Supplemental Materials: Renal Cell Carcinoma is Abrogated by p53 Stabilization through Transglutaminase 2 Inhibition

Seon-Hyeong Lee, Won-Kyu Lee, Nayeon Kim, Joon Hee Kang, Kyung-Hee Kim, Seul-Gi Kim, Jae-Seon Lee, Soohyun Lee, Jongkook Lee, Jungnam Joo, Woo Sun Kwon[,] Sun Young Rha, and Soo-Youl Kim

S2 of S10

-100 -200 -300

-400

-500

-600

А												
	TGase 2 + streptonigrin 0 mM (Trypsin)							Gase 2 + s	treptonigr	in 1 mM (1	Trypsin)	
	MAEELVLERC	DLELETNGRD	HHTADLCREK	LVVRRGQPFW	LTLHFEGRNY	1	MAEELVLERC	DLELETNGRD	HHTADLCREK	LVVRRGOPFW	LTLHFEGRNY	1
	EASVDSLTFS	VVTGPAPSQE	AGTKARFPLR	DAVEEGDWTA	TVVDQQDCTL	-100	EASVDSLTFS	VVTGPAPSQE	AGTKARFPLR	DAVEEGDWTA	TVVDQQDCTL	-100
	SLQLTTPANA	PIGLYRLSLE	ASTGYQGSSF	VLGHFILLFN	AWCPADAVYL		SLQLTTPANA	PIGLYRLSLE	ASTGYQGSSF	VLGHFILLFN	AWCPADAVYL	
	DSEEERQEYV	LTQQGFIYQG	SAKFIKNIPW	NFGQFEDGIL	DICLILLDVN	-200	DSEEERQEYV	LTQQGFIYQG	SAKFIKNIPW	NFGQFEDGIL	DICLILLDVN	-200
	PKFLKNAGRD	CSRRSSPVYV	GRVVSGMVNC	NDDQGVLLGR	WDNNYGDGVS		PKFLKNAGRD	CSRRSSPVYV	GRVVSGMVNC	NDDQGVLLGR	WDNNYGDGVS	
	PMSWIGSVDI	LRRWKNHGCQ	RVKYGQCWVF	AAVACTVLRC	LGIPTRVVTN	-300	PMSWIGSVDI	LRRWKNHGCQ	RVKYGQCWVF	AAVACTVLRC	LGIPTRVVTN	-300
	YNSAHDQNSN	LLIEYFRNEF	GEIQGDKSEM	IWNFHCWVES	WMTRPDLQPG		YNSAHDQNSN	LLIEYFRNEF	GEIQGDKSEM	IWNFHCWVES	WMTRPDLQPG	
	YEGWQALDPT	PQEKSEGTYC	CGPVPVRAIK	EGDLSTKYDA	PFVFAEVNAD	-400	YEGWQALDPT	PQEKSEGTYC	CGPVPVRAIK	EGDLSTKYDA	PFVFAEVNAD	-400
	VVDWIQQDDG	SVHKSINRSL	IVGLKISTKS	VGRDEREDIT	HTYKYPEGSS		VVDWIQQDDG	SVHKSINRSL	IVGLKISTKS	VGRDEREDIT	HTYKYPEGSS	
	EEREAFTRAN	HLNKLAEKEE	TGMAMRIRVG	QSMNMGSDFD	VFAHITNNTA	-500	EEREAFTRAN	HLNKLAEKEE	TGMAMRIRVG	QSMNMGSDFD	VFAHITNNTA	-500
	EEYVCRLLLC	ARTVSYNGIL	GPECGTKYLL	NLNLEPFSEK	SVPLCILYEK		EEYVCRLLLC	ARTVSYNGIL	GPECGTKYLL	NLNLEPFSEK	SVPLCILYEK	
	YRDCLTESNL	IKVRALLVEP	VINSYLLAER	DLYLENPEIK	IRILGEPKQK	-600	YRDCLTESNL	IKVRALLVEP	VINSYLLAER	DLYLENPEIK	IRILGEPKQK	-600
	RKLVAEVSLQ	NPLPVALEGC	TFTVEGAGLT	EEQKTVEIPD	PVEAGEEVKV		RKLVAEVSLQ	NPLPVALEGC	TFTVEGAGLT	EEQKTVEIPD	PVEAGEEVKV	
	RMDLLPLHMG	LHKLVVNFES	DKLKAVKGFR	NVIIGPA			RMDLLPLHMG	LHKLVVNFES	DKLKAVKGFR	NVIIGPA		

