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Abstract: Malignant hematopoietic cells of myelodysplastic syndromes (MDS)/chronic myelomonocytic
leukemias (CMML) and acute myeloid leukemias (AML) may be vulnerable to inhibition of poly(ADP
ribose) polymerase 1/2 (PARP1/2) and apurinic/apyrimidinic endonuclease 1 (APE1). PARP1/2 and
APE1 are critical enzymes involved in single-strand break repair and base excision repair, respectively.
Here, we investigated the cytotoxic efficacy of talazoparib and APE1 inhibitor III, inhibitors of PARP1/2
and APE1, in primary CD34+ MDS/CMML cell samples (n = 8; 4 MDS and 4 CMML) and in primary
CD34+ or CD34− AML cell samples (n = 18) in comparison to healthy CD34+ donor cell samples
(n = 8). Strikingly, talazoparib and APE1 inhibitor III demonstrated critical antileukemic efficacy in
selected MDS/CMML and AML cell samples. Low doses of talazoparib and APE1 inhibitor III further
increased the cytotoxic efficacy of decitabine in MDS/CMML and AML cells. Moreover, low doses of
APE1 inhibitor III increased the cytotoxic efficacy of talazoparib in MDS/CMML and AML cells. In
summary, talazoparib and APE1 inhibitor III demonstrated substantial antileukemic efficacy as single
agents, in combination with decitabine, and combined with each other. Hence, our findings support
further investigation of these agents in sophisticated clinical trials.

Keywords: myelodysplastic syndrome; chronic myelomonocytic leukemia; acute myeloid
leukemia; talazoparib; APE1 inhibitor III; poly(ADP ribose) polymerase 1/2; apurinic/apyrimidinic
endonuclease 1

1. Introduction

Survival of patients belonging to the unfavorable risk groups of myelodysplastic syndromes
(MDS)/chronic myelomonocytic leukemias (CMML) and acute myeloid leukemias (AML) is poor
after standard antileukemic therapy [1–5]. Resistance to classical “7 + 3 chemotherapy” (cytarabine,
daunorubicin) is common, and a substantial proportion of these patients is not eligible for allogeneic
bone marrow transplantation. DNA methyltransferase inhibitors (DNMTi) (e.g., decitabine, azacytidine)
may facilitate temporary remissions [6–10]; however, after failure to DNMTi, the median overall survival
decreases to below six months [11–14].
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Recent advances in the understanding of the biology of MDS/CMML and AML led to the
development of novel targeted and untargeted agents (e.g., IDH inhibitors, FLT3 inhibitors, splicing
modulators, novel DNMTi, anti-CD33 antibodies) [15–20]. In this context, inhibitors of poly(ADP-ribose)
polymerase (PARP) 1/2 and apurinic/apyrimidinic endonuclease (APE) 1 may represent innovative
DNA repair inhibitors that target MDS/CMML and AML cells by inhibition of single-strand break
repair (SSB-R) and base excision repair (BER), respectively.

Talazoparib is a potent inhibitor of PARP1, which is involved in SSB-R and BER [21]. PARP1
senses and binds to single-strand breaks (SSBs) and synthesizes branched chains of poly(ADP-ribose)
of up to several hundred units in length on itself and target proteins [22–24]. Talazoparib leads to the
accumulation of SSBs, which may convert into DNA double-strand breaks (DSBs) eventually leading to
cell death in DSB repair deficient cells [25,26]. In addition, talazoparib traps PARP1 at sites of damaged
DNA and generates cytotoxic PARP1-DNA complexes, which may account for the main cytotoxic
efficacy [27]. Recently, it has been demonstrated that low doses of DNMTi increase the trapping of
PARP1 on DNA, which may enhance the killing of leukemic cells [28].

The APE1 inhibitor III inhibits APE1 [29], which is a key protein in BER [30]. After resection of
the damaged base by glycosylases, APE1 cleaves the phosphodiester bound and creates a nick 5´ to the
apurinic/apyrimidinic (AP) site. The AP site is then processed either by the short patch or the long
patch BER pathway [31,32]. Inhibition of APE1 causes accumulation of AP sites, which block regular
DNA synthesis [33]. As a result, stalled replication forks may collapse and convert into DSB [34],
which then leads to death in DSB repair deficient leukemic cells [35].

