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Abstract: Esophageal cancer (EC) is the eighth most common and sixth leading cause of cancer-related
mortality in the world. Despite breakthroughs in EC diagnosis and treatment, patients with complete
pathologic response after being submitted to chemoradiotherapy are still submitted to surgery, despite
its high morbidity. Single-nucleotide polymorphisms (SNPs) in miRNA, miRNA-binding sites, and in
its biogenesis pathway genes can alter miRNA expression patterns, thereby influencing cancer risk
and prognosis. In this review, we systematized the information available regarding the impact of
these miR-SNPs in EC development and prognosis. We found 34 miR-SNPs that were associated with
EC risk. Despite the promising applicability of these miR-SNPs as disease biomarkers, they still lack
validation in non-Asian populations. Moreover, there should be more pathway-based approaches
to evaluate the cumulative effect of multiple unfavorable genotypes and, consequently, identify
miR-SNPs signatures capable of predicting EC therapy response and prognosis.
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1. Introduction

Esophageal cancer (EC) is the eighth most common cancer and the sixth leading cause of
cancer-related mortality in the world, with an estimated 400,000 deaths in 2012 [1,2]. The vast majority
of ECs occur as either esophageal squamous cell carcinoma (ESCC) in the middle or upper third
of the esophagus, or as esophageal adenomarcinomas (EAC) in the distal third or esophagogastric
junction [3]. EC incidence is threefold higher in men than in women, and peak incidence rates occur in
Southern and Eastern Africa and in Eastern Asia [2]. The global incidence of ESCC has remained more
or less the same, whereas a rapid increase in the incidence of EAC has been observed in the United
States and Western Europe [3–5]. In fact, EAC incidence is expected to rise dramatically in many
Western countries in the coming years [6,7]. EAC typically arises from a metaplastic epithelium known
as Barrett’s Esophagus (BE), and established risk factors for both EAC and BE include gastroesophageal
reflux disease, European ancestry, male sex, obesity, and tobacco smoking [8].
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Surgical resection remains the cornerstone of curative treatment for patients with locoregional EC
despite high morbidity and mortality rates due to complications, especially in older patients [9,10].
Recent randomized trials have shown that neoadjuvant chemoradiotherapy significantly improved
survival in patients with resectable tumors [11,12]. As such, multimodality therapy that combines
neoadjuvant chemoradiotherapy followed by surgery has become the standard of care in many
institutions. However, operative morbididy and mortality associated with esophagectomy remain
high, and complications arise in up to 60% of patients [13]. Additionally, 25–30% of patients
experience a complete pathologic response following neoadjuvant chemoradiotherapy, but are still
submitted to surgery due to the lack of accurate and reliable techniques capable of determining the
complete pathological response [12,13]. This fact led some authors to question if every patient should
undergo esophagectomy following chemoradiotherapy, since the subgroup that presents a complete
pathological response won’t benefit from surgery and, most importantly, how patients best suited to
chemoradiotherapy alone should be selected. Thus, the study and development of new biomarkers
capable of predicting patients’ prognosis is imperative in order to avoid surgery and related morbidity
and mortality in good responders to neoadjuvant chemoradiotherapy.