В

С

D

TGase 2 + streptonigrin 0 mM (Glu-C)

TGase 2 + streptonigrin 1 mM (Glu-C)

MAEELVLERC	DLELETNGRD	HHTADLCREK	LVVRRGQPFW	LTLHFEGRNY]	MAEELVLERC	DLELETNGRD	HHTADLCREK	LVVRRGQPFW	LTLHFEGRNY	
EASVDSLTFS	VVTGPAPSQE	AGTKARFPLR	DAVEEGDWTA	TVVDQQDCTL	-100	EASVDSLTFS	VVTGPAPSOE	AGTKARFPLR	DAVEEGDWTA	TVVDQQDCTL	-10
SLQLTTPANA	PIGLYRLSLE	ASTGYQGSSF	VLGHFILLFN	AWCPADAVYL		SLQLTTPANA	PIGLYRLSLE	ASTGYQGSSF	VLGHFILLFN	AWCPADAVYL	
DSEEERQEYV	LTQQGFIYQG	SAKFIKNIPW	NFGQFEDGIL	DICLILLDVN	-200	DSEEERQEYV	LTQQGFIYQG	SAKFIKNIPW	NFGQFEDGIL	DICLILLDVN	-20
PKFLKNAGRD	CSRRSSPVYV	GRVVSGMVNC	NDDQGVLLGR	WDNNYGDGVS		PKFLKNAGRD	CSRRSSPVYV	GRVVSGMVNC	NDDQGVLLGR	WDNNYGDGVS	
PMSWIGSVDI	LRRWKNHGCQ	RVKYGQCWVF	AAVACTVLRC	LGIPTRVVTN	-300	PMSWIGSVDI	LRRWKNHGCQ	RVKYGQCWVF	AAVACTVLRC	LGIPTRVVTN	-30
YNSAHDQNSN	LLIEYFRNEF	GEIQGDKSEM	IWNFHCWVES	WMTRPDLQPG		YNSAHDQNSN	LLIEYFRNEF	GEIQGDKSEM	IWNFHCWVES	WMTRPDLQPG	
YEGWQALDPT	PQEKSEGTYC	CGPVPVRAIK	EGDLSTKYDA	PFVFAEVNAD	-400	YEGWQALDPT	PQEKSEGTYC	CGPVPVRAIK	EGDLSTKYDA	PFVFAEVNAD	-40
VVDWIQQDDG	SVHKSINRSL	IVGLKISTKS	VGRDEREDIT	HTYKYPEGSS		VVDWIQQDDG	SVHKSINRSL	IVGLKISTKS	VGRDEREDIT	HTYKYPEGSS	
EEREAFTRAN	HLNKLAEKEE	TGMAMRIRVG	QSMNMGSDFD	VFAHITNNTA	-500	EEREAFTRAN	HLNKLAEKEE	TGMAMRIRVG	QSMNMGSDFD	VFAHITNNTA	-50
EEYVCRLLLC	ARTVSYNGIL	GPECGTKYLL	NLNLEPFSEK	SVPLCILYEK		EEYVCRLLLC	ARTVSYNGIL	GPECGTKYLL	NLNLEPFSEK	SVPLCILYEK	
YRDCLTESNL	IKVRALLVEP	VINSYLLAER	DLYLENPEIK	IRILGEPKQK	-600	YRDCLTËSNL	IKVRALLVEP	VINSYLLAER	DLYLENPEIK	IRILGEPKQK	-60
RKLVAEVSLQ	NPLPVALEGC	TFTVEGAGLT	EEQKTVEIPD	PVEAGEEVKV		RKLVAEVSLQ	NPLPVALEGC	TFTVEGAGLT	EEQKTVEIPD	PVEAGEEVKV	1
RMDLLPLHMG	LHKLVVNFES	DKLKAVKGFR	NVIIGPA			RMDLLPLHMG	LHKLVVNFES	DKLKAVKGFR	NVIIGPA		
											_

aa 1 139 140 454 479 585 586 687 β-sandwich Catalytic core β-barrel 1 β-barrel 2 381-387 503-523 419-425

TGase 2 + cystamine 1 mM (trypsin)

TGase 2 + cystamine 1 mM (Glu-C)