Finally, 5-aza-2´-deoxycytidine (decitabine) is a potent DNMTi, which is used for the treatment of
MDS/CMML [6–8] and AML [7,10]. Although the exact mechanism of action is not yet fully understood,
it has been shown that decitabine modifies the epigenetic signature in MDS/CMML and AML cells
and induces cell death by activation of tumor suppressor genes and silencing of oncogenes [36,37].
In addition, decitabine is misincorporated as a cytosine analogue during DNA replication and binds
covalently DNMT1 to form cytotoxic DNMT1-DNA complexes [38].

In this study, we analyzed the antileukemic efficacy of talazoparib and APE1 inhibitor III in
MDS/CMML and AML cells with defects in DSB repair. The cytotoxic efficacy of talazoparib and APE1
inhibitor III were tested alone, combined with decitabine, and combined with each other in primary
CD34+ MDS/CMML cells and in primary CD34+ or CD34− AML cells in comparison to healthy CD34+

donor cells. We further analyzed the correlation of distinct parameters and biomarkers including cell
proliferation, PARP1/APE1 mRNA expression, γH2AX foci levels, chromosomal aberrations, and gene
mutations with cell survival.

2. Results

2.1. Cytotoxic Efficacy of Talazoparib and APE1 Inhibitor III in MDS/CMML and AML Cells

The cytotoxic efficacy of talazoparib and APE1 inhibitor III was analyzed after 3 d of initial expansion
followed by 3 d of treatment in CD34+ MDS/CMML cells (n = 8; 4 MDS and 4 CMML samples) and
in CD34+ or CD34− AML cells (n = 18) in comparison to healthy CD34+ donor cells (n = 8) (Table 1,
Figure 1). The comparison of IC50 values showed significantly increased (p = 0.016) cytotoxic efficacy of
talazoparib in 2 MDS/CMML (MDS#2, CMML#2) and 3 AML cell samples (AML#1, AML#2, AML#3)
(7 nM ± 2 (mean IC50 ± standard error of mean)) as compared to the 8 healthy donor cell samples (16
nM ± 2) (Figure 1A). The ’responder rate’ of MDS/CMML/AML samples towards talazoparib was about
19%. Furthermore, the cytotoxic efficacy of APE1 inhibitor III was substantially increased (p = 0.059) in
1 MDS (MDS#2) and 5 AML cell samples (AML#1, AML#2, AML#3, AML#6, AML#12) (603 nM ± 71)
as compared to the cytotoxic efficacy in 8 healthy donor cell samples (1041 nM ± 149) (Figure 1B). The
’responder rate’ of MDS/CMML/AML samples towards APE1 inhibitor III was about 25%. Interestingly, 1
MDS (MDS#2) and 3 AML samples (AML#1-3) were ‘responders’ towards both talazoparib and APE1
inhibitor III.
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Table 1. Characterization of myelodysplastic syndrome/chronic myelomonocytic leukemia and acute myeloid leukemia bone marrow samples. APE1i: APE1 inhibitor
III; CMML-0/1/2: chronic myeloid leukemia-0/1/2; Dec: decitabine; FISH: fluorescence in situ hybridization; IC50: half maximal inhibitory concentration; MDS-EB-1:
myelodysplastic syndrome with excess blasts; MDS-MLD: myelodysplastic syndrome with multilineage dysplasia; sAML: secondary acute myeloid leukemia;
Tal: talazoparib.

IC50 [nM]
# Age/Sex Disease Karyotype/FISH Mutations Tal APE1i Dec Dec + Tal Dec + APE1i Tal + APE1i

HEALTHY#1 25/♂ Healthy 46,XY[20] - 20 1359 254 58 206 19
HEALTHY#2 23/♀ Healthy 46,XX[20] - 28 392 23 - - -
HEALTHY#3 77/♀ Healthy 46,XX[20] - 12 1195 156 52 128 10
HEALTHY#4 26/♂ Healthy 46,XY[20] - 10 882 99 24 55 7
HEALTHY#5 21/♂ Healthy 46,XY[20] - 14 724 113 14 102 8
HEALTHY#6 22/♀ Healthy 46,XX[20] - 10 1697 111 26 111 10
HEALTHY#7 21/♀ Healthy 46,XX[20] - 14 1305 147 35 123 12
HEALTHY#8 25/♀ Healthy 46,XX[20] - 17 775 186 23 166 11

MDS#1 59/♂ MDS-EB-1
46,XY,-7,der(9)t(9;20)(p21;q13),

der(20)t(9;20)(p21;q11),+der(20)
t(9;20)(p21;q11)[17]/46,XY[3]

