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Abstract: In view that traditional dynamic Allan variance (DAVAR) method is difficult to make
a good balance between dynamic tracking capabilities and the confidence of the estimation. And the
reason is the use of a rectangular window with the fixed window length to intercept the original signal.
So an improved dynamic Allan variance method was proposed. Compared with the traditional Allan
variance method, this method can adjust the window length of the rectangular window adaptively.
The data in the beginning and terminal interval was extended with the inverted mirror extension
method to improve the utilization rate of the interval data. And the sliding kurtosis contribution
coefficient and kurtosis were introduced to adjust the length of the rectangular window by sensing the
content of shock signal in terminal interval. The method analyzed the window length change factor
in different stable conditions and adjusted the rectangular window’s window length according to the
kurtosis, sliding kurtosis contribution coefficient. The test results show that the more the kurtosis
stability threshold was close to 3, the stronger the dynamic tracking ability of DAVAR would be.
But the kurtosis stability threshold was too close to 3, there was a misjudgement in kurtosis analysis
of signal stability, resulting in distortion of DAVAR analysis results. When using the improved
DAVAR method, the kurtosis stability threshold can be close to 3 to improve the tracking ability and
the estimation confidence in stable interval. Therefore, it solved the problem that the dynamic Allan
variance tracking ability and confidence level were difficult to take into account, and also solved the
problem of misjudgement in the stability analysis of kurtosis.
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1. Introduction

Micro electromechanical system (MEMS) gyroscope has the advantages of small size, light weight,
and low cost [1–4], which is widely used in various fields of modern navigation. However, the accuracy
of MEMS gyroscopes is low. So it is important to compensate the errors of MEMS gyroscopes.

MEMS gyroscope error can be divided into deterministic error and random error [5]. Deterministic
error can be eliminated by calibrating the MEMS gyroscope [6]. The random error has a strong
randomness, so the random error becomes one of the main factors that limit the accuracy of the
MEMS gyroscope. At present, the modeling methods of random error about MEMS gyroscopes
mainly include autocorrelation analysis, power spectral density method and Allan variance analysis
method. Allan variance analysis can characterize and identify various random error sources of
MEMS gyroscopes. It is convenient to establish accurate random error model and improve navigation
precision. Many scholars such as Gao et al., Chen et al. and Li et al. have made Allan variance,
overlapped Allan variance identification for random errors of MEMS gyroscopes and achieved good
results [7–9]. However, MEMS gyroscope signals are non-stationary, so the Allan variance is difficult to
track the dynamic changes of the signal. Wang et al. use a rectangular window to intercept the original
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signal and analyze the Allan variance for intercepted signal. So the time-varying characteristics of
various random errors can be effectively tracked [10]. However, the DAVAR method intercepts the
original signal using a fixed length rectangular window which has a defect of power leakage and low
confidence in identifying noise. In Zhang et al. paper [11], the original signal is separated according
to the high and low frequency by using the wavelet decomposition method. And next, the signals
with different frequencies were used different window functions to intercept the original signal, which
reduce the power loss of DAVAR method [11]. Zhu et al. adjust the length of the rectangular window
according to the original signal kurtosis and the changes of variance to improve the confidence level
of the variance estimation effectively [12,13]. But the kurtosis and variance reflect the stability of the
rectangular window interception signal, so when the length of the window is changed according to the
variance and kurtosis, there are defects in the lag of window length regulation. In Gu et al. paper [14],
the choice of the window length is based on a fuzzy control method, which improves the dynamic
tracking ability of DAVAR. In Zhu et al. paper [15], the effective length of the analysis data is increased
with inverted mirror extension method, however, all signals are extended and analyzed, which is
difficult to ensure that the analysis results reflect the true characteristics of the original signal.

Because the dynamic Allan variance analysis which use the rectangular window with a fixed
window length to intercept the original signal has the disadvantage of power leakage and insensitive
tracking of the impact components in the signal, so the paper proposes a method which uses sliding
kurtosis contribution coefficient to sense the impact component at the end of the intercepted signal,
and use the sliding kurtosis contribution coefficient and kurtosis together to control the rectangular
window length. And the extension enhances the beginning and ending signal utilization with mirror
inverted. Through the simulation, it is found that the sliding kurtosis contribution coefficient can sense
the content of the impact component at the end of the intercepted signal so that the window length
of the rectangular window can be adjusted in time, which enhances the sensitivity of the dynamic
Allan variance analysis to the impact signal. Finally, the feasibility of the proposed method is verified
through the actual measurement and the analysis of MEMS gyroscope signals.