	-			-						
MAEELVLERC	DLELETNGRD	HHTADLCREK	LVVRRGQPFW	LTLHFEGRNY		MAEELVLERC	DLELETNGRD	HHTADLCREK	LVVRRGQPFW	LTLHFEGRNY
EASVDSLTFS	VVTGPAPSQE	AGTKARFPLR	DAVEEGDWTA	TVVDQQDCTL	-100	EASVDSLTFS	VVTGPAPSQE	AGTKARFPLR	DAVEEGDWTA	TVVDQQDCTL
SLQLTTPANA	PIGLYRLSLE	ASTGYQGSSF	VLGHFILLFN	AWCPADAVYL		SLQLTTPANA	PIGLYRLSLE	ASTGYQGSSF	VLGHFILLFN	AWCPADAVYL
DSEEERQEYV	LTQQGFIYQG	SAKFIKNIPW	NFGQFEDGIL	DICLILLDVN	-200	DSEEERQEYV	LTQQGFIYQG	SAKFIKNIPW	NFGQFEDGIL	DICLILLDVN
PKFLKNAGRD	CSRRSSPVYV	GRVVSGMVNC	NDDQGVLLGR	WDNNYGDGVS		PKFLKNAGRD	CSRRSSPVYV	GRVVSGMVNC	NDDQGVLLGR	WDNNYGDGVS
PMSWIGSVDI	LRRWKNHGCQ	RVKYGQCWVF	AAVACTVLRC	LGIPTRVVTN	-300	PMSWIGSVDI	LRRWKNHGCQ	RVKYGQCWVF	AAVACTVLRC	LGIPTRVVTN
YNSAHDQNSN	LLIEYFRNEF	GEIQGDKSEM	IWNFHCWVES	WMTRPDLQPG		YNSAHDQNSN	LLIEYFRNEF	GEIQGDKSEM	IWNFHCWVES	WMTRPDLQPG
YEGWQALDPT	PQEKSEGTYC	CGPVPVRAIK	EGDLSTKYDA	PFVFAEVNAD	-400	YEGWQALDPT	PQEKSEGTYC	CGPVPVRAIK	EGDLSTKYDA	PFVFAEVNAD
VVDWIQQDDG	SVHKSINRSL	IVGLŘ ÍSTKS	VGRDEREDIT	HTYKYPEGSS		VVDWIQQDDG	SVHKSINRSL	IVGLKISTKS	VGRDEREDIT	HTYKYPEGSS
EEREAFTRAN	HLNKLAEKEE	TGMAMRIRVG	QSMNMGSDFD	VFAHITNNTA	-500	EEREAFTRAN	HLNKLAEKEE	TGMAMRIRVG	QSMNMGSDFD	VFAHITNNTA
EEYVCRLLLC	ARTVSYNGIL	GPECGTKYLL	NLNLEPFSEK	SVPLCILYEK		EEYVCRLLLC	ARTVSYNGIL	GPECGTKYLL	NLNLEPFSEK	SVPLCILYEK
YRDCLTESNL	IKVRALLVEP	VINSYLLAER	DLYLENPEIK	IRILGEPKQK	-600	YRDCLTESNL	IKVRALLVEP	VINSYLLAER	DLYLENPEIK	IRILGEPKQK
RKLVAEVSLQ	NPLPVALEGC	TFTVEGAGLT	EEQKTVEIPD	PVEAGEEVKV		RKLVAEVSLQ	NPLPVALEGC	TFTVEGAGLT	EEQKTVEIPD	PVEAGEEVKV
RMDLLPLHMG	LHKLVVNFES	DKLKAVKGFR	NVIIGPA			RMDLLPLHMG	LHKLVVNFES	DKLKAVKGFR	NVIIGPA	

DAVEEGDWTATVVDQQDCTLSLQLTTPANAPIGLYR sequence spectrum (Trypsin)

QQDCTLSLQLTTPANAPIGLYRLSLE sequence spectrum (Glu-C)