The contribution of microRNAs (miRNAs) to EC development has been extensively studied,
and it has become clear that they play crucial roles in the pathogenesis, diagnosis, and prognosis of
this type of cancer [14]. In fact, a study published this year by Chiam and colleagues established two
miRNA-ratios (miR-4521/miR-340-5p and miR-101-3p/miR-451a) that were able to predict disease-free
survival following neoadjuvant chemoradiotherapy and esophagectomy in patients with EAC [15].
MiRNAs are a class of small (~22 nt) noncoding RNAs that regulate the expression of target mRNAs
at a posttranscriptional level and are implicated in various biological processes, such as embryonic
development, cell differentiation, proliferation, apoptosis, and cancer development [16,17]. MiRNA
biogenesis consists of a primary miRNA (pri-miRNA) undergoing cleavage in subsequently regulated
steps by two enzymes to form a mature miRNA that is incorporated in an RNA-induced silencing
complex (RISC), ultimately guiding it to its target mRNA to perform its regulator function [18].
Briefly, the pri-miRNA is cropped into a 55 to 80 nt stem-loop precursor miRNA (pre-miRNA) by
Drosha and its cofactor DiGeorge syndrome chromosomal region 8 (DGR8) in the cell nucleus. Next,
the pre-miRNA is exported to the cytoplasm by nuclear export protein (XPO5) and Dicer cleaves the
pre-miRNA into a mature miRNA. The mature miRNA is then incorporated into the RISC complex,
which will guide it to the complementary region of its targets. This process results either in the
inhibition of mRNA translation, or in mRNA degradation, depending on the degree of complementarity
between the miRNA and the 3′-UTR region of its target mRNA [16]. The crucial binding location
for mRNA translational regulation resides in the mature miRNA sequence and, more accurately,
within nucleotides 2–7 or 2–8 from the 5′end of the miRNA, called the seed region [18,19]. It is
important to note that the average size of the human 3′-UTR is about 950 nt, while an efficient
miRNA-binding site consists of 6–8 nt. As such, the 3′-UTR of a specific mRNA can include tandem
target sequences for a specific miRNA as for many other miRNAs [20,21]. Since the major consequence
of miRNA:mRNA pairing is the loss of protein expression, resulting from either decreased transcript
levels or by translational repression, alterations in miRNA expression patterns impact on the expression
of oncoproteins and tumor suppressor proteins, thereby influencing cancer risk and prognosis [20].

Given the diversity of pathways that are regulated by miRNAs, genetic polymorphisms in
miRNAs, miRNA-processing machinery, and miRNA target sites are implicated in carcinogenesis.
MiRNA-related single-nucleotide polymorphisms (miR-SNPs) are defined as SNPs that occur in
miRNA genes, at miRNA-binding sites, and in the miRNA processing machinery. This type of SNPs
can ultimately affect cancer risk, treatment efficacy and, consequently, patient prognosis by modulating
both miRNAs and their targets [17]. In 2016, Nariman-Saleh-Fam and colleagues used a bioinformatics
approach to provide a catalog of the most potentially disruptive EC-implicated miRNA targetome
polymorphisms, along with in silico insight into the pathways affected by such variations [14]. Despite
the importance of these findings, validation studies are still lacking.
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MiR-SNPs seem to represent an indispensable pool of novel molecular biomarkers and have
recently come into focus regarding their possible role in the development of cancer. Hence, the scope
of this review is to gather and systematize the information available regarding the impact of miR-SNPs
in EC development and prognosis.

2. Evidence Acquisition

A literature search in PubMed was conducted using the search terms “miRNA”, “polymorphisms”,
“SNPs”, and “esophageal cancer”. The articles were selected by relevance of their findings, namely,
the significant association of miR-SNPs and esophageal cancer. Literature analysis includes scientific
papers published in the last ten years (between 2008 and 2018). Obtained scientific papers were
manually curated in order to determine associations between miR-SNPs and EC. Of the 47 papers
found, 17 were excluded. The exclusion criteria for the collected papers were as follows: (1) no
association between miR-SNPs and EC; (2) association with a benign tumor; and (3) individual papers
that were already included in meta-analysis, collected for this study. For each study, information was
extracted concerning the following characteristics: the name of the miRNA, SNP rs number, SNP effect
on esophageal cancer (e.g., cancer risk, prognosis, therapy response), ethnicity, type of study (e.g.,
case control, association study, meta-analysis) and number of cases and controls used. Since BE is
an established risk for, and the only known precursor of, EAC, we included the miR-SNPs that were
common to both BE and EAC in our study.

3. Evidence Synthesis

The pooled information is synthesized in Figure 1, where we divided the EC-relevant miR-SNPs
into three categories: (1) SNPs in miRNA-coding genes, (2) SNPs in miRNA-binding sites, and (3) SNPs
in biogenesis machinery.
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Figure 1. Overview of miRNA-related single-nucleotide polymorphisms (miR-SNPs) found and their
impact on esophageal cancer (EC).

