecules, reducing general cytokine secretion
and enhancing indoleamine 2,3-dioxygenase (IDO), an immunomodulatory molecule that is produced
by activated antigen-presenting cells (APCs) and is responsible for tryptophan catabolism and thus
T-cell activation [42,43]. TSA demonstrated the potential to increase antitumor immune responses
both in solid cancers and leukemia in vitro via the expression of components belonging to the antigen
processing machinery such as MHC class I and class II, facilitating the activation of cytotoxic T
lymphocyte (CTL) [21,22,44,45]. Similarly, in a model of neuroblastoma, retinoic acid has been shown
to act as a key modulator of the MHCI presentation process [46]. TSA-treated B16 melanoma cells,
which were employed as a therapeutic vaccine in a murine model, induced a specific anticancer
immune response that depended on enhanced antigen cross-presentation [21].

In addition, TSA (as well as valproic acid, VPA) had the capacity to promote an innate immune
response by enhancing NK cell-mediated cytotoxicity, both in carcinoma and leukemia models via the
inhibition of HDAC3, a well-known repressor of NKG2D ligands, which is necessary for the recognition
and elimination of cancer cells by NK and CD8+ CTL [47]. TSA also increases the acetylation of
histone H3 and thus decreases the association between HDAC1 at the promoters of MICA and MICB.
As a consequence, TSA upregulates MICA/MICB expression on malignant cells, enhancing their
susceptibility to the cytotoxicity of NKG2D-expressing lymphocytes [48–51] (Table 2).

HDACi can also exhibit effects on the polarization of naïve T cells. In mice, dendritic cells treated
by HDACi were unable to induce Th1 responses and downstream immune pathway [52].

In a model of hepatocarcinoma, vorinostat and sodium valproate suppressed miRNAs (such
as miR-17, miR-18a, miR-19a, miR-20a, miR-93, miR-106b, and miR-889) that target MICA/B. As a
consequence, MICA and MICB are upregulated, which improves tumor cell recognition by innate
immune effectors and thus the sensitivity to natural killer cell-mediated killing [53,54].
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Table 2. Non-selective histone deacetylase inhibitor.

Epigenetic Modifiers Type of Cancer Effect on Immune System Observations Reference

TSA Carcinoma Increased expression of antigen processing machinery.
Enhanced surface expression of MHC I and susceptibility to CTL-mediated killing.

In vitro: TAP-expressing cell line, derived from murine lung cells transformed with
HPV16.

D11 and A9: TAP-deficient cell line.
[44]

TSA Melanoma

Enhanced expression of MHC class II, CD40, CD80, and CD86 on B16 melanoma
cells.

Vaccination with TSA-treated cells induces tumor-specific immunity that involves
CD4+, CD8+ T cells, and NK cells.

TSA-treated cells become APCs in vitro and in vivo.

In vitro: B16 mouse melanoma cells.
In vivo: Inoculation of mice with TSA-treated B16 cells (vaccination). [21]

TSA,
SAHA, Belinostat Multiple

Glycogen synthase kinase-3-dependent induction of MHC Class I-related chain A
and B on cancer cells, which become targets for NK-cell mediated killing through

NKG2D.

In vitro: Jurkat E6-1 human leukaemic T cell lymphoblasts,
MCF-7 human breast adenocarcinoma cells,

HeLa human cervix carcinoma cells,
Daudi human B lymphoblast cells,

Aml193 human leukemic cells,
Arh77 human plasma cell leukemia cells,
DOHH-2 human B cell lymphoma cells,

Cem human T cell leukemia cells,
Granta human B cell lymphoma cells,
U266 human multiple myeloma cells,

K562 human chronic myelogenous leukemia cells,
HT29 human colon adenocarcinoma cells,

DLD-1 human colon adenocarcinoma cells.

[23]

Sodium butyrate, TSA
Neuroblastoma
Plasmacytoma

Colon
Induction of expression of MHC Class I, II, and CD40 on tumor cells. In vitro: SK-N-MC human neuroblastoma cells, J558 mouse B myeloma cells, CT26

mouse colon adenocarcinoma. [22]

TSA Melanoma

Enhanced expression of genes involved in antigen processing and presentation via
the MHC class I pathway.

Enhanced cell surface expression of MHC class I, CD40 and CD86 in tumor cells.
Increased antigen presentation by tumor cells.

In vitro: B16/F10 mouse melanoma cells. [45]

TSA Epithelial tumor Upregulation of UL16-binding proteins (NKG2D ligands).