2. Allan Variance Analysis and Dynamic Allan Variance Analysis

2.1. Allan Variance Analysis

Allan variance analysis is a method of analyzing the frequency of signal stability in the time
domain, which was originally proposed by David Allan of the National Bureau of Standards
(NBS) [16,17]. The Allan variance is the most often used method for reducing a clock-noise time
series to a statistical summary of frequency stability, its use has also spread to other fields of science as
a tool for studying low-frequency spectral behavior of physical processes [18]. Random drift of MEMS
gyroscope has similar statistical characteristics. Therefore, many scholars also use the Allan variance
analysis to identify the random error of the MEMS gyroscope. It is defined that the sampling time τ0

of MEMS gyroscope to obtain N sampling points, the sampling sequence {ω} is divided into K groups,
K = N/M. Each group contains M data and the relevant time τ = Mτ0 is the total sampling time of
each group.

The mean of each group is:

ωk(M) =
1
M

M

∑
i=1

ω(k−1)M+i, (k = 1, 2, · · ·K)

Allan variance is defined as shown in Equation (1).

σ2
A(τ) ·

1
2

〈
(ωk+1(M)−ωk(M))2

〉
=

1
2(K− 1)

K−1

∑
k=1

(ωk+1(M)−ωk(M))2 (1)

In Equation (1), <> represents the overall average of the data.
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MEMS gyroscope random error usually contains angle random walk (ARW, A is a coefficient),
bias instability (BI, B is a coefficient), rate random walk (RRW, R is a coefficient), rate ramp (RR, K is
a coefficient), quantization noise (QN, Q is a coefficient), Markov noise (MN) and sinusoidal noise (SN).
Due to the different types of gyroscopes and test environments, random noise of various components
may exist in the output data. It is hypothesized that the noise is independent of each other and the
Allan variance can be expressed as the sum of squares of the random errors, as follows:

σ2(τ) = σ2
ARW(τ) + σ2

BI(τ) + σ2
RRW(τ) + σ2

QN(τ) + σ2
RR(τ) + σ2

SN(τ) + σ2
MN(τ) + · · ·

Among them, the Allan variance of the five random errors including QN, ARW, BI, RRW, and RR
is as following Equations (2)~(6). Each error source can be expressed as proportional to the −2~2
power of the form, therefore, Allan variance can be expressed as Equation (7).

σ2
QN(τ) =

3Q2

τ2 (2)

σ2
ARW(τ) =

N2

τ
(3)

σ2
BI(τ) =

B2 · 2 ln 2
π

(4)

σ2
RRW(τ) =

P2τ

3
(5)

σ2
RR(τ) =

R2τ2

2
(6)

σ2(τ) =
2

∑
i=−2

Aiτ
i, (i = −2,−1, 0, 1, 2) (7)

Five random errors in the σ(τ) − τ logarithmic curve are shown in Figure 1. σ(τ) is Allan
standard deviation.
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Figure 1. Allan standard deviation curve of MEMS gyroscope signal.

2.2. Allan Variance of Analog MEMS Gyroscope Signal

The output signal of MEMS gyroscope is simulated by setting different amplitude Gaussian white
noise at different time. The output signal was set the sampling step to 1 s and the sampling time to
6000 s. In the stationary period, the variance of the analog signal is 1 and the variance of the abrupt
signal (3000~4000 s) is 3. The analog signal is obtained as shown in Figure 2.
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Figure 2. MEMS gyroscope analog signal.

The Allan standard deviation curve is shown in Figure 3, which is obtained by the simulated
MEMS gyro signal analysis with Allan variance. A large number of experiments show that different
error items usually appear in different time intervals. A certain or a few kinds of random errors play
a leading role in different time intervals. Therefore, there is a quantization noise with a slope of −1 in
Figure 3. Moreover, angular rate random walk is a kind of random error with long correlation time.
Therefore, the random errors such as angular rate random walk and so on are not well represented in
Figure 3. Using the least square method to fit the Allan standard deviation curve, the error coefficient
of angle random walk can be obtained as 2.36 × 10−3◦/h1/2. The least square fitting results are as
shown in Figure 3.
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Figure 3. Allan standard deviation curve and least square fitting.

The Allan variance has the advantage of dealing with the ideal stationary signal. But the Allan
variance has not strong tracking ability and it has the disadvantage of dealing with the non-stationary
signal which is shown in Figure 2. Therefore, many scholars intercept the original signal with window
function, and then the intercepted signal was respectively processed with Allan variance analysis.
The above method is dynamic Allan variance (DAVAR) [19,20].