3.1. SNPs in miRNA Loci

MiRNA genes are scattered among each human chromosome. With the exception of chromosome
Y, they can be encoded in independent transcription units, polycistronic clusters, or within the introns
of protein-coding genes [22]. MiRNA profiling has revealed that most miRNAs are significantly
downregulated in cancer [20]. Calin and colleagues mapped the chromosomal location of all known
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miRNA genes and discovered that many are located in regions that are frequently involved in
chromosomal alterations, such as deletions or amplifications, usually found in many types of
cancers [23]. Additionally, Lu and colleagues found that SNPs occur less frequently, but are
more constrained in miRNAs associated with diseases when compared to the other miRNAs [24].
The majority of SNPs in miRNA-coding genes usually occur in pre-miRNAs and can be responsible
for changes in stem-loop structures, consequently affecting the production of mature miRNAs [25].
Gong and colleagues performed a genome-wide scan in human pre-miRNAs, miRNA flanking regions,
and target sites, and their results showed that approximately 40% of pre-miRNAs contain at least
one polymorphism, and 48 SNPs were found in functionally important seed regions. The authors
also observed that the SNP density of pre-miRNAs is lower than that of flanking regions, and SNP
density of miRNA seed regions is significantly lower than in the pre-miRNAs and flanking regions [25].
Despite being quite rare in seed sequences, SNPs in these regions can lead to the creation or disruption
of putative binding sites, consequently altering the total numbers of putative targets [26].

In this review, we found 22 studies that related a total of 13 SNPs in miRNA genes associated with
an EC outcome (Table 1). The most studied SNPs were miR-423 rs6505162, miR-196a-2 rs1161491,3 and
miR-146a rs2910164, and they were all located in pre-miRNA regions with impact in the respective
mature miRNA production. The miR-423 rs6505162 SNP is located in pre-miR-423 and maps to 17q11.2,
with a nucleotide alteration from C to A [27]. Since both miR-423-3p and miR-423-5p are produced
by the pre-miRNA of miR-423, it is possible for the polymorphism of pre-miR-423 to play different
roles in cancer progression, and in different types of cancer [27–29]. Despite the lack of studies about
mature miR-423 in esophageal cancer, miRNA-423-5p expression was associated with cell proliferation
and invasion in gastric cancer cells [30]. The miR-146a rs2910164 G > C SNP is located in the precursor
stem-loop region, opposite to the mature miRNA-146a sequence and involves a change from a G:U
pair to a C:U mismatch, with an impact on mature miRNA-146a levels [31]. MiR-146a expression was
reported as dramatically decreased in ESCC tissue and it was associated with a worse prognosis [32].
The miR-196a-2 rs11614913 C > T SNP is located in the stem-loop region opposite to the mature
miR-196a-2, and the nucleotide change from C to T was suggested to alter the levels of the mature
3′ passenger (3p) strand of miR-196a2 and the activity of its target mRNAs [31]. The mature miR-196a
was reported as upregulated in ESCC and was suggested as a potential diagnosis biomarker and
therapeutic target for this neoplasia [33,34].
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Table 1. Single Nucleotide Polymorphisms (SNPs) within miRNA-encoding genes and their association with Esophageal Cancer (EC) risk and outcome.

Location SNP Population Type of Study Sample Size Relevant
Genotype Outcome References

Pri-miR-124-1 rs531564 Kazach Case controls 239 cases/227 controls CG+GG ↓ ESCC risk Wu et al. (2018) [35]

Pri-miR-124-1 rs531564 Canadian Cohort 368 cases G allele ↑ EAC OS Faluyi et al. (2017) [36]

Pre-miR-423 rs6505162 Iranian Case control 200 cases/300 controls AA ↓ EC risk Nariman-Saleh-Fam et al.
(2016) [14]

Pre-miR-196a2 rs11614913
Chinese Case control 1400 cases/2185 controls

CC ↑ ESCC risk Shen et al. (2016) [37]Pre-miR-499 rs3746444 C allele

Pre-miR-4467
Pre-miR-3117

rs12534337
rs7526812 Mixed ethnicity Case control

2515 EA cases
3295 BE cases
3207 controls

A allele C allele ↑ BE and ↑ EAC risk Buas et al. (2015) [8]