In vitro: HeLa, human cervix carcinoma cells
HEK 293 human embryonic kidney cells,
MCF7, human breast adenocarcinoma,

SW480 human colon adenocarcinoma cells, HCT116 human colon carcinoma cells,
U937 human histiocytic lymphoma cells,

HT29 M6 human colon adenocarcinoma cancer cells.

[47]

TSA Leukemia Increased expression of MICA and MICB.
Increased tumor cells lysis by NK cell.

In vitro: BALL1 human B cell leukemia cells, Jurkat human lymphoid leukemia
cells,

K562 human myeloid leukemia cells and patient leukemic cells.
[48]

VPA Liver Enhanced expression of MICA and MICB.
Increased tumor cells lysis by NK cell.

In vitro: Hep3B human hepatocellular carcinoma cells, HepG2 human
hepatocellular cells. [49]

VPA Osteosarcoma Increased MICA and MICB expression. Increased tumor cells lysis by NK cell. In vitro: Human osteosarcoma cancer cell lines MG-63, HOS, U2OS and SaOS-2. [50]

VPA AML Induction of transcription and expression of NKG2D ligands on tumor cells.
Induction of lytic granule exocytosis by autologous CD8+ T and NK lymphocytes. In vivo: In patients with AML. [51]
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Table 2. Cont.

Epigenetic Modifiers Type of Cancer Effect on Immune System Observations Reference

Vorinostat Brain Induction of CALR exposure in tumor cells. In vitro: PFSK human neuroectodermal cells and DAOY human medulloblastoma
cells. [55]

Vorinostat Malignant
mesothelioma

Induction of moderate lymphocyte infiltration of tumors.
Increased CD8 T cell infiltration. In vivo: AK7 mouse malignant mesothelioma cells injected in C57BL/6 mice. [56]

Vorinostat (SAHA) Breast Decreased MDSC frequency in the spleen, blood, and tumor bed. Increased
proportion of T cells. In vivo: 4T1 mouse breast cancer cells injected in BALB/c mice. [57]

TSA, sodium butyrate,
VPA

Ovary
Cervix Increased levels of cell surface MICA/MICB in cancer. In vitro: UCI-101, SKOV-33, Ovcar-3 human ovarian carcinoma cells. HeLa, human

cervix carcinoma cells. [58]

VPA Vorinostat Prostate Upregulation of MHC genes. In vitro: DU145 human prostate cancer cells (an HDACi-sensitive cell line) and PC3
human prostate cancer cells (a relatively HDACi-resistant cell line). [59]

AR42 Melanoma

Reduction in PD-L1 and PD-L2 expression and ornithine decarboxylase in tumor
cells

Increased expression of class I MHC.
Extracellular release of HMGB1 and HSP70 from tumor cells.

In vitro: TPF-12-293 human melanoma cells. [60]

Panobinostat Hodgkin lymphoma Reduction of serum cytokines levels and suppression of T-cell PD-1 expression. Phase II clinical trial. [61]

Panobinostat
(LBH589) Melanoma Increased expression of MHC class I, MHC class II, and costimulatory molecules

CD40, CD80, and CD86.
In vitro: B16 mouse melanoma cells, WM793 and WM983A human melanoma cells.

In vivo: B16 cells inoculated in C57BL/6 mice. [62]

AML, acute myeloid leukemia; APC, antigen-presenting cell; CALR, calreticulin; MHC, major histocompatibility complex; MICA/B, MHC class I-related chain A/B; NK, natural killer; TSA,
Trichostatin A; VPA, valproic acid; MDSC, myeloid-derived suppressor cells; TSA, Trichostatin A.
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Interestingly, vorinostat induced the exposure of calreticulin (CALR) on the surface of childhood
brain tumors [55]. The exposure of CALR is a hallmark of immunogenic cell death and facilitates
DC-mediated phagocytosis of (parts of) the dying tumor cells and thus tumor antigen transfer to
antigen-presenting cells (APC) [63]. This finding suggests that certain HDACi may actively and
sustainably stimulate the immune system by inducing immunogenic cell death, resulting in adaptive
immune responses and the establishment of immunological memory (Table 2).