CBL, DNMT3A (VAR),
EZH2 (VAR), FLT3-ITD 20 1357 160 48 137 19

MDS#2 73/♀ MDS-MLD 46,XX[20] ASXL1, GATA2, RUNX1,
U2AF1 6 509 9 3 8 5

MDS#3 68/ ♂ MDS-MLD 45,X,-Y[8]/45,X,-Y,del(1)(p34p36)[12] ASXL1, U2AF1 26 1281 107 24 60 21
MDS#4 57♀ MDS-EB-1 46,XX[20] ASXL1 31 2921 185 89 181 36

CMML#1 77/♂ CMML-1 46,XY,t(2;2)(p23;q32)[10]/47,XY,
t(2;2)(p23;q32),+8[2]/46,XY[9]

ASXL1, CEBPA, IDH1,
RUNX1, SRSF2 28 1095 42 25 32 28

CMML#2 73/♀ CMML-2 46,XX[20] ASXL1, CEBPA, EZH2
(VAR), TET2 13 1286 210 62 159 11

CMML#3 84/♂ CMML-0 46,XY[20] DNMT3A, RUNX1,
SRSF2, TET2 175 1008 121 42 67 47

CMML#4 65/♂ CMML-2 46,XY[20] ASXL1, IDH2, NRAS,
PTPN11, ZRSR2 47 1954 153 48 122 35

AML#1 79/♂ sAML 46,XY[29] ASXL1, FLT3-ITD,
RUNX1, SF3B1 5 350 238 19 196 3

AML#2 63/♂ sAML 46,XY[25]

JAK2, KMT2A-PTD
(MLL-PTD),

NRAS, SRSF2, TET2
(VAR)

8 564 28 - - -

AML#3 76/♂ sAML 46,XY[17]
BCOR, DNMT3A,

KMT2A-PTD (MLL-PTD),
NRAS, TET2, U2AF1

5 593 119 18 100 4

AML#4 63/♀
de novo
AML

46,XX,t(7;9)(q22;q34),add(17)(p12)
[22]/46,XX[3]

ASXL1, DNMT3A,
PTPN11, RUNX1 65 2407 172 93 137 84
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Table 1. Cont.

IC50 [nM]
# Age/Sex Disease Karyotype/FISH Mutations Tal APE1i Dec Dec + Tal Dec + APE1i Tal + APE1i

AML#5 78/♂ sAML 47,XY,+8[3]/46,XY[17] ASXL1, IDH2, SRSF2 31 1148 135 73 96 17

AML#6 83/♂
de novo
AML 46,XY[20] - 30 793 268 223 293 28

AML#7 72/♂ sAML 46,XY[20] ASXL1, IDH2, SF3B1 44 1867 416 389 347 32

AML#8 70/♀
de novo
AML 46,XX[20] FLT3-ITD, NPM1, TET2 16 1122 91 92 64 15

AML#9 53/♀
de novo
AML 46,XX[25] DNMT3A, FLT3-TKD,

IDH1, NPM1, NRAS 33 5781 348 763 642 85

AML#10 33/♀
de novo
AML 46,XX[20]

DNMT3A (VAR),
FLT3-ITD,

KMT2A-PTD (MLL-PTD),
KRAS

38 3511 100 46 59 17

AML#11 66/♂
de novo
AML 47,XY,+8[13]/46,XY[7] ASXL1, DNMT3A, IDH2,

RUNX1, SRSF2 34 2893 51 34 35 25

AML#12 68/♀
de novo
AML

51,XX,+1,der(2)t(2;12),der(5)
t(5;13),+8,

+11,der(12),-der(13),+15,+19,+mar[25]
TP53 505 808 215 - 231 -

AML#13 89/♂ sAML 47,XY,+8[23]/46,XY[2] - 34 2131 205 294 318 119

AML#14 47/♂
de novo
AML

42-46,XY,t(1;4)(p33;q35),del(3q),
add(6q),-13,

-15,-16,-17,-18,+19,+2-4mar [cp15]
DNMT3A, TP53 55 - - - - -

AML#15 63/♂
de novo
AML 46,XY[11] IDH2, NPM1, SRSF2 32 - 756 306 3077 40

AML#16 69/♂ sAML 47,XY,+21[6]/46,XY[14] DNMT3A, KMT2A-PTD
(MLL-PTD), RUNX1 19 1443 172 88 136 21

AML#17 69/♂ sAML 46,XY[26] FLT3-ITD, GATA2, WT1 58 2226 248 145 181 32

AML#18 59/♀
de novo
AML 45,XX[25]

