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Abstract: In addition to its classical roles as a tumor suppressor, p53 has also been shown to act
as a guardian of epithelial integrity by inducing the microRNAs that target transcriptional factors
driving epithelial–mesenchymal transition. On the other hand, the ENCODE project demonstrated
an enrichment of putative motifs for the binding of p53 in epithelial-specific enhancers, such as CDH1
(encoding E-cadherin) enhancers although its biological significance remained unknown. Recently, we
identified two novel modes of epithelial integrity (i.e., maintenance of CDH1 expression): one involves
the binding of p53 to a CDH1 enhancer region and the other does not. In the former, the binding of p53
is necessary to maintain permissive histone modifications around the CDH1 transcription start site,
whereas in the latter, p53 does not bind to this region nor affect histone modifications. Furthermore,
these mechanisms likely coexisted within the same tissue. Thus, the mechanisms involved in
epithelial integrity appear to be much more complex than previously thought. In this review, we
describe our findings, which may instigate further experimental scrutiny towards understanding
the whole picture of epithelial integrity as well as the related complex asymmetrical functions of
p53. Such understanding will be important not only for cancer biology but also for the safety of
regenerative medicine.
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1. Introduction

Epithelial cells may undergo epithelial–mesenchymal transition (EMT) in order to change into
highly motile and invasive phenotypes as well as to move out from the original tissue, such as during
development, in a manner that is dependent on environmental signals [1,2]. Cancer cells often hijack
the EMT process and use this process to further advance the mesenchymal malignancy by enhancing
its invasiveness, metastatic ability and therapeutic resistance [3,4]. The recent understanding of
the plasticity of cancer stem cell-like cells has demonstrated the complex nature of the mechanisms
involved in the EMT process [5] (also see below). Thus, normal epithelial cells might also use yet
unforeseen, complicated mechanisms to control EMT.

TP53 is the most frequently mutated tumor-suppressor gene in human cancers. The functions of
p53, the protein product of TP53, have been ascribed to its classical role as a transcription cofactor that
acts in response to various stress signals to induce cell cycle arrest, cellular senescence and apoptosis [6].
Furthermore, the newly identified functions of p53 include the control of cellular metabolism and
antioxidative status [7–10]. On the other hand, emerging lines of evidence have suggested that p53
might have another function, which is namely to restrict epithelial cell plasticity. For example, p53
can interfere with neural crest delamination, which accompanies EMT [11]. Consistently, mutations
in the TP53 gene (i.e., loss of normal functions of p53) were found to statistically correlate with the
generation of cancer stem cell-like cell transcriptional patterns in breast cancers and lung cancers [12].
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Interestingly, this generation of cancer stem cell-like properties by the loss of normal-p53 is often
coupled with the EMT of cancer cells [13]. p53 can inhibit the generation of induced pluripotent stem
cells (iPSCs) through the direct transactivation of microRNAs (miRNAs), namely miR-34a or miR-145,
which downregulate pluripotency factors [14–16]. In this regard, it has been shown that p53 induces
the expression of miRNAs that target mRNAs encoding transcription factors driving EMT (EMT-TFs),
such as ZEB1, SNAI1, SLUG (SNAI2) and BMI1 [3,17,18]. This is the prevailing mechanism by which
p53 blocks EMT. However, given the cell context-dependent functions of these EMT-TFs [19,20] and the
significant enrichment of the motifs for the binding of p53 in the epithelial-specific enhancers [21–23],
p53 might have additional mechanisms by which it maintains epithelial integrity. In essence, it might
be involved in the maintenance of epithelial gene expression, such as CDH1, GRHL2 and OVOL2, via
occupying epithelial gene loci (Table 1). On the other hand, it should be noted that some cancer cells
resist EMT even in the absence of normal p53 [20,24,25]. Likewise, EMT-TFs are not always induced
by the loss of p53 and the p53–miRNAs–EMT-TFs axis does not appear to be a cell-autonomous, linear
process in significant populations of cancer cells [20,26] (our unpublished results; also see below).

Table 1. The number of motifs for the binding of p53 across the indicated epithelial gene or
mesenchymal gene loci (from −10 kb of the transcription start site [TSS] to the end of exons) is
listed. The number of motifs for the binding of p53 found in the promoter regions (+/− 5 kb of TSS) of
the known p53-target genes is also listed. The motifs for the binding of p53 were identified using the
“p53scan” algorithm [27], in which no spacers are allowed between two decameric half-sites.