Pri-miR-124-1 rs531564 Chinese Meta analysis 1738 cases/1961 controls GG ↓ ESCC risk Li et al. (2015) [38]

Pre-miR-219-1
rs107822

Kazach Case control 248 cases/300 controls
AA/A allele ↓ ESCC risk Song et al. (2015) [39]

rs213210 T allele

Pre-miR-100 rs1834306 Kazach Case control 248 cases/300 controls CC/C allele ↓ ESCC risk Zhu et al. (2015) [40]

Pre-miR-499b rs10061133
Chinese Case control 773 cases/882 controls

GG ↓ ESCC risk Zhang et al. (2015) [41]
Pre-miR-4293 rs12220909 C allele

Pre-miR-196a-2 rs11614913 Chinese Case control 381 cases/426 controls TT ↓ ESCC risk Qu et al. (2014) [42]

Pre-miR-499 rs3746444 Mixed ethnicity Meta analysis 12799 cases/14507 controls TC+CC ↑ EC risk in the asian population Chen et al. (2014) [43]

Pri-miR-34b/c rs4938723 Mixed ethnicity Meta analysis 7753 cases/8014 controls CC ↓ ESCC risk in the asian population Li et al. (2014) [44]

Pre-miR-608 rs4919510 Taiwan Cohort 504 cases GC ↑ OS and ↑ PFS in ESCC Yang et al. (2014) [45]

Pre-miR-146a rs2910164
Chinese Cohort 378 cases

CG+GG ↑ risk of severe hematological toxicity
in ESCC

Wu et al. (2014) [46]Pre-miR-196a2 rs11614913 TT ↓ OS ESCC
Pre-miR-125a rs12976445 TT ↓ OS ESCC

Pre-miR-196a-2 rs11614913 Chinese Case control 597 cases/597 controls CT+TT ↑ ESCC risk Wang et al. (2014) [47]

Pre-miR-146a rs2910164 Mixed ethnicity Meta analysis 790 cases/814 controls GC+GG ↑ EC risk in the asian population Xu et al. (2014) [48]

Pre-miR-423 rs6505162 Chinese Case control 629 cases/686 controls AA ↑ ESCC risk Yin et al. (2013) [49]

Pre-miR-423 rs6505162 Black ethnicity
Case control

368 cases/583 controls C allele ↑ ESCC risk Wang et al. (2013) [50]
5′-UTR miR-26a-1 rs7372209 Mixed ethnicity 197 cases/420 controls T allele ↑ ESCC risk

Pre-miR-196a-2 rs11614913 Chinese Case control 380 cases/380 controls CC ↓ ESCC risk in women Wei et al. (2013) [51]

Pre-miR-196a-2 rs11614913 Mixed ethnicity Meta analysis 4947 cases and 5642 controls C allele ↑ EC risk Wang et al. (2013) [52]

Pre-miR-196a2 rs11614913

Indian Meta analysis 289 cases/309 controls

T allele

↓ OS in ESCC Umar et al. (2013) [53]Pre-miR-146a rs2910164 C allele
Pre-miR-499 rs3746444 C allele
Pre-miR-423 rs6505162 A allele

Pre-miR-146a rs2910164 Mixed ethnicity Meta analysis 772 cases/779 controls C allele ↓ EC risk in the asian population He et al. (2012) [54]

Pre-miR-423 rs6505162 Caucasian Case control 346 cases/346 controls AC+AA ↓ EC risk Ye et al. (2008) [55]

EC: Esophageal Cancer; EAC: Esophageal Adenocarcinoma; ESCC: Esophageal squamous cell carcinoma; BE: Barrett Esophagus; OS: overall survival; PFS: progression-free survival;
↑: high; ↓: low.
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3.2. SNPs in miRNA-Binding Sites