BCOR, ETV6 (VAR),
EZH2 (VAR), FLT3-ITD,

NPM1, KRAS, TET2
(VAR)

29 1626 - - - -
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Figure 1. Cytotoxic efficacy of talazoparib and APE1 inhibitor III in healthy CD34+ donor cells, in 
CD34+ myelodysplastic syndrome (MDS)/chronic myelomonocytic leukemia (CMML) cells, and in 
CD34+ or CD34− acute myeloid leukemia (AML) cells after initial expansion for 3 days followed by 3 
days of treatment. (A) The mean IC50 of talazoparib was significantly lower (* p = 0.016) in 1 MDS 
(MDS#2), 1 CMML (CMML#2), and 3 AML cell samples (AML#1, AML#2, AML#3) as compared to 8 
healthy donor cell samples. (B) The mean IC50 of APE1 inhibitor III was substantially lower (p = 0.059) 
in 1 MDS (MDS#2) and 5 AML cell samples (AML#1, AML#2, AML#3, AML#6, AML#12) as 
compared to 8 healthy donor cell samples. (C) Exemplary growth curves (left panel) and 
corresponding surviving fractions of 3 ‘responders’ after initial expansion for 3 days followed by 3 
days of treatment with talazoparib (mid panel) and APE1 inhibitor III (right panel). (D) Exemplary 
growth curves (left panel) and corresponding surviving fractions of 3 ‘non-responders’ after initial 
expansion for 3 days followed by 3 days of treatment with talazoparib (mid panel) and APE1 
inhibitor III (right panel). Error bars represent mean ± standard error of mean. 

The cell proliferation rate of MDS/CMML and AML cells might correlate with the cytotoxic 
efficacy of talazoparib and APE1 inhibitor III, respectively. Therefore, growth curves of untreated 
MDS/CMML and AML cells were correlated with the corresponding surviving fractions of 
talazoparib and APE1 inhibitor III treated MDS/CMML and AML cells (Figure 1C,D). However, no 
consistent correlation between cell proliferation and cytotoxic efficacy of talazoparib and APE1 
inhibitor III was evident in MDS/CMML and AML cells. These findings suggest that the 
antileukemic efficacy of talazoparib and APE1 inhibitor III is not strictly dependent on the in vitro 
proliferation rate of leukemic blasts. 

2.2. Cytotoxic Efficacy of Decitabine ± Talazoparib, Decitabine ± APE1 Inhibitor III, and Talazoparib ± APE1 
Inhibitor III in MDS/CMML and AML Cells 

The cytotoxic efficacies of (I) decitabine ± talazoparib, (II) decitabine ± APE1 inhibitor III, and 
(III) talazoparib ± APE1 inhibitor III were analyzed in CD34+ MDS/CMML cells and in CD34+ or 

Figure 1. Cytotoxic efficacy of talazoparib and APE1 inhibitor III in healthy CD34+ donor cells, in
CD34+ myelodysplastic syndrome (MDS)/chronic myelomonocytic leukemia (CMML) cells, and in
CD34+ or CD34− acute myeloid leukemia (AML) cells after initial expansion for 3 days followed by 3
days of treatment. (A) The mean IC50 of talazoparib was significantly lower (* p = 0.016) in 1 MDS
(MDS#2), 1 CMML (CMML#2), and 3 AML cell samples (AML#1, AML#2, AML#3) as compared to
8 healthy donor cell samples. (B) The mean IC50 of APE1 inhibitor III was substantially lower (p =

0.059) in 1 MDS (MDS#2) and 5 AML cell samples (AML#1, AML#2, AML#3, AML#6, AML#12) as
compared to 8 healthy donor cell samples. (C) Exemplary growth curves (left panel) and corresponding
surviving fractions of 3 ‘responders’ after initial expansion for 3 days followed by 3 days of treatment
with talazoparib (mid panel) and APE1 inhibitor III (right panel). (D) Exemplary growth curves (left
panel) and corresponding surviving fractions of 3 ‘non-responders’ after initial expansion for 3 days
followed by 3 days of treatment with talazoparib (mid panel) and APE1 inhibitor III (right panel). Error
bars represent mean ± standard error of mean.