	(NH3+) - Q>	Q>	D>	C>	T>	Ь	\$>	Ь	¢	Ь	T>	T>	P>
b (+1)	129.06586	257.12444	372.15139	532.18204	633.22972	746.31379	833.34582	946.42989	1074.48847	1187.57254	1288.62022	1389.6679	1486.72067
b*(+1)	112.03931	240.09789	355.12484	51 5.1 5549	616.20317	729.28724	816.31927	929.40334	1057.46192	1170.54599	1271.59367	1372.64135	1469.69412
b°(+1)	111.05529	239.11387	354.14082	514.17148	615.21916	728.30323	815.33526	928.41933	1056.47791	1169.56198	1270.60966	1371.65734	1468.71011
y (+1)	2774.43942	2646.38084	2531.35389	2371.32323	2270.27555	2157.19148	2070.15945	1957.07538	1829.0168	1715.93273	1614.88505	1513.83737	1416.7846
y*(+1)	2757.41287	2629.35429	2514.32734	2354.29668	2253.249	2140.16493	2053.1329	1940.04883	1811.99025	1698.90618	1597.8585	1496.81082	1 399.75805
y° (+1)	2756.42885	2628.37027	2513.34332	2353.31267	2252.26499	2139.18092	2052.14889	1939.06482	1811.00624	1697.92217	1596.87449	1495.82681	1 398.77404
	A>	N>	A>	P>	Þ	G>	Ь	Y>	R>	Ь	\$>	Þ	E - (COOH)
b (+1)	1557.75779	1671.80072	1742.83784	1839.89061	1952.97468	2009.99615	2123.08022	2286.14354	2442.24466	2555.32873	2642.36076	2755.44483	2884.48743
b*(+1)	1540.73124	1654.77417	1725.81129	1822.86406	1935.94813	1992.9696	2106.05367	2269.11699	2425.21811	2538.30218	2625.33421	2738.41828	2867.46088
b°(+1)	1539.74723	1653.79016	1724.82728	1821.88005	1934.96412	1991.98559	2105.06966	2268.13298	2424.2341	2537.31817	2624.3502	2737.43427	2866.47687
y (+1)	1345.74748	1231.70455	1160.66743	1063.61466	950.53059	893.50912	780.42505	617.36173	461.26061	348.17654	261.14451	148.06044	2902.498
y*(+1)	1328.72093	1214.678	1143.64088	1046.58811	933.50404	876.48257	763.3985	600.33518	444.23406	331.14999	244.11796	131.03389	2885.47145
y° (+1)	1327.73692	1213.69399	1142.65687	1045.6041	932.52003	875.49856	762.41449	599.35117	443.25005	330.16598	243.13395	130.04988	2884.48743

Figure S1. Identification of streptonigrin binding site in TGase 2 by mass spectrometry analysis. Peptides produced by (**A**) trypsin and (**B**) Glu-C proteolytic digestion enzymes of the polymeric protein were unambiguously identified as streptonigrin binding sites by comparing the results of MALDI-TOF with the theoretical peptide masses. Identified sequences are marked in green (high confidence) while unidentified regions are marked in red. Sequence (95–116) is a putative streptonigrin binding region in merged peptides produced trypsin and glu-c. (**C–D**) To identify the binding site of cystamine on TGase 2, mass spectrometry analysis was employed following incubation of TGase 2 and cystamine for 30 min at RT. The mass coverage from samples revealed the difference between TGase 2 alone and the combination of TGase 2 and cystamine. The cystamine binding-mediated masking region of TGase 2 is denoted by underline 381–387 and 419–425 in solution trypsin digestion and 503–523 in solution Glu-C digestion. (**E**) Mass spectrum of TGase 2 only and TGase 2 and+ streptonigrin. MS analysis was employed to identify the streptonigrin binding site in TGase 2, following incubation of TGase 2 and

streptonigrin for 30 min at RT. Peptides produced by trypsin proteolytic enzyme of the polymeric enzyme. **(F)** The peptide consensus view for the 1316.64319 m/z. The sequence of the covered mass DAVEEGDWTATVVDQQDCTLSLQLTTPANAPIGLYR is shown. **(G)** Mass spectrum of TGase 2 only and TGase 2 + streptonigrin. MS analysis was employed to identify the streptonigrin binding site in TGase 2, following incubation of TGase 2 and streptonigrin for 30 min at RT. Peptides produced by Glu-C proteolytic enzyme of the polymeric enzyme. **(H)** The peptide consensus view for the 968.17450 m/z. The sequence of the covered mass QQDCTLSLQLTTPANAPIGLYRLSLE is shown.

Figure S2. Analysis of TGase 2 conformation with GTP or streptonigrin by 10% native PAGE. TGase 2 was detected by western blotting using anti TGase 2 antibody after incubation of TGase 2 with 1 mM of GTP or 1 μ M of streptinigrin for 30 min at 37°C. Lane 1: TGase 2 was incubated without GTP. Lane 2: incubation of TGase 2 with GTP. Lane 3: incubation of TGase 2 with streptonigrin.