Finally, some HDACi target all HDACs inducing several effects on the immune system. For instance,
AR42 and panobinostat provoke an upregulation of MHC class I/II and of MICA/MICB on tumor
cells, an increase in tumor infiltration by T cells and a decrease in the number of immunosuppressive
MDSC [56–60,62]. These findings were evaluated in a phase II clinical trial enrolling Hodgkin
lymphoma patients. In this study, a significant decrease of serum cytokines levels and the suppression
of T-cell PD-1 expression after the use of panobinostat was reported, further underlining the immune
effects of panobinostat [61] (Table 2, Figure 2).
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Figure 2. Epigenetic modifiers from the group of histone deacetylase inhibitors (HDACi) affect the
accessibility of chromatin and therefore impact on transcription. HDACi induce the release and
exposure at the cellular surface of danger-associated molecular patterns (DAMPs) such as high mobility
group box 1 (HMGB1), calreticulin (CALR), heat shock protein 70 (HSP70), and a range of chemokines.
In addition, the expression of KLRK1 (better known as NKG2D) ligands and major histocompatibility
complex (MHC) is increased. DNA methyltransferase inhibitors (DNMTi) affect the antigenicity of
tumors by the de novo expression of cancer testis antigens, the availability of MHC molecules, and
the concomitant release of chemokines. Independent from tumor specific effects, epigenetic modifiers
also exert direct stimulatory effects on immune cells, including macrophages and T cells. Altogether, a
combination treatment employing epigenetic modifiers together with immune checkpoint targeting
might potentiate the immune response against cancer.

2.2. DNMT Inhibitor

DNMT inhibitors (DNMTi) such as 5-azacytidine (azacytidine) and decitabine are the most
frequently used epigenetic modulators employed in clinical routine for the treatment of malignant
diseases. Synthetized 40 years ago, these agents show an effective anti-metabolic activity on cancer
cells, especially in the setting of acute myeloid leukemia (AML). After administration, DNMTi inhibit
DNA methylation and silence regulatory genes critical for diverse metabolic circuitries. DNMTi also
induce complex biological effects on the immune system as shown in vitro in different models of solid
tumors in which decitabine increased the expression of cancer-testis antigens and MHC class I on
cancer cells and enhanced tumor cells lysis by CTL [64–69] (Table 3).
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Table 3. DNMT inhibitors.

Epigenetic Modifiers Type of Cancer Effect on Immune System Observations Reference

Decitabine Ovary Increased expression of cancer-testis
antigens.

In vitro: Human ovarian cancer lines
CAOV-3, CAOV-4, COV413, ES-2, OV-90,
OVCAR-3, SK-OV-3, SW626, TOV-21G,

TOV-112D, and TTB-6, C1R-A2, and
C1R-A3.

[64]

Decitabine Sarcoma Upregulation of cancer-testis antigens.
Enhanced tumor cells lysis by CTL.

In vitro: Rhabdomyosarcoma,
osteosarcoma and Ewing’s sarcomas. [65]

Decitabine Prostate Induced expression of a prostate
cancer-testis antigen SSX2.

In vitro: LAPC4, MDA-PCa-2b human
prostate cancer cells. [70]

Decitabine Melanoma
Induced MAGEA1 expression and tumor

cell lysis by MAGEA1 specific major
histocompatibility complex restricted CTL.

In vitro: 888-mel human melanoma cells. [66]

Decitabine Melanoma

Upregulation of MHC class I antigens and
of ICAM-1, increased lysis of tumor cells by

melanocyte protein Pmel-1 specific CTL
with enhanced IFNγ release.

In vitro: Mel 275 human melanoma cells. [71]

Decitabine Melanoma Induction of cancer-testis antigens. In vivo: Melanoma cells grafted into
BALB/c and nu/nu mice. [67]

Decitabine Melanoma

Upregulation of HLA-A and -B
transcription, cell surface expression of

MHC class I antigens, and enhanced tumor
cell recognition by MAGE-specific CTL.

In vitro: MSR3-mel human melanoma cells. [72]

Decitabine Neuroblastoma
Upregulation of MAGEA1, MAGEA3, and

CTAG1B and CTL-mediated tumor cell
killing.

In vitro: BE2C, NBL-S, Kelly, NGP, SHSY5Y,
EB2M17, IMR32SKN-AS, SKN-SH, SKNMC,

CHP134 neuroblastoma cells.
[68]

Decitabine Leukemia

Upregulation of MAGEA1, MAGEA3,
MAGEB2, and CTAG1B. Increased

susceptibility of tumor cells to
antigen-specific recognition by CTL.

In vitro: U937, human myeloid leukemia,
HL60 human promyelocytic leukemia cells,

THP-1 human monocytic leukemia cells,
and Kasumi-1 human leukemia cells.

[69]

Decitabine
MDS,

CMML,
AML

Enhanced PD-L1, PD-L2, PD-1, CTLA4
expression in tumor cells.