No. of p53-Binding Motifs across the Gene Locus (No.
of Those Proximal to the Cell Type-Specific Enhancer)

No. of p53-Binding Motifs
in the Promoter Region

Epithelial Genes Mesenchymal Genes Typical p53-Target Genes

CDH1 8 (6) CDH2 8 (0) CDKN1A 5
EPCAM 3 (0) VIM 1 (0) RRM2B 2

TJP3 1 (0) ZEB1 6 (1) MDM2 3
OVOL1 1 (1) ZEB2 6 (2) GADD45A 1
OVOL2 3 (2) SNAI1 0 (0) TIGAR 0
GRHL2 8 (4) TWIST1 2 (0) BAX 1
ESRP1 4 (1) TWIST2 1 (0) FAS 1

Recent studies have clarified another potential p53 function, which involves the regulation of the
epigenome by controlling DNA methylation, histone methylation/acetylation and non-coding RNAs.
DNA methylation statuses in mouse embryonic stem cells (ESCs) were shown to be uncontrollable in
the absence of p53, resulting in the generation of intraclonal heterogeneity [28]. Mechanistically, p53
was shown to transcriptionally upregulate DNA demethylases, whereas it downregulates DNA
methyltransferases [28]. On the other hand, p53 was also shown to directly interact with the
K27-trimethylated histone H3 (H3K27me3) demethylase JMJD3/KDM6B [29]. This interaction is
likely involved in the demethylation of H3K27me3 at the binding of p53 regions. Consistently, our
recent study [30] identified the existence of a safeguard mechanism of p53-mediated demethylation
against Enhancer of Zeste Homolog 2 (EZH2)-mediated methylation of H3K27 at the CDH1 locus,
which induces CDH1 expression in certain cancer cells and organizes them into sheet structures via
E-cadherin-mediated cell–cell interactions. Importantly, this function of p53 appeared to be mediated
by the direct binding of p53 to an enhancer region of the CDH1 locus. Therefore, our results may
explain the biological significance of the enrichment of the putative motifs for the binding of p53 in
the enhancer regions of epithelial genes [21–23]. After briefly summarizing recent information on p53
function in epithelial integrity, we aim to discuss the possibility of multi-layered epithelial integrity in
terms of its origins and biological significance.
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2. p53-Mediated Epithelial Integrity via miRNAs and EMT-TFs

p53 functions to restrain epithelial cell plasticity, which partly occurs by negatively regulating
factors that initiate and maintain the EMT program. For instance, p53 upregulates MDM2 and
forms a complex of p53–MDM2–SLUG to facilitate SLUG degradation, which leads to enhanced
E-cadherin expression [31]. In addition, p53 inhibits SNAI1 activity via inducing miR-34, which targets
SNAI1 mRNA by binding to its 3′ untranslated regions (UTRs) [32]. p53 also induces miR-200c to
target ZEB1 and BMI1 mRNAs by binding to their 3′ UTRs, which inhibits the post-transcriptional
processes of these mRNAs [17,18]. BMI1 encodes a subunit of polycomb repressive complex (PRC) 1,
which maintains stem cell functions [33,34] and promotes EMT [35]. A possible direct molecular link
between the stem cell properties and EMT was reported by using mammary epithelial cells [13].
Consistently, some breast cancer cells and lung cancer cells lacking normal p53 were shown to
exhibit stem cell-like transcriptional patterns [12]. Therefore, the p53–miRNAs–EMT-TFs axis has
constituted a prevailing paradigm that explains p53-dependent epithelial integrity [19]. However, it
is important to consider that not all epithelial cells undergo EMT in the absence of p53 [24,25]; p53
is also expressed in mesenchymal cells; and p53 limits the reprogramming of fibroblasts to iPSCs
by inhibiting mesenchymal–epithelial transition [36]. Therefore, considering this information, p53
appears to have additional mechanisms other than via miRNAs and EMT-TFs for the maintenance of
epithelial integrity.

3. p53-Mediated Epithelial Integrity via Epigenetic Control

The chromatin structure is dynamically remodeled to control gene expression. Such epigenetic
regulation of gene expression can be achieved through the coordinated actions of TFs and DNA/histone
modifications. However, such epigenetic modifications in many cases have to be moldable and plastic
in order to be delicately balanced between a state strictly maintaining integrity and a state that enables
differentiation. Intriguingly, cellular metabolism is critically involved in such processes of epigenetic
regulation [37]. For example, the cellular levels of acetyl-CoA, which is the sole donor of an acetyl
moiety for protein acetylation, have been demonstrated to affect the degree of histone acetylation and
hence, gene expression in mammalian cells [38]. It has been shown that proto-oncogenes, such as
Myc and Akt, may promote acetyl-CoA production apart from their classical roles of inducing
growth-promoting TFs, thus facilitating histone acetylation to favor cell growth and/or proliferation,
which cooperates well with growth-promoting TFs [39–41]. Consistently, human embryonic stem cells
produce high levels of acetyl-CoA through glycolysis and this production rapidly decreases upon the
induction of differentiation [42].