SNPs occurring in noncoding regions can affect transcriptional regulation or post-transcriptional
gene expression, thereby affecting mRNA half life and resulting in altered protein levels trough the
deregulation of miRNA–mRNA binding [56]. The most widely studied SNPs in noncoding regions
are the SNPs located in the 3′-UTR of mRNAs, also known as poly-miRTSs [57]. Roughly 180,000
SNPs in the human genome that are located in the 3′-UTR region were identified, along with about
2600 mature miRNA sequences that are deposited in the mirBase (v.21), which suggests that these
SNPs may introduce miRNA-binding changes [20]. Additionally, by performing a genome-wide scan,
Gong and colleagues found a total of 98,008 possible functional SNPs in 3′-UTRs [25]. Despite the fact
that the majority of the studies about polymorphisms in miRNA targets focus on the SNPs in 3′UTRs,
it is important to note that some studies revealed that miRNAs could also bind to 5′ UTRs or coding
sequences of target mRNAs, suggesting that these variants could also affect miRNA regulation [58,59].
Functional SNPs in the miRNA target regions are likely to alter gene expression via affecting miRNA
targeting, namely, through the creation or disruption of miRNA-binding sites. In this review, we found
eight studies relating nine different SNPs in miRNA targets (8 in 3′-UTR regions and 1 in a coding
sequence) with association with EC risk and outcome (Table 2).

Table 2. SNPs within miRNA-binding sites and their association with EC risk and outcome.

miRNA Binding
Site SNP Population Type of

Study Sample Size Relevant
Genotype Outcome References

3′-UTR of
KIAA0423 rs1053667 Canadian Cohort 368 cases C allele ↑ OS in EAC Faluyi et al.

(2017) [36]

3′-UTR of SET8 rs16917496 Chinese Case
control

180 cases/
142 controls CC

↑ OS and ↑
Post-surgery
survival in

ESCC

Wang et al.
(2016) [60]

3′-UTR of BSG rs11473 Chinese Case
control

624 cases/
636 controls

TT/T
allele ↑ risk of ESCC Li et al.

(2016) [61]

3′-UTR of RDH8 rs1644730 Mixed
ethnicity

Case
control

2515 EA cases
3295 BE cases
3207 controls

A allele ↓ BE and ↓ EA
risk

Buas et al.
(2015) [8]

3′-UTR of PTPRT
rs2866943

Chinese
Case

control
790 cases/

749 controls
CT/TT ↓ risk of ESCC Yao et al.

(2015) [62]rs6029959 CC/AC ↑ risk of ESCC

3′-UTR of ErbB4 rs1595066 Chinese Case
control

381 cases/
426 controls

AA/A
allele ↓ risk of ESCC Qu et al.

(2014) [42]

Coding sequence of
BRCA1

rs799917
Jinan

Case
control

540 cases/
550 controls

CC ↑ risk of ESCC Zhang et al.
(2013) [58]Huaian 588 cases/

600 controls

3′-UTR of MDM4 rs4245739
Jinan

Case
control

540 cases/
550 controls

AC+CC ↓ risk of ESCC Zhou et al.
(2013) [63]Huaian 588 cases/

600 controls

3′-UTR of RAP1A rs6573 Chinese Case
control

537 cases and
608 controls CC

↑ risk of
metastasis in

ESCC

Wang et al.
(2012) [64]