In vitro: KG-1, HL-60, NB4, THP1, U937,
ML1, OCI-AML3, and HEL human acute

myeloid leukemia cells and cells from MDS,
CMML, and AML patients.

[73]

Decitabine Lymphoma

Induced CD80 expression in cancer cells
that stimulates specific T lymphocyte

responses.
Infiltration of IFN-γ producing T

lymphocytes into tumors.

In vitro: EL4 mouse lymphoma cells.
In vivo: EL4 cells injected into mice C57Bl/6. [74]

Azacitidine Breast colorectal
ovary

Upregulation of IFN signaling, antigen
processing and presentation,

cytokines/chemokines, and cancer testis
antigens.

In vitro: Breast, colorectal and ovarian
cancer cells. [75]

Azacitidine MDS

Decreased number of Treg and T-helpers
in vitro and in patients.

Reduced suppressive function of Treg
Increased production of IL-17.

In vitro: Treg and T-helpers isolated from
MDS patients.

Peripheral blood T cells from patients.
[76]

Azacitidine NSCLC Upregulation of genes involved in innate
and adaptive immunity and PD-L1.

In vitro: NSCLC human non-small cell lung
carcinoma cells. [77]

Azacitidine, Decitabine Osteosarcoma,
fibrosarcoma Increased plasma HMGB1 levels.

In vitro: U2OS human osteosarcoma cells
and MCA205 mouse fibrosarcoma cells.

In vivo: C57BL/6 mice.
[27]

CTL, cytotoxic T lymphocyte; ICAM, intracellular cell adhesion molecule-1; IFN, interferon. AML, acute myeloid
leukemia; CMML, chronic myelomonocytic leukemia; MDS, myelodysplastic syndrome; NSCLC, non-small cell
lung cancer.

Azacytidine also exhibited clinically relevant immunomodulatory effects in myelodysplastic
syndrome (MDS). In vitro, azacytidine induced the demethylation of the Foxp3 promoter, which in
turn decreased the proliferation and the suppressive function of Treg. More interestingly, the number of
Treg observed in the peripheral blood of MDS patients was significantly lower in patients responding
to 5-azacytidine treatment as compared to non-responders [76]. In a model of NSCLC that commonly
exhibits DNA hypermethylation, the upregulation of PD-L1 transcripts and protein was observed
upon treatment with 5-azacytidine [77] and similarly an induction of PD-L1, PD-1, PD-L2, and CTLA-4
expression was noticed in a cohort of leukemia treated with decitabine [73]. This important finding
allows us to hypothesize that epigenetic modifiers could be combined with immune checkpoint
blockers targeting CTLA-4, PD-1, or PD-L1 to potentiate the immune response against cancer (Table 3).

Interestingly, some groups have demonstrated that DNMTi were able to induce HMGB1 release
from the nucleus in osteosarcoma and fibrosarcoma models. HMGB1 release is a hallmark of
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immunogenic cell death, a specific cell death modality which stimulates adaptive anticancer immune
responses [63]. This finding implies that the epigenetic status may not only change the interaction of
chromatin with chaperon proteins but contribute to antitumor immune response. DNMTi could be
used in combination with agents that induce only partial immunogenic cell death, to compensate a
lack of HMGB1 release and boost anticancer immune responses [27] (Table 3, Figure 2).

2.3. Combination of DNMT and HDAC Inhibitors

Some studies addressed the possibility of combining several epigenetic agents. The combination
of DNMT and HDAC inhibitors allowed the restoration of MHC class I molecule expression, as well
as reactivation of other parts of the antigen-presenting machinery in a model of HPV16-associated
tumors deficient for MHC class I molecules. This upregulation was efficient enough to induce tumor
lysis by CTL after tumor antigen recognition [78]. Another immunoepigenetic approach combining
promoter demethylation and histone acetylation by means of decitabine and TSA, respectively, revealed
induction of MAGE gene family members [79]. Several alternative combinations of DNMTi and HDACi
induced the expression of tumor-associated antigens, promoted lymphocyte infiltration of cancers, and
promoted immune response against malignant cells [80]. Moreover, some combinations potentiated
the expression of PD-1, PD-L1, PD-L2, and CTLA-4 [73,81]. In summary, these data suggest that
immunoepigenetic manipulations might be combined with immunotherapies for optimal therapeutic
response (Table 4).

Table 4. Combination of DNMT and HDACi.

Epigenetic Modifiers Type of Cancer Effect on Immune System Observations Reference

TSA + Azacytidine HPV16-associated
tumor

Induction of surface re-expression of
MHC class I molecules leading to lysis

by CTL.
Upregulation of antigen-presenting

machinery.