Moreover, p53 has been shown to promote DNA methylation to maintain the silence of some
repetitive DNA elements in the mouse genome [43]. Mechanistically, DNA methyltransferases are
recruited to the nucleotide regions within these elements where the binding of p53 occurs [43]. On the
other hand, a recent study in mouse ESCs demonstrated that p53 transcriptionally represses the de
novo DNA methyltransferases Dnmt3a and Dnmt3b, while upregulating the DNA demethylases Tet1
and Tet2 [28]. Consequently, p53 acts to maintain DNA methylation homeostasis as ESCs from p53−/−

mice demonstrated both increased DNA methylation and enhanced intraclonal heterogeneity, which
might reduce the pluripotency of the ESCs [28].

p53 was also shown to directly interact with the H3K27me3 demethylase JMJD3/KDM6B [29].
Both p53 and JMJD3/KDM6B are upregulated after DNA damage, which subsequently become
colocalized at the regulatory elements of well-characterized p53-target genes, such as CDKN1A and
MDM2 [29]. Consequently, p53 may be able to decrease H3K27me3 around the p53-target genes, which
has been observed during human ESC differentiation [44].

Moreover, p53 may also regulate gene expression at a long distance by inducing enhancer
RNAs [45] and large intergenic noncoding RNAs (lincRNAs) [46]. Of note, Neat1 was recently identified
as a p53-induced lincRNA and its deficiency was shown to cause malignancy of pancreatic ductal
adenocarcinoma (PDAC) through the global changes in gene expression [47].
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4. Enrichment of p53-Binding Motifs at Epithelial-Specific Enhancers

The enhancer regions of the CDH1 locus contain 6 putative sites for the binding of p53 [21–23]
and this enrichment is comparable to that found at the promoter regions of typical p53-target genes,
such as CDKN1A (Table 1). On the other hand, it is noteworthy that although the CDH2 locus encoding
mesenchymal-specific N-cadherin also contains 8 putative sites for the binding of p53, none of them are
located within the enhancer regions (Table 1). As mentioned above, the functions of p53 are performed
by the binding of p53 to nucleotides to activate transcription or by the p53-mediated recruitment of
enzymes, such as histone modifiers, chromatin remodelers and RNA polymerase II, to the nucleotide
sites that p53 binds to [48]. However, these previously known mechanisms of p53 do not explain why
the putative binding motifs of p53 are enriched within epithelial-specific enhancers.

We recently found that p53 binds to the nucleotides of the CDH1 enhancer of some epithelial
cells, with this binding being necessary to maintain CDH1 expression [30]. Consequently, in these
cells, the loss of p53 causes a loss of CDH1 expression and CRISPR-Cas9-mediated deletion of the
region that p53 binds to abrogates CDH1 expression. Mechanistically, we showed that the binding
of p53 is necessary to maintain high levels of histone H3K27 acetylation (H3K27ac) of the CDH1
locus, in which p53 appears to antagonize EZH2 activity, a catalytic subunit of PRC2, which otherwise
catalyzes the trimethylation of H3K27 (H3K27me3). On the other hand, it is well known that not
all epithelial cells need p53 to maintain CDH1 expression [24,25]. In such cells, we found that p53
does not bind to the CDH1 enhancer nor needs to antagonize EZH2. Furthermore, we found that
the CDH1 locus was low in H3K27ac compared with p53-dependent cells. Consistently, we later
found that high H3K27ac levels lead to the binding of p53. On the other hand, the levels of H3K27ac
can fluctuate depending on the cellular acetyl-CoA levels [38]. We demonstrated that although high
levels of H3K27ac in CDH1 can be evoked by butyrate in p53-independent cells, which enables the
binding of p53, these epithelial cells still do not rely on p53 to maintain their integrity. Moreover, these
p53-dependent and -independent modes of CDH1 expression were apparently independent of the
transcriptional control of EMT-TFs. Our results identified a novel function of p53 that is crucial to
maintain epithelial integrity, which operates both in non-transformed and transformed epithelial cells.
Therefore, it is likely that the mechanisms involved in epithelial integrity are far more complex than
previously thought (Figure 1). Whether this mechanism also operates at the motifs for the binding
of p53 found in other epithelial gene enhancers remains to be clarified. We identified RNF43 [49,50]
and ATP2C2 [50,51] as the candidate epithelial genes that are regulated by the binding of p53. Upon
TP53 silencing, the expression of these genes was reduced and the H3K27me3 deposition around the
binding motifs of p53 in their enhancers was increased. The analysis of the Cancer Genome Atlas
RNA-Seq datasets of human samples also suggested the existence of the p53–EZH2 antagonism in the
regulation of these genes. However, we are yet to perform experiments to obtain convincing evidence
that demonstrates the necessity of the binding of p53 to these loci.