In a study that evaluates the impact of SNP regulation of miRNA expression in colon-cancer
risk, KIAA023 rs1053667 was found to be associated with differential expression of one of its target
miRNAs, miR-19b-3p, in normal colon tissue when compared to tumor tissue [65]. Histone lysine
methyltransferase (SET8) rs16917496 results in a C to T transition that might destroy the G:C bond in
the miR-502 and SET8 binding site, therefore modulating SET8 expression. The C allele is associated
with a perfect complementarity with miR-502, which will lead to efficient mRNA degradation and
lower SET8 protein levels. In EC, lower SET8 expression was associated with a better prognosis and
survival [17]. The Basigin (BSG) rs11473 consists of a C to T transition that destroys the binding site of
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miR-483-5p at the 3′-UTR of BSG, resulting in higher mRNA levels of this gene. In a study involving
EC patients, those that carried the TT genotype expressed higher levels of BSG mRNA and protein,
and consequent presents higher EC risk, compared with patients with the CC genotype carriers [61].
All-trans-retinol dehydrogenase 8 (RDH8) encodes for a short-chain dehydrogenase/reductase enzyme
involved in rhodopsin regeneration in the vision pathway and its enzymatic activity has also been
linked to estrogen biosynthesis. The rs1644730 is located in the 3′-UTR of RDH8 and its predicted
miR-630 binding site [8]. Given the significantly higher incidence of EAC among males versus
females, a potential protective effect of estrogen has been proposed, which is in agreement with
the fact that patients carrying the rs1644730 A allele presented decreased EAC risk [8]. PTPRT is a
tumor suppressor that plays a crucial role in regulating tumorigenesis mechanisms [62]. Two 3′-UTR
SNPs, rs2866943 C>T and rs6029959 C>A, located in the binding sites of miR-218 and miR-142-5p,
respectively, were studied in EC patients, but only rs2866943 was able to disrupt the inhibitory role of
miR-218 on PRPT expression and act as a protective factor in ESCC risk. Patients carrying rs2866943
CT and TT genotypes presented a small tumor size as well as the low probability of metastasis [62].
The Erb-b2 receptor tyrosine kinase 4 (ErbB4) gene, also known as human epidermal growth factor
receptor 4 (HER4), has been reported as overexpressed in EC tissue and is also associated with TMN
stage and lymph-node metastasis [66]. ErbB4 rs1595066 creates a binding site for miR-200*, a member
of miR-200 tumor-suppressor miRNAs, and is associated with a lower EC risk, probably through the
downregulation of ErbB4 [42]. BRCA1 is a widely studied tumor suppressor gene and it is deregulated
in several cancers. The rs799917 T>C polymorphism located in the BRCA1 coding sequence influences
miR-638-mediated regulation of BRCA1 expression [58]. BRCA1 mRNA expression analyses showed
that the rs799917 C allele carriers significantly decreased BRCA1 expression in both normal and cancer
esophagus tissue compared with T allele carriers, suggesting that lower BRCA1 expression may lead
to a higher risk of malignant transformation of esophagus cells [58]. MDM4 is an oncoprotein that
negatively regulates p53 function. The rs4245739 A>C SNP, located in the MDM4 3′-UTR, creates
a binding site for miR-191, resulting in decreased MDM4 expression [63]. Rs4245739 AC and CC
genotype carriers significantly decreased MDM4 expression in normal esophagus tissue compared
with AA genotype carriers, indicating consistent genotype–phenotype correlation [63]. The rs6573
SNP is a substitution from A to C, and disrupts the binding of miR-196a to RAP1A 3′-UTR, resulting in
a higher constitutive expression of RAP1A, which is a member of the RAS oncogene family [64]. Wang
and colleagues observed that RAP1A was overexpressed in ESCC tissue, and correlated with RAP1A
rs6573 CC genotype and lymph-node metastasis. The authors also performed an in vitro study where
they concluded that RAP1A might function as a promoter for esophageal cancer-cell migration and
invasion through matrix metalloproteinase 2 [64].

3.3. SNPs in miRNA Processing Machinery

Although the role of miRNA’s biogenesis pathway genes in cancer development and its
progression has been well established, the association between genetic variants of these pathway
genes has been less studied. The occurrence of SNPs in the components of the miRNA biogenesis
pathway can affect transcription, processing, transport and target gene identification, consequently
affecting the overall expression of miRNAs. In this review, we found three studies relating SNPs in
XPO5, Gem-associated protein 3 (GEMIN3), and Gem-associated protein 4 (GEMIN4) genes with EC risk
outcome, and all of the SNPs reported were associated with a better prognosis (Table 3).