In vitro: TC-1/A9, murine tumor cell line
expressing the oncogenes E6 and E7 from
human papilloma virus 16 and deficient

in MHC class I expression.

[78]

Decitabine + TSA Breast,
colorectal

Upregulation of MAGE gene
expression.

In vitro: WiDr human colorectal
adenocarcinoma cells, MCF-7 human

breast adenocarcinoma cells,
MDA-MB-231 triple-negative breast

cancer cells.

[79]

Decitabine +
depsipeptide

Esophagus, pancreas,
ovary, mesothelioma,
osteosarcoma, lung

Increased expression of tumor antigen
CTAG1B on tumor cells, resulting in
IFNγ responses by antigen specific T

cells.

In vitro: BE-3 human esophageal
carcinoma cells, H2373 human pleural

mesothelioma cells, Panc-1 human
pancreatic cancer cells, OVCAR-3 human

ovarian cancer cells, LNZAT3WT4
human osteosarcoma cells, H1299

non-small cell lung carcinoma cells.

[82]

VPA, SAHA,
decitabine MPM

Tumor antigen expression and tumor
cell killing by CTL; decitabine + VPA

inhibit promote lymphocyte infiltration
and enhance T-cell antitumor response

in vivo.

In vitro: Human epithelioid
mesothelioma cells (established from

pleural effusion).
In vivo: AK7 murine mesothelioma cells

injected into C57BL/6 mice.

[83]

Vorinostat, VPA,
panobinostat +

entinostat
TNBC Upregulation of PD-L1 mRNA and

protein expression in tumor cells.
In vitro: TNBC triple-negative breast

cancer cells. [81]

VPA + Romidepsin Lymphoma Increased CD20 expression.

In vitro: HBL-2 human mantel cell
lymphoma cells, TK and B104 human

diffuse large B-cell lymphoma cells,
Daudi, BJA-B, Namalwa, Raji and Ramos,
five human Burkitt lymphoma-derived

cells.

[84]

VPA + Hydralazine Osteosarcoma

Increased expression of cell surface
CD95, cell surface MICA, and MICB.

Enhanced susceptibility of tumor cells
to CD95 and NK cell-mediated cell

death.

In vitro: Human osteosarcoma cell lines
HOS,

U2OS and SaOS-2.
[80]

Vorinostat +
Azacitidine

MDS,
AML,

CMML

Upregulation of PD-L1, PD-L2, PD-1,
and CTLA-4 expression.

Phase II clinical trial: CD34+ cells from
MDS, CMML, and AML patients. [73]

AML, acute myeloid leukemia; CLC, chronic myelomonocytic leukemia; CTL, cytotoxic T lymphocyte; HPV, human
papilloma virus; IFN, interferon; MDS, myelodysplastic syndrome; MPM, malignant pleural mesothelioma; NK,
natural killer; SAHA, suberoylanilide hydroxamic acid; TNBC, triple-negative breast cancer. CMML, chronic
myelomonocytic leukemia.
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3. Epigenetic Modifiers Combined with Immunotherapies

3.1. Histone Deacetylase Inhibitors and Immunotherapies

3.1.1. Selective Histone Deacetylase Inhibitors

Increasing evidence suggests that epigenetic agents boost the immune system by enhancing the
expression of tumor antigens and cytokines including chemokines involved in the antitumor response.
It is thus tempting to speculate, yet needs to be formally proven, that the combination of epigenetic
modifiers with immunotherapies such as checkpoint blockers would achieve optimal immune response
against tumor cells.

Class I HDAC inhibitors induce PD-L1 and PD-L2 expression in tumors cells. This durable and
stable upregulation is facilitated by the histone acetylation of the PD-L1 and PD-L2 genes and was
observed in vitro and in vivo in different solid tumor models [85,86]. Tumor-bearing mice receiving
class I HDACi combined with PD-1 blockade exhibited a significant reduction in tumor growth and a
better overall survival compared to mice receiving single agents [85–88] (Table 5).

Table 5. Selective histone deacetylase inhibitors combined with immunotherapies.

Epigenetic Modifiers +
Another Drug Type of Cancer Effect on Immune System Observations Reference

Entinostat + IL-2 or
entinostat + survivin-based

vaccine therapy

Kidney
Prostate Reduction of Foxp3 levels in Treg.

In vivo: Murine renal cell carcinoma
(RENCA) model or a survivin-based

vaccine therapy in castration-resistant
prostate cancer (CR Myc-CaP, mouse

prostate cancer cells).