Interestingly, the CDH1 locus in fibroblasts does not show high-H3K27ac nor was affected by
butyrate. Thus, these results implied that fibroblasts also have their own mechanism to maintain
mesenchymal integrity, which does not enable CDH1 expression in bona fide mesenchymal cells.
Therefore, this poses an outstanding question of whether they occur in vivo and in cells not cultured
in vitro for a long time. If this is the case, why epithelial cells need such diversified mechanisms other
than the p53-miRNAs axis to warrant their integrity and whether such mechanisms coexist within the
same tissues and/or within a single cell are questions that require further research.
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Figure 1. Illustration of the two novel modes of epithelial integrity, which do or do not involve the
binding of p53 to the CDH1 locus. It is important to note that EMT can be induced even in some
EMT-resistant cells, such as MCF7 cells in an inflammatory milieu [52].

5. Possible Origins and Biological Significance of the Multiplicity of p53-Mediated
Epithelial Integrity

The interactions of genomic DNA and TFs are controlled by a nonlinear process that involves the
cooperative actions of histones and metabolites (hence histone modifications) in addition to DNA and
TFs. For example, the binding kinetics of SMAD proteins with DNA can be affected by the presence
of chromatin modifiers or certain TFs that can physically associate with SMAD. This characteristic of
SMAD appears to shape the context-dependent signaling of SMAD [53]. Notably, as described above,
the multiple modes of p53-mediated gene expression may generate feedback processes that affect the
binding of p53 to the genome, providing an additional layer of nonlinearity. In the steady state of
normal epithelial cells as an initial condition, small fluctuations, such as the very small changes in
metabolites and histone turnover rates, are thought to be attenuated in order to establish a stable mode
of epithelial integrity (e.g., p53-independent). However, such a steady state may become unstable and
reach a critical bifurcation point if the cells are exposed to significant perturbations, in which they
would transit to another steady state of epithelial integrity (e.g., p53-dependent/EMT-TFs-dependent
or p53-dependent/EMT-TFs-independent). Such perturbations may include oncogene expression,
which completely alters cellular metabolic states [39,41], or failure in the inheritance of epigenetic
memory after cell division [54]. Importantly, the epithelial cell state that undergoes bifurcation can
show hysteresis, in which the transition from a steady state to another state is irreversible even
in the absence of the original perturbations [55]. An irreversible transition of the steady state is
recapitulated in ESCs, in which TFs and extracellular signals cooperatively lead to the fate decision
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between the epiblast and the primitive endoderm [56]. Theoretical models also suggest that cell
fate specification may involve more than 2 stable steady states when the cells respond to external
stimuli or internal fluctuations [57–59]. Epithelial cells may be intrinsically unstable in their epigenetic
landscape as they undergo multiple rounds of cell division and hence, multiple rounds of chromatin
inheritance [60,61]. Therefore, we hypothesize that epithelial genes have evolved to harbor multiple
motifs for the binding of p53 in their regulatory regions in order to benefit from the binding of p53
through feedback mechanisms from a variety of p53-target genes. Such systems may enable multiple
steady states of epithelial gene expression to restrict the easy onset of EMT. Therefore, it will be
interesting to investigate the epithelial integrity of primary cultures of normal epithelial cells with or
without complete sets of motifs for the binding of p53 at the regulatory regions of epithelial genes,
including CDH1, in the presence or absence of various stresses and perturbations.

6. Perspectives

Apart from studies using ESCs, most studies examining p53 have used cancer cell lines or
immortalized epithelial cells or fibroblasts. The p53–miRNAs–EMT-TFs axis was also demonstrated
in cell lines with relatively high expression levels of p53 [17,18]. In normal cells, the protein levels of
p53 become augmented upon different stresses, such as DNA damage and hyperproliferative signals.
Thus, whether the augmented expression of p53 is involved in the p53-dependent epithelial integrity
of normal cells remains to be clarified.

The results to date demonstrate that we should go beyond the cultured cells to confirm in vivo the
herein described complex mechanisms of epithelial integrity or the complex mechanisms controlling
EMT. If these mechanisms do occur in vivo, we thus propose that whether they can be preserved
or reproduced during the generation of iPSCs as well as their differentiation into epithelial tissues
must be clarified. We identified that the p53-miRNAs axis is not the sole mechanism by which p53
acts to block the cancer mesenchymal programs. Thus, the processes promoting cancer malignancy
might also be far more complex than previously thought. In summary, a further understanding of
the complex nature of epithelial integrity as well as the processes controlling EMT will advance our
understanding on cancer biology and malignancy as well as the safety, usefulness, and limitations of
iPSC-based technology.
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