XPO5 is a key factor in this process, as it is responsible for the nuclear export of the pre-miRNA to
the cytoplasm, where it is further processed to its final miRNA conformation in order to be loaded
to RNA-induced silencing complex to exert its regulatory effect [67]. It has been postulated that
XPO5 miRNA regulation can be a limiting step for miRNA development since its impairment can
lead to pre-miRNA trapping in the nucleolus and therefore influence cancer risk [68]. The XPO5
rs11077 consists of an A to C transition that leads to the disruption of the miR-617 binding site
and the creation of a new binding site for miR-4763-5p in XPO5 3′-UTR, with an impact on XPO5



Cancers 2018, 10, 381 8 of 13

mRNA levels [69]. In fact, patients’ carriers of rs11077 AA genotype displayed a trend for high XPO5
expression in ESCC tissues, and these high XPO5 expression levels were also associated with high
survival rates [17]. GEMIN3 and GEMIN4 are members of the GEMIN protein family, and are part
of the RNA-induced silencing complex (RISC) that participates in the target RNA recognition and
repression by mature miRNAs. With the exception of GEMIN4 rs910924 that is located in a 5′-UTR,
all the other studied GEMIN SNPs were missense variants, meaning that they resulted in different
amino acid sequences that could impact GEMIN3 and GEMIN4 protein structure and consequent
miRNA regulatory function [55,70].

Table 3. SNPs within miRNA binding sites and their association with EC risk and outcome.

Gene SNP Population Type of
Study

Sample
Size

Relevant
Genotype Outcome References

XPO5 rs11077 Chinese Cohort 128 cases AA ↑ OS in ESCC Wang et al.
(2018) [17]

GEMIN 3 rs197412 Canadian Cohort 368 cases C allele ↑ OS EAC Faluyi et al.
(2017) [36]

GEMIN 4

rs910924

North
American

Case
control

346 cases/
346 controls

G allele

Haplotype
associated with ↓

EC risk

Ye et al.
(2008) [55]

rs2740348 C allele
rs7813 G allele

rs910925 G allele
rs3744741 C allele
rs1062923 A allele
rs4968104 T allele

4. Discussion

Major breakthroughs in the diagnosis and treatment of EC have been achieved during the past
few decades. However, the selection criteria for operative management after chemoradiotherapy are
still lacking, and patients that present a complete pathologic response are still submitted to surgery.
Since miRNAs are important in carcinogenesis and are capable of regulating the expression of hundreds
of target mRNAs, miR-SNPs may produce more significant functional consequences and represent an
ideal candidate for disease prediction.

SNPs in miRNA and miRNA-binding sites can potentially modulate miRNA–mRNA interaction
and potentially create or destroy miRNA-binding sites, while those in biogenesis pathway genes
can influence miRNA transcription either through altering transcription, processing, or maturation.
Due to their impact in cancer development, this new class of SNPs has been widely studied, mainly
due to their potential applicability as disease biomarkers. Indeed, in this review we found a total
of 34 miR-SNPs that were associated, in their majority, with EC risk and were mostly studied in
Asian populations where the incidence of EC is higher. However, despite promise, the impact of
these miR-SNPs requires further validation, especially in non-Asian populations where these types of
studies are lacking, and the incidence of EC, especially EAC, will rise dramatically in the following
years. Additionally, since EC is a type of cancer that involves multiple miR-SNPs with impact on the
miRNA targetome, the candidate gene approach that considers one or few genes/SNPs at a time can
give us the functional impact of that genetic variant in cancer risk or survival, but fails to relate that
information with the molecular pathways involved. As such, more pathway-based approaches that
evaluate the cumulative effect of multiple unfavorable genotypes on the miRNA targetome are needed
to identify signatures of genetic variations capable of predicting EC therapy response and prognosis.
Furthermore, it is also important to take into account that sometimes changes in a gene’s mRNA levels
are not reflected in its protein levels. Hence, when studying SNPs that alter miRNA:mRNA binding
capacity and, consequently, mRNA regulation, they should be accompanied by the monitorization of
the protein levels. This type of approaches would shed some light on the fine regulatory mechanisms
by which these variations contribute to EC pathogenesis instead of only focusing in cancer risk.
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5. Conclusions

Despite the complexity of the functional effects of SNPs that occur in noncoding regions, which
is the case of miR-SNPs, more attention has been paid to this recent class of genetic polymorphisms
mainly due to their potential impact in cancer. In EC, the majority of the studies focuses on the
association cancer risk and overall survival, but are lacking in terms of therapy response and prognosis.
Despite the potential of miR-SNPs as biomarkers, more studies are needed, especially in non-Asian
populations, in order to validate their application in the clinical practice.
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