[89]

Entinostat + oncolytic virus
therapy Melanoma

Enhanced oncolytic activity of vesicular
stomatitis virus, preserved secondary

tumor-specific CTL and antibody responses,
enhanced viral vector-induced
lymphopenia, and reduce Treg.

In vivo: Mice bearing 5-day-old
intracranial B16/F10 melanoma. [90]

Entinostat + IL-2 Kidney Increased number of CD4+ CD25+ T cells
Decreased number of Treg.

In vivo: Murine renal cell carcinoma
(RENCA) luciferase-expressing cells

implanted in BALB/c mice.
[91]

Romidepsin + anti PD-1 Lung
Enhanced response to PD-1 blockade and

IFNγ-dependent tumor rejection; enhanced
activation of tumor-infiltrating T cells.

In vivo: LKRm 13 lung cancer cells
injected in 129S4/SvJaeJ mice. [35]

Depsipeptide + immune cell
adoptive transfer therapy Melanoma Enhanced CTL-mediated tumor cell lysis;

decreased metastatic tumor growth. In vivo: B16/F10 injected in C57BL/6 mice. [36]

Mocetinostat +
atezolizumab TNBC Increased PD-L1 expression.

In vitro: MDA-MB-231, BT-20,
MDA-MB-468, BT-549, HS-578T human

breast cancer cells.
[86]

Mocetinostat + anti PD-L1 Colon
Increased CD8 cells and decreased Treg
cells. Increased anti-tumor activity and

clonality of the T-cell repertoire.

In vivo: CT26 mouse colon carcinoma
cells injected in BALB/c mice. [87]

Entinostat + anti PD-1 Lung
Kidney

Inhibition of immunosuppressive function
of polymorphonuclear- and

monocytic-myeloid derived suppressor
cells, down-regulation of Treg Increased

infiltration of CD8.

In vivo: Renal carcinoma mouse model
(RENCA), LLC: Murine Lewis lung

carcinoma.
[92]

Nexturastat A + anti PD-1 Melanoma

Enhanced infiltration of immune cells.
Increased T cell memory.

Reduced pro-tumorigenic M2 macrophages.
Neutralized the upregulation of PD-L1
Increased expression of MHC class II.

SM1 mouse melanoma cells. [88]

Ricolinostat + bromodomain
inhibitor JQ1 NSCLC

Enhanced activation of tumor infiltrating
CD8 T cells and secretion of effector

cytokine IFNγ, Increased CD8/Treg ratio.

In vivo model: Lung tumor induction in
mice with Cre-encoding adenovirus

intranasally injection.
[93]

Panobinostat
+ anti PD-1 Melanoma Upregulation of PD-L1 and PD-L2

expression in melanoma cells.
In vivo: C57BL/6 mice inoculated with

B16/F10 melanoma cells. [85]

CTL, cytotoxic T lymphocyte; IFN, interferon; NSCLC, non–small cell lung cancer; TNBC, triple-negative breast
cancer; LLC, Lewis lung carcinoma.

Entinostat as stand-alone treatment exhibited efficient responses by suppressing Treg and
increasing CD8 T cell infiltration into the tumor microenvironment. Combined with IL-2 or peptide
vaccine therapies in a model of kidney cancer or in a castration resistant prostate cancer, this immune
effect resulted in tumor growth inhibition and improved overall survival [89,91]. HDACi are known to
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modulate innate antiviral responses. Surprisingly, coadministration of entinostat and an oncolytic
booster vaccine suppressed the primary response against the vaccine vector and extended oncolytic
activity. However, it enhanced the secondary response against tumor antigen, reduced the frequency
of Treg expressing high level of Foxp3, and improved the outcome [90] (Table 5).

3.1.2. Non-Selective Histone Deacetylase Inhibitors

The family of non-selective HDACi is able to increase the expression of tumor-associated antigens.
For instance, the treatment of murine melanoma with non-selective HDACi combined with the adoptive
transfer of gp100 melanoma antigen-specific T cells improved the antitumor immune response and
reduced tumor growth. The immune response to the combination treatment was characterized by (i)
an increase in MHC and tumor-associated antigen expression on the tumor cell surface facilitating
tumor cells lysis by CTL, (ii) a decrease in Treg in the tumor microenvironment, and (iii) an improved
activity and expansion of adoptively transferred T cells [94,95] (Table 6).

Table 6. Non-selective histone deacetylase inhibitors combined with immunotherapies.