The cell proliferation rate of MDS/CMML and AML cells might correlate with the cytotoxic efficacy
of talazoparib and APE1 inhibitor III, respectively. Therefore, growth curves of untreated MDS/CMML
and AML cells were correlated with the corresponding surviving fractions of talazoparib and APE1
inhibitor III treated MDS/CMML and AML cells (Figure 1C,D). However, no consistent correlation
between cell proliferation and cytotoxic efficacy of talazoparib and APE1 inhibitor III was evident in
MDS/CMML and AML cells. These findings suggest that the antileukemic efficacy of talazoparib and
APE1 inhibitor III is not strictly dependent on the in vitro proliferation rate of leukemic blasts.

2.2. Cytotoxic Efficacy of Decitabine ± Talazoparib, Decitabine ± APE1 Inhibitor III, and Talazoparib ± APE1
Inhibitor III in MDS/CMML and AML Cells

The cytotoxic efficacies of (I) decitabine ± talazoparib, (II) decitabine ± APE1 inhibitor III, and
(III) talazoparib ± APE1 inhibitor III were analyzed in CD34+ MDS/CMML cells and in CD34+ or
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CD34− AML cells (Table 1, Figure 2). Subtoxic doses of talazoparib (2–2.5 nM) added to decitabine
substantially decreased the surviving fraction in 4 MDS (MDS#1-4), 4 CMML (CMML#1–4), and 10
AML (AML#1, AML#3–6, AML#10, AML#11, AML#15–17) cell samples (Table 1, Figure 2A,B). Further,
subtoxic doses of APE1 inhibitor III (50 nM) added to decitabine substantially decreased the surviving
fraction in 1 MDS (MDS#3), 4 CMML (CMML#1–4), and 10 AML (AML#1, AML#3–5, AML#7, AML#8,
AML#10, AML#11, AML#16, AML#17) cell samples (Table 1, Figure 2C,D). Finally, low subtoxic doses
of APE1 inhibitor III (50 nM) added to talazoparib substantially decreased the surviving fraction in
2 MDS (MDS#2, MDS#3), 3 CMML (CMML#2–4), and 7 AML (AML#1, AML#3, AML#5, AML#7,
AML#10, AML#11, AML#17) cell samples (Table 1, Figure 2E,F).
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PARP1 and APE1 mRNA expression might correlate with the cytotoxic efficacy of talazoparib 
and APE1 inhibitor III in MDS/CMML and AML cells and explain why some of the patients did not 
respond to the drugs. Therefore, PARP1 and APE1 mRNA expression levels were analyzed in 
MDS/CMML and AML cell samples. However, the PARP1 and APE1 mRNA expression levels did 
not differ significantly between ‘responders’ and ‘non-responders’ (Figure 3A,B). 

Figure 2. Surviving fractions of CD34+ or CD34− acute myeloid leukemia (AML) cells after initial
expansion for 3 days followed by 3 days of treatment with (I) decitabine ± talazoparib, (II) decitabine ±
APE1 inhibitor III, and (III) talazoparib ± APE1 inhibitor III. (A,B) Exemplary surviving fractions of
AML cells treated with decitabine ± talazoparib. (C,D) Exemplary surviving fractions of AML cells
treated with decitabine ± APE1 inhibitor III. (E,F) Exemplary surviving fractions of AML cells treated
with talazoparib ± APE1 inhibitor III.

2.3. Analysis of PARP1 and APE1 mRNA Expression in MDS/CMML and AML Cells in Correlation to
Cytotoxic Efficacy of Talazoparib and APE1 Inhibitor III

PARP1 and APE1 mRNA expression might correlate with the cytotoxic efficacy of talazoparib and
APE1 inhibitor III in MDS/CMML and AML cells and explain why some of the patients did not respond
to the drugs. Therefore, PARP1 and APE1 mRNA expression levels were analyzed in MDS/CMML and
AML cell samples. However, the PARP1 and APE1 mRNA expression levels did not differ significantly
between ‘responders’ and ‘non-responders’ (Figure 3A,B).
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PARP1 and APE1 mRNA expression levels in ‘responders’ and ‘non-responders’. (C,D) Levels of
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2.4. Analysis of γH2AX Foci in MDS/CMML and AML Cells in Correlation to Cytotoxic Efficacy of
Talazoparib and APE1 Inhibitor III

Since both drugs act on the DNA damage response, γH2AX foci (as a readout for DNA damage)
were analyzed for their potential correlation with the cytotoxic efficacy of talazoparib and APE1 inhibitor
III in MDS/CMML and AML cells. Therefore, γH2AX foci levels were quantified in MDS/CMML
and AML cell samples. However, the number of γH2AX foci did not significantly differ between
‘responders’ and ‘non-responders’ (Figure 3C,D).