Figure S3. Anti-proliferative activities of streptonigrin, sunitinib, and sorafenib were evaluated by the sulforhodamin B (SRB) assay. (**A–B**) SRB assay of sunitinib and sorafenib cytotoxicity in a panel of human RCC cells. (**A**) Sunitinib (GI50: 5.2 μ M) and sorafenib (GI50: 3.2 μ M) were measured. (**B**) SRB assay of streptonigrin (GI₅₀: 117.5 nM) in human umbilical vein endothelial cells (HUVEC). (**C**) SRB assay of streptonigrin (GI₅₀: 24.7 nM) in mouse embryonic fibroblast (MEF) wild-type cells. (**D**) CAKI-1 cells were incubated with 10%, 5%, or 0 % serum concentration for 24 h and treated with streptonigrin (0 or 100 nM) for 4 h.

6

Figure S4. Mouse body weight measured during drug treatment. (**A–B**) The body weight did not change during the streptonigrin treatments in CAKI-1 and ACHN-luc mouse xenograft models from Figure 4.

Figure S5. PAD inhibitor does not induce apoptosis in CAKI-1 cells. (**A**) Cl-amidine (PAD inhibitor) not rescued p-p53 and p53 in a dose-dependent manner. (**B**) Cl-amidine not suppressed cell proliferation in cells. After treatment with Cl-amidine (0 or 500 nM) for 6 h, the cells were fixed in 4 % paraformaldehyde and stained with sulforhodamin B (original magnification 10×). (**C**) Cell viability was determined by trypan blue staining assay treated Cl-amidine (0 or 500 nM) in cells. (**D**) After treatment with Cl-amidine (0 or 500 nM) in cells. (**D**) After treatment with Cl-amidine (0 or 500 nM) for 6 h in cells, it was analyzed by FACS after staining with Annexin V/propidium iodside. (**E**) Cells were exposed to Cl-amidine (0 or 500 nM) for 6 h and apoptosis was analyzed by TUNEL assay. A bar graph shows the percentage (mean) of apoptotic cells in at least four randomly selected fields of

view. Scale bar = $100 \mu m$. (F) Results of sulforhodamin B assay of Cl-amidine cytotoxicity in human RCC cells exposed to the indicated concentrations. The cells were incubated with compounds for 48 h. Data represent three independent experiments.

Table S1. Short tandem repeat (STR) profiling of cell lines. The 10 ng of genomic DNA was amplified with an amplification PCR kit *GenePrint*® 10 System (Promega, Madison, WI, USA), which is a multiplex STR test that co-amplifies in a single polymerase chain reaction (PCR) 10 loci: TH01, D21S11, D5S818, D13S317, D7S820, D16S539, CSF1PO, Amelogenin, vWA, TPOX). Amplification was performed following suggested instructions, using the thermal cycler GeneAmp PCR system 9700 (Thermo Fisher Scientific, Waltham, MA, USA). To control the PCR amplification process, each reaction contains negative and positive controls. Amplifed DNA 1 ul was mixed with 9.5 ul of Hi-Di formamide (Thermo Fisher Scientific, Waltham, MA, USA) and 0.5 ul of ILS600 (kit supplied size marker). After denaturation at 95°C for 3min, the final sample was loaded into the ABI3730 sequencer (Applied Biosystems Life Technologies, Foster City, CA, USA) with POP7 polymer in a 50-cm capillary. After electrophoresis, the STR profile was analyzed using GeneMapper v 5.0 software.