2.3. Dynamic Allan Variance (DAVAR) Analysis

The basic idea of dynamic Allan variance is firstly to design a proper window function to intercept
the original signal. Next, the Allan variance of intercepted signal is calculated separately, and then all
the results are combined into a three-dimensional graph to represent the dynamic performance of the
signal [19,20]. The principle is as follows:

(1) t1 is defined as a fixed analysis time t, t = t1.
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(2) x1(t) is obtained by capturing the original signal with a rectangular window whose width is T
and center is on t1.

(3) The Allan standard deviation σ(t1, τ) is obtained by calculating the clipped signal x1(t).
(4) t2 is defined as another analysis time point t, t = t2. The two interception signals overlap through

repeat step (2), and then steps (3) and (4) are repeated, respectively. The Allan standard deviation
sequence σ(t1, τ), σ(t2, τ) · · · σ(tn, τ) is finally obtained.

In the window section (t − T/2) ≤ t′ ≤ (t + T/2), the original signal is captured using the
rectangular window function Pτ(t), and the result is obtained as follows.

ω′(t, t′) = ω(t′)Pτ(t− t′) (8)

Pτ(t) =

{
1 |t| ≤ T/2
0 others

(9)

In the above formula, t is the center of the rectangular window and the Allan window hτ(t′) is
defined as follows.

hτ(t′) =

{
−1/τ 0 ≤ t′ < τ

1/τ −τ ≤ t′ < 0
(10)

Increment process ∆(t, t′, τ) is established as in Equation (11).

∆(t, t′, τ) = hτ(t′) ∗ωT(t, t′) (11)

Taking Equation (11) into Equation (1), we get:

σ2(t, τ) =
1
2
< ∆2(t, t′, τ) > (12)

In summary, the expected value of (12) is defined as the dynamic Allan variance.

σ2
davar(t, τ) = E(σ2(t, τ)) (13)

The square root of (13) is defined as the dynamic Allan standard deviation. Select the window
function length of 900. The dynamic Allan variance for the analog signal is shown in Figure 4.
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Figure 4 shows the dynamic Allan variance of the simulated gyroscope signal. In Figure 4,
the dynamic Allan variance can show the dynamic change of the signal fluctuation. Although the
dynamic Allan variance can track the dynamic performance of the signal, but the tracking result is not
perfect from the analysis of the error coefficient in Figure 5. This is because the dynamic Allan variance
intercepts the original signal with a fixed-window rectangular window function. There are some
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shortcomings in the method of intercepting a signal with a fixed window length rectangular window
function. If the window length is short, the amount of data per section is small and the confidence of
the analysis results is low. If the length of the window is longer, the dynamic changes of the signal
are sensed very early and at the same time the dynamic changes disappear very late. As a result,
the analysis has the disadvantages of early sensitivity to the beginning and sensitive delay to the end
of dynamic signal.
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Figure 5. The analysis results of angle random walk.

3. Kurtosis and Sliding Kurtosis Contribution Coefficient

The kurtosis is a normalized fourth-order central moment, dimensionless and can reflect the
distribution of the signal. For a signal of length n, the kurtosis coefficient is as in Equation (14).

K =

n
∑

i=1
(xi − µ)

nσ4 (14)

In Equation (14), µ is the mean value of signal xi, and σ is the standard deviation of signal xi. K = 3
(The signal distribution curve has a normal kurtosis); K > 3 (The peak value of the impact component
in the signal is above the normal distribution curve); K < 3 (The impact component amplitude is less
than the normal distribution). Wang et al. use rectangular windows to intercept the original signal
and then the kurtosis value is calculated to adjust the window length [10,11]. However, the kurtosis of
the intercepted signal has the characteristics of a rectangular window intercepting signal, which leads
to the shortcomings of early sensitivity to the beginning and sensitive delay to the end of dynamic
signal. When using a rectangular window with a window length of 201 and 601, the original signal is
intercepted and its kurtosis value is calculated. The kurtosis and the comparison between original
signal and the intercepted signal are shown in Figure 6.
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Figure 6. The comparison result of the kurtosis between the different window length.
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Through the above analysis, it is difficult to track the signal fluctuations by using the window
function intercepting the signal and then calculating the interception signal kurtosis value. The kurtosis
value is more stable with the longer window length, but the worse the tracking results are. In order to
accurately track the dynamic characteristics of the signal, the shorter window length of the rectangular
window will be selected. When the window length is very short, the kurtosis value is volatile, and it
is difficult to track fluctuations of signal. As shown in Figure 6, the kurtosis of window length 11
changes dramatically which make the kurtosis difficult track the dynamic response of the signal.
Therefore, this paper proposes the sliding kurtosis contribution coefficient based on the idea of kurtosis
contribution coefficient [21]. The principle of sliding kurtosis contribution coefficient is as follows. K is
kurtosis of the sampling sequence xi (i = 1, 2, · · · n). xωp is obtained by intercepting the original signal
with a L length rectangular window at the p data point in time tp.

xωp =
{

xp− L
2

, xp− L
2 +1, · · · xp, xp+1, · · · , xp+ L

2−1, xp+ L
2

}
In the equation above, xmp is defined as the sequence in the original signal sequence excluding

the xωp sequence. Though calculation, the kurtosis of the xmp sequence is as follows.