2.5. Analysis of Chromosomal Aberrations and Gene Mutations in Correlation to Cytotoxic Efficacy of
Talazoparib and APE1 Inhibitor III

Distinct chromosomal aberrations and gene mutations might correlate with the cytotoxic efficacy of
talazoparib and APE1 inhibitor III in MDS/CMML and AML cells. Therefore, a comprehensive analysis
of chromosomal aberrations and gene mutations was performed in MDS/CMML and AML cell samples
(Tables 2 and 3). Cytogenetic analysis revealed no specific chromosomal aberrations that predicted
sensitivity towards talazoparib or APE1 inhibitor III. However, 100% of the talazoparib ‘responders’
(MDS#2, CMML#2, AML#1–3) and 83% of the APE1 inhibitor III ‘responders’ (MDS#2, AML#1–3,
AML#6) displayed a normal karyotype. In addition, gene mutation analysis revealed that 50% of
KMT2A-PTD mutated AML samples (AML#2, AML#3), 50% of NRAS mutated AML samples (AML#2,
AML#3), and 67% of U2AF1 mutated MDS/AML samples (MDS#2, AML#3) were sensitive towards
talazoparib and APE1 inhibitor III, respectively. On the other hand, the AML sample (AML#12) most
insensitive towards talazoparib (IC50 505 nM) was TP53-mutated and harbored a complex karyotype.
Further, the AML sample (AML#9) most insensitive towards APE1 inhibitor III (IC50 5781 nM) was
DNMT3A-, FLT3-TKD-, IDH1-, NPM1-, NRAS-mutated and harbored a normal karyotype.
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Table 2. Cytotoxic efficacy of talazoparib and APE1 inhibitor III in myelodysplastic syndromes/chronic myelomonocytic leukemias and acute myeloid leukemias in
relation to chromosomal aberrations. AML: acute myeloid leukemia; CMML: chronic myelomonocytic leukemia; MDS: myelodysplastic syndrome.
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Table 3. Cytotoxic efficacy of talazoparib and APE1 inhibitor III in myelodysplastic syndromes/chronic myelomonocytic leukemias and acute myeloid leukemias in
relation to gene mutations. AML: acute myeloid leukemia; CMML: chronic myelomonocytic leukemia; MDS: myelodysplastic syndrome; VAR: variation.
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3. Discussion

In the present study, the cytotoxic efficacy of talazoparib and APE1 inhibitor III was investigated
using several distinct approaches in CD34+ MDS/CMML cells and in CD34+ or CD34− AML cells in
comparison to healthy CD34+ donor cells. In addition, potential predictive markers were analyzed
and correlated with the cytotoxic efficacy of talazoparib and APE1 inhibitor III.

Talazoparib demonstrated critical antileukemic efficacy as a single-agent and in combination with
decitabine in several MDS/CMML and AML cell samples, which might be mediated by the formation
of cytotoxic PARP1-DNA complexes [27], DNMT1-DNA complexes [38], and PARP1-DNMT1-DNA
complexes [28], respectively. Notably, our data suggest that decitabine combined with low doses
of talazoparib might kill MDS/CMML and AML cells more efficiently than decitabine alone,
as demonstrated by an increased antileukemic efficacy for the combination in about 86% of
MDS/CMML/AML cell samples. Our observations confirm and extend results of previous experimental
studies reporting on the antileukemic efficacy of olaparib [39–41] and talazoparib [28] and the synergistic
efficacy between talazoparib and DNMTi in AML cell lines and primary AML cells [28]. Currently, the
antileukemic efficacy of talazoparib alone and combined with decitabine has been tested in several
clinical trials [42–44].