Epigenetic Modifiers +
Another Drug Type of Cancer Effect on Immune System Observations Reference

Vorinostat and panobinostat
+

anti CD40 and
anti CD137

Solid tumors Stimulation of uptake of dead tumor cells
by APCs.

In vivo: Mice with established tumors:
4T1.2 (breast), MC38 (colon), or renal

(RENCA) murine carcinoma.
[24]

Dacinostat +
Pmel-1 immunotherapy Melanoma Increased expression of MHC and

tumor-associated antigen on tumor cells.
In vivo: B16/F10 mouse melanoma

(C57BL/6 mice). [94]

Panobinostat + Pmel-1
immunotherapy Melanoma

Reduced Treg.
Induction of the expression of IL-2 receptor
and the co-stimulatory molecule CD134 in

T cells.

In vivo: B16/F10 mouse melanoma
(C57BL/6 mice). [95]

TSA + cytokine induced
killer cells Ovary

Increased expression of MICA and MICB in
tumor. Increased antitumor activity of

cytokine induced killer cells.

In vivo: UCI-101 implanted
subcutaneously into nu/nu mice. [58]

Vorinostat + anti PD-1 TNBC Increased T cell and decreased Treg tumor
infiltration.

In vivo: Triple-negative 4T1 breast cancer
mouse model. [81]

AR42 + pazopanib Melanoma
Increased expression of class I MHC
molecule and enhanced HMGB1 and

HSP70 release.

In vivo: MEL28-R human melanoma
tumors isolated from mice. [60]

AR42 or VPA +
anti PD-1 Melanoma

Increased levels of CCL2, CCL5, CXCL9,
and CXCL2. Improved activated T cell, M1

macrophages, neutrophils, and NK cell
infiltration.

In vivo: B16 mouse melanoma model. [60]

Panobinostat +
daratumumab Myeloma Increased CD38 expression and

antibody-dependent cellular cytotoxicity. In vitro: MM1.S human myeloma cells. [96]

VPA + Rituximab Lymphoma
Increased cytotoxicity activity of rituximab
through upregulated expression of CD20 by

VPA.

In vivo: BJA-B cells injected in non-obese
diabetic immunodeficiency (NOD/SCID)

mice.
[84]

APC, antigen-presenting cell; CTL, cytotoxic T lymphocyte; HMGB1, high mobility group box 1; HSP, heat shock
protein; MHC, major histocompatibility complex; NK, natural killer; TNBC, triple-negative breast cancer; VPA,
valproic acid.

Combination of non-selective HDACi with immune-activating antibodies such as anti-CD40,
anti-CD137, or with immune checkpoint blockers allowed researchers to obtain tumor eradication
through similar biological mechanisms such as exacerbated phagocytosis of dead tumor cells, the
optimization of antigen presentation by APC, an increase in T cells and a decrease of Tregs in the tumor
microenvironment [24,60,81] (Table 6).

In myeloma and lymphoma, HDACi treatment was shown to activate the expression of CD20
and CD38 subsequent to histone hyperacetylation and to increase their abundance on the cell surface.
HDACi potentiates the therapeutic effects of rituximab and daratumumab to slow down tumor growth.
This strategy may be useful in case of daratumumab or rituximab resistance in myeloma or lymphoma
diseases [84,96].
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3.2. DNMT Inhibitor

Few studies evaluated the impact of immunotherapy effect in synergy with DNMTi. In
a murine model for HPV16-associated tumor, 5-azacytidine combined with unmethylated CpG
oligodeoxynucleotides or with IL-12-producing cellular vaccine demonstrated additive effects
improving CD8-mediated immune responses [97]. Decitabine and anti CTLA-4 potentiated the
recruitment of innate and adaptive immune effectors [98]. The co-administrated with photodynamic
therapy, which leads to the production of reactive oxygen species, vascular damage, and cell death,
DNMTi potentiated antitumor effects by inducing the expression of a silence tumor-associated antigen
called P1A [99]. Finally, in a phase II clinical trial, the combination of DNMTi with conventional
treatment for multiple myeloma (lenalidomide and autologous stem cell transplantation) followed by
autologous lymphocyte infusion induced a high immunogenic cancer testis antigen expression in bone
marrow or in CD138 cells allowing specific T lymphocytes response. This finding raised the possibility
of triggering a protective immune response decreasing the risk of progression in multiple myeloma
patients [100] (Table 7).

Table 7. DNMT inhibitors combined with immunotherapies.

Epigenetic Modifiers +
Another Drug Type of Cancer Effect on Immune System Observations Reference

5-azacytidine + non-specific
immunotherapy CpG

oligodeoxynucleotides or
IL-12-producing cellular

vaccine

HPV16
associated tumors

Induction of CD8 cell-dependent
mechanisms.