rofil	e
	rofil

Sample		TH01	D21S11	D5S818	D13S317	D7S820	D16S539	CSFIPO	AMEL	vWA	TPOX
796 0	Reference	6, 9.3	29, 30	9	8	11, 12	12	10	Х, Ү	15, 17	8, 11
700-0	Result	6, 9.3	29, 30	9	8	11, 12	12	10	Χ, Υ	15, 17	8, 11
A 408	Reference	6, 9.3	28, 32	11, 13	12	10, 11	12	11, 12	Х	18	8, 11
A490	Result	6, 9.3	28, 32	11, 13	12	10, 11	12	11, 12	Х	18	8, 11
лсны	Reference	8	30	12	12	9, 11	12, 13	11	Х	16,17	8, 11
ACTIN	Result	8	30	12	12	9, 11	12, 13	11	Х	16,17	8, 11
ACHN-luc	Result	8	30	12	12	9, 11	12, 13	11	Х	16,17	8, 11
CAKI-1	Reference	6, 8	28, 30	11, 12	11, 12	12	12	10, 11	Х	15, 17	8, 11
CART	Result	6, 8	28, 30	11, 12	11, 12	12	12	10, 11	Х	15, 17	8, 11
DVE-303	Reference	7, 8	28, 33.2	12,13	9, 12	11, 12	11	10, 12	Х	16, 17	8, 11
1001-393	Result	7, 8	28, 33.2	12,13	9, 12	11, 12	11	10, 12	Х	16, 17	8, 11
SNI12c	Reference	6, 8	29, 30	11	9	9	11	9, 10	Х	15	8, 11
SINIZC	Result	6, 8	29, 30	11	9	9	11	9, 10	Х	15	8, 11
TK-10	Reference	8	29	11, 12	9	10, 11	12	12	Х	16, 20	11
1K-10	Result	8	29	11, 12	9	10, 11	12	12	Х	16, 20	11
110-31	Reference	7	32.2	11, 12	9, 11	10	11, 13	10, 12	Х	16, 20	11
00-51	Result	7	32.2	11, 12	9, 11	10	11, 13	10, 12	Х	16, 20	11
НСТ116	Reference	8, 9	29, 30	10, 11	10, 12	11, 12	11, 13	7, 10	Х	17, 21	8
	Result	8, 9	29, 30	10, 11	10, 12	11, 12	11, 3	7, 10	Х	17, 21, 22	8, 9
HEK 202	Reference	7, 9.3	28, 30.2	8, 9	12, 14	11, 12	9, 13	11, 12	Х	16, 19	11
TEK293	Result	7, 9.3	28, 30.2	8, 9	12, 14	11, 12	9, 13	11, 12	Х	16, 19	11

Table S2. Primers used in this paper.

Application	Name	Sequence (5'–3')	vector
Primers for	TGase 2	ottoorcoogotootoagcGCcagcoagagggtgcagtctGCcGCgtccaccacggtggctg	HA-
mutagenesis	mutant_antisense	9.199.199.999.99.99.90 cm9.99.99.90.90 cc c c c c c c c c c c c c c c c c c	pcDNA3.1
	TGase 2 mutant_sense	ctcaccaccccggccaacgcccccatcggcctgtatGCcctcagcctggaggcctc	
	insert_1	ctagacatctgcctgatc	
	insert_2	tttgcggaggtcaatgcc	
Primers for cloning	p53_Forward	tgacgatgacaagcttatggaggagccgcagtcag	p3xFlag- CMV
	p53_Reverse	tcgcggccgcaagctttcagtctgagtcaggcccttc	

Table S3. Comparative GI₅₀, TGI, and LC₅₀ of streptonigrin, sutent, and sorafenib. Growth Inhibition of 50% (GI₅₀), total growth inhibition (TGI), and lethal concentration of 50% (LC₅₀) of different drugs are calculated in RCC cells after 48 h treatment.

<u>GI₅₀ Value</u>	- log10(M)			<u>TGI Value - log10(M)</u>						
Cell Name	C	hemical Nam	e	Cell Name	Chemical Name					
	Streptonigrin	Sutent	Sorafenib		Streptonigrin	Sutent	Sorafenib			
786-0	-8.2	-5.2	-5.4	786-0	-7.5	-4.7	-4.8			
A498	-8.0	-5.0	-5.7	A498	-7.3	-4.7	-5.2			
ACHN	-8.4	-5.5	-5.5	ACHN	-6.9	-4.8	-5.1			
CAKI-1	-9.1	-5.9	-5.5	CAKI-1	-7.5	-4.8	-4.9			
RXF 393	-7.2	-4.7	-5.4	RXF 393	-6.3	-4.5	-4.8			
SN12c	-7.7	-5.2	-5.6	SN12c	-7.1	-4.6	-5.1			
TK-10	-8.1	-5.5	-5.5	TK-10	-7.3	-5.0	-5.1			
UO-31	-7.5	-5.3	-5.4	UO-31	-7.0	-4.7	-4.8			
Average	-8.0	-5.3	-5.5	Average	-7.1	-4.7	-5.0			
Value	9.4 nM	5.2 µM	3.2 µM	Value	77.1 nM	18.8 µM	10.6 µM			

LC₅₀ Value - log10(M)

Cell Name	Chemical Name							
	Streptonigrin	Sutent	Sorafenib					
786-0	-6.1	-4.3	-4.3					
A498	-5.6	-4.3	-4.5					
ACHN	-5.3	-4.4	-					
CAKI-1	-4.8	-4.2	-4.0					
RXF 393	-5.0	-4.2	-4.1					
SN12c	-5.3	-4.2	-4.5					
TK-10	-5.7	-4.4	-4.3					
UO-31	-4.8	-4.3	-					
Average	-5.3	-4.3	-4.3					
Value	4.7 µM	51.5 µM	52.1 µM					