Furthermore, APE1 inhibitor III demonstrated antileukemic efficacy in several MDS/CMML and
AML cell samples. The ‘responder’ rate of 25% in MDS/CMML/AML cell samples treated with APE1
inhibitor III was similar to the ‘responder’ rate of 19% in MDS/CMML/AML cell samples treated with
talazoparib. However, APE1 inhibitor III exhibited about 30-fold less potent IC50 values as compared
to talazoparib. Our observations are in accordance with the more advanced development of PARP
inhibitors (e.g., talazoparib) as compared to APE1 inhibitors (e.g., APE1 inhibitor III). Despite the
inferior potency of APE1 inhibitor III, subtoxic doses increased the antileukemic efficacy of decitabine
and talazoparib in about 78% and 68% of MDS/CMML/AML cell samples, respectively. As BER is
presumed to be involved in the repair of decitabine-induced DNA lesions [45], we hypothesize that
APE1 inhibitor III might interact synergistically with decitabine by interruption of BER. Further, APE1
inhibitor III might interact synergistically with talazoparib by inducing suicidal cross-linking of PARP1
to AP sites [46].

Markers predicting the cytotoxic efficacy of talazoparib and APE1 inhibitor III in MDS/CMML
and AML cells are, so far, largely unknown. Therefore, several markers including cell proliferation,
PARP1/APE1 mRNA expression, γH2AX foci levels, chromosomal aberrations, and gene mutations
were analyzed and correlated with cell survival of MDS/CMML and AML cells after treatment with
talazoparib and APE1 inhibitor III, respectively. Cell proliferation, PARP1/APE1 mRNA expression, and
γH2AX foci levels demonstrated no consistent correlation with the cytotoxic efficacy of talazoparib and
APE1 inhibitor III in MDS/CMML and AML cells. Furthermore, no specific chromosomal aberrations
with a predictive impact were detected. However, 100% of the talazoparib ‘responders’ and 83% of
the APE1 inhibitor III ‘responders’ displayed a normal karyotype. Finally, gene mutation analysis
suggested that KMT2A-PTD, NRAS, and U2AF1 mutations might be associated with a sensitivity rate
of 50% or more towards talazoparib and APE1 inhibitor III, respectively.

Resistance to PARP inhibitors is a major clinical problem. Several categories of PARP
inhibitor resistance mechanisms have been described to date and can be assigned to (I) increased
drug efflux (e.g., upregulation of ABC transporters), (II) decreased trapping of PARP1 on DNA
(e.g., trapping-diminishing PARP1 mutations), (III) restoration of homologous recombination (e.g.,
reactivation of BRCA1/2, loss of 53BP1, loss of Shieldin factors), and (IV) stabilization of stalled forks
(e.g., loss of PTIP or EZH2) (reviewed in [47]). Further work is needed to clarify the role of these
resistance mechanisms in MDS/CMML and AML. Possible mechanisms of resistance towards APE1
inhibitor III might include the expression of translesion polymerases (Pol) capable of bypassing AP
sites or the upregulation of DSB repair genes.
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4. Materials and Methods

4.1. Bone Marrow Samples

This study was approved by the Ethics Committee II of the Medical Faculty of Mannheim at
Heidelberg University (2018-566N-MA). Written, informed consent was obtained from all participants.
Heparinized bone marrow (BM) samples were collected from 8 healthy donors (3 males, 5 females,
mean age: 30 years), 8 MDS/CMML patients (4 MDS and 4 CMML; 5 males, 3 females, mean age: 70
years), and 18 AML patients (12 males, 6 females, mean age: 67 years) prior to antileukemic therapy
(Table 1).

Mononuclear cells were separated from BM samples by Ficoll density gradient centrifugation.
CD34+ cells were enriched using CD34 microbeads and cell separation columns (CD34 MicroBead Kit,
Miltenyi Biotec, Bergisch Gladbach, Germany). Healthy CD34+ donor cells, CD34+ MDS/CMML cells,
and CD34+ or CD34−AML cells were grown in a humidified 5% CO2 atmosphere at 37 ◦C in StemSpan
medium (Stemcell Technologies Germany GmbH, Köln, Germany) supplemented with StemSpan
myeloid expansion supplement (SCF, TPO, G-CSF, GM-CSF) (Stemcell Technologies Germany GmbH)
and 1% penicillin/streptomycin.

4.2. Cytology, Flow Cytometry, Cytogenetics, and Gene Mutation Analysis

MDS/CMML and AML BM samples were diagnosed according to standard procedures using
cytomorphology (May-Grünwald/Giemsa stained BM smears), flow cytometry, G-banding cytogenetics,
fluorescence in situ hybridization (FISH), and molecular mutation analysis [48–50].

4.3. Cell Proliferation

Cell proliferation of untreated MDS/CMML and AML cells was determined by trypan blue
exclusion assay at days 1, 2, and 3 [51].