Increased cell surface expression of MHC I,
antigen-presenting machinery and

IFNγ-signaling pathway.

In vivo: TC-1/A9 tumors cells
(HPV16-associated tumors) transplanted

into C57BL/6 mice.
[97]

Decitabine +
anti CTLA-4 Ovary

Upregulation of chemokines recruiting NK
and CD8 T cells, enhancing production of

IFNγ and TNFα.

In vivo: BR5FVB1-Akt mouse epithelial
ovarian cancer cells inoculated into FVB

mice.
[98]

Decitabine + PDT
Lung,
Breast,
Colon

Induced expression of a silenced
tumor-associated antigen P1A.

In vivo: Lewis lung carcinoma, 4T1 and
EMT6 mouse mammary carcinoma, CT26

mouse colon carcinoma.
[99]

Azacitidine + Lenalidomide
+ autologous stem cell

transplantation
Multiple myeloma Upregulation of cancer testis antigens

inducing specific T cell response. Phase II clinical trial. [100]

IFN, interferon; MHC, major histocompatibility complex; NK, natural killer; PDT, photodynamic therapy; TNF,
tumor necrosis factor.

3.3. Combination of DNMT and HDAC Inhibitors

IFNα potentiates the growth inhibitory activity of azacytidine and romidepsin. In a model of
colorectal cancer, cotreatment of cells with inhibitors of both DNMT and HDAC combined with IFN
type I triggered several hallmarks of immunogenic cell death (calreticulin exposure and HMGB1 release)
enhancing the recruitment into tumor bed of dendritic cells and their maturation into antigen-presenting
cells thus facilitating tumor cell lysis by CTL [101]. This novel combination promises a new approach
for colorectal cancer (Table 8).

Table 8. DNMT and HDAC inhibitors combined with immunotherapies.

Epigenetic Modifiers +
Another Drug Type of Cancer Effect on Immune System Observations Reference

5-azacytidine + entinostat +
anti PD-1/anti CTLA-4 Breast Circulating MDSC decrease. In vivo: 4T1 tumor-bearing mice. [102]

Azacitidine + romidepsin +
IFNα

Colorectal
CALR translocation,

HMGB1 release, DC-mediated
phagocytosis of drug-treated cancer cells.

In vitro: SW620, CTSC#18 colorectal
cancer cells.

In vivo: SW620, CTSC#18 developing in
NOD-SCID mice.

[101]

CALR, calreticulin; DC, dendritic cell; HMGB1, high mobility group box 1; IFN, interferon; MDSC, myeloid-derived
suppressor cell.

4. Conclusions

Epigenetic variations are at the origin of changes in gene expression involved in the manifestation
of fatal diseases such as cancer. New findings reveal the evidence that epigenetic regulation may
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also influence the immune system through several pathways. The renewed interest in epigenetic
research focuses on pharmacological interventions that reverse epigenetic cancer hallmarks. Such
treatments may involve epigenetic modifiers as single agents or combined with various established
immunotherapies, as DNMT and HDAC inhibition can result in the release of DAMP and the expression
of tumor-associated antigens, respectively. Thus, combination therapies consisting of immunotherapy
in conjunction with epigenetic modifiers that increase both the adjuvanticity and the antigenicity of
cancer are promising approaches to reactivate T-cell mediated adaptive immunity against cancer and
to reinstate tumor immunosurveillance.
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Abbreviations

AML acute myeloid leukemia
ICAM intracellular cell adhesion molecule-1
IL interleukine

APC antigen-presenting cell IDO indoleamine 2,3-dioxygenase

CALR calreticulin
IFN Interferon
LLC Lewis lung carcinoma
MDSC myeloid derived suppressor cell

CLC chronic myelomonocytic leukemia MHC major histocompatibility complex
CMML chronic myelomonocytic leukemia MPM malignant pleural mesothelioma
CTL cytotoxic T lymphocyte MIC MHC class I-related chain A and B
DC dendritic cell NK natural killer
DNA deoxyribonucleic acid PDT photodynamic therapy
DNMT DNA methyltransferase RNA ribonucleic acid
FDA Food and Drug Administration SAHA suberoylanilide hydroxamic acid
HDAC histone deacetylase

TNBC triple-negative breast cancerHL Hodgkin lymphoma
HMG high mobility group
HPV human papilloma virus TNF Tumor necrosis factor
HSP heat shock protein TSA Trichostatin A

VPA valproic acid
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