4.4. Immunofluorescence Staining of γH2AX

Immunofluorescence staining of γH2AX was performed in untreated healthy donor cells,
MDS/CMML cells, and AML cells using a mouse monoclonal anti-γH2AX antibody (clone JBW301;
Merck Millipore, Darmstadt, Germany) and an Alexa Fluor 488-conjugated goat anti-mouse secondary
antibody (Thermo Fisher Scientific, Waltham, MA, USA) as previously described [52,53].

4.5. PARP1 and APE1 mRNA Expression

The mRNA expressions of PARP1 and APE1 were analyzed in healthy donor cells, MDS/CMML
cells, and AML cells. For quantitative real-time PCR (qRT-PCR), the QuantiFast SYBR Green PCR
Kit (Qiagen, Hilden, Germany) with commercial bioinformatically validated primer sets for PARP1
(Hs_PARP1_1_SG QuantiTect Primer Assay, NM_001618) (Qiagen) and APE1 (Hs_APEX1_1_SG
QuantiTect Primer Assay, ENST00000216714) (Qiagen) was used according to manufacturer instructions.
Normalization validation was performed with a primer set for the reference gene GUSB (Hs_GUSB_1_SG
QuantiTect Primer Assay, ENST00000304895) (Qiagen). Samples were analyzed in triplicate using the
LightCycler 480 II system (Roche, Mannheim, Germany) equipped with 96-well plates with a total well
volume of 25 µL containing primer mix (2.5 µL), SYBR Green Master Mix (12.5 µL), 20 ng template
cDNA (2 µL), and PCR-grade water (8 µL). qRT-PCR was performed at thermal cycling conditions of
95 ◦C for 5 min, 95 ◦C for 10 s, and 60 ◦C for 30 s (×40 cycles).

4.6. Drug Stock Solutions

Stock solutions of 50 mM talazoparib III (Selleck Chemicals, Houston, TX, USA), 5 mM APE1
inhibitor III (Selleck Chemicals), and 50 mM decitabine (Merck, Darmstadt, Germany) were prepared
by dissolving the agents in dimethylsulfoxide (DMSO) (Merck).
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4.7. Cell Survival Assay

The CellTiter-Glo luminescent cell viability assay (Promega, Southampton, UK) was used for
the assessment of cell survival of healthy donor cells, MDS/CMML cells, and AML cells according
to the manufacturer’s instructions. Cryopreserved CD34+ MDS/CMML cells and CD34+ or CD34−
AML cells were thawed and expanded in culture for 3 d followed by 3 d of daily drug exposure. The
IC50 designated the drug concentration capable of killing 50% of the cells and was calculated with
GraphPad Prism 5 software (GraphPad Software, La Jolla, US) by linear regression. MDS/CMML and
AML patient samples were classified as ‘responders’ or ‘non-responders’ using a cutoff value of mean
IC50 of healthy controls minus standard error of mean. Experiments were performed once owing to
the limited availability of healthy CD34+ donor cells, CD34+ MDS/CMML cells, and CD34+ or CD34−
AML cells. DMSO-treated cells were used as control.

4.8. Statistical Analysis

All statistical calculations were done with SAS software, release 9.4 (SAS Institute Inc., Cary, NC,
USA). For quantitative variables, mean values and standard errors were calculated. Categorical factors
are presented with absolute and relative frequencies. In order to compare more than two groups,
Kruskal–Wallis tests were performed. For pairwise comparisons, Wilcoxon two-sample tests were
used. Test results with p values < 0.05 were considered as statistically significant.

For analysis of PARP1 and APE1 expressions, relative quantification was used according the
∆∆CT method. Normalization of target genes was performed using the arithmetic mean Ct of the
nonregulated housekeeping gene GUSB from 6 healthy donor samples.

5. Conclusions

Our study performed on primary MDS/CMML and AML patient cells provides important
preclinical data for a potential clinical use of talazoparib and APE1 inhibitor III alone and in combination
with decitabine. In a next step, the in vivo antileukemic activities of talazoparib and APE1 inhibitor III
need to be evaluated in clinical studies. Currently, talazoparib is tested as a single agent in advanced
hematologic neoplasias (NCT01399840) [42] and in cohesin-mutated AML and MDS with excess
blasts (NCT03974217) [43]. Further, decitabine and talazoparib are tested in patients with untreated
and relapsed/refractory AML (NCT02878785) [44]. APE1 inhibitor III may enter similar trials in
MDS/CMML/AML in the future.
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