Kmp =

n
∑

i=1
(xi − µmp)

(n− L)σmp4 (i 6= p− L
2

, · · · p, · · · p +
L
2
)

In the equation above, µmp is the mean value of xmp and σmp is the standard deviation of xmp.
The sliding kurtosis contribution coefficient of sequence xωp is as follows.

S =
∣∣K− Kmp

∣∣/K (15)

Sliding kurtosis contribution coefficient of different sequences in different analysis points is
calculated, which can accurately estimate the abrupt time of the signal. For the above analog gyro
signal, when the length of the rectangular window is T = 11, the sliding kurtosis contribution coefficient
is shown in Figure 7.
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Figure 7. Analysis results of kurtosis and sliding kurtosis contribution coefficient under the same
window length.

It can be seen from Figure 7 that the sliding kurtosis contribution coefficient which can be applied
to the rectangular window with a short length can accurately reflect the dynamic change of the signal.
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4. Improved DAVAR Algorithm

4.1. Extension

When the performance of signal is analyzed with a rectangular window, the problem of low
utilization of the data in the beginning and end of the signal is inevitable. In summary, the beginning
and end of the signal data is extended with inverted mirror method of extension, which can enhance
the utilization of signal interval data.

x∗i = x1−i i = −( L
2 − 1),−( L

2 − 2), · · · 0
x∗i = xi i = 1, 2, · · ·N
x∗i = x2N+1−i i = N + 1, N + 2, · · ·N + L

2

When the center of the rectangular window is at
[
1, L

2 ) ∪ (N − L
2 , N

]
, the standard deviation of

the intercepted sequence is calculated as follows.

σ(m, L, τ0) =
1

2(mτ0)
2(L− 2)

×
L
2−1

∑
n=2

(x∗n−m − 2x∗n + x∗n+m)
2

σ(m, L, τ0) =
1

2(mτ0)
2(L− 2)

×
N

∑
n=N− L

2

(x∗n−m − 2x∗n + x∗n+m)
2

In the equation above, L is the window length of the rectangular window, m generally take 1/3
the length of the data column, τ0 is the sampling time.

4.2. Improved Window Length Adjusting Adaptively Algorithm

The traditional DAVAR algorithm intercept the original signal using a fixed window length
rectangular window and analyze the dynamic Allan variance of the intercepted data, which has
disadvantages of early sensitivity to the beginning and sensitive delay to the end of dynamic signal.
A rectangular window function is designed by combining slipping kurtosis contribution coefficient
and kurtosis. The rectangular windows with longer window lengths are used in the smoothing interval
of the signal, which can enhance the confidence and stability of the analysis results. If the signal in the
strong changes interval, the signal is dealt with short-window length rectangular window, which can
accurately track the dynamic changes of signals and improve the tracking ability of dynamic Allan
variance. So the improved window length adjusting adaptively algorithm is as follows.

(1) The L window is defined as a rectangular window with a suitable window length of L. Using
the L window to intercept the original signal and analyze the kurtosis of the intercepted signal.
The kurtosis threshold for stable signal is [K1,K2], such that at the analysis moment tp, the kurtosis
value of this sequence Kp is calculated and the following relation is obtained.

f1(tp) =

{
0 Kp ∈ [K1, K2]

1 Kp /∈ [K1, K2]
(16)

(2) The l window is defined as a rectangular window with a suitable window length of l (l < L).
The slipping kurtosis contribution coefficient of the signal sequence that is obtained by intercepting
the signal from the end of a sequence cut from L window with l window is calculated. Through
calculating the kurtosis value Kmp of the front L − l length signal in the L window intercepting signal,
the sliding kurtosis contribution coefficient S =

∣∣Kp − Kmp
∣∣/Kp of the l window is calculated. S reflects

the stability of the signal at the end of the L window and achieves an accurate sensitivity to the end of
the intercepted signal sequence. The sliding kurtosis contribution coefficient in [S1,S2] is designed to
represent the stable signal, which leads to the existence of Equation (17) on the tp moment.
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f2(tp) =

{
0 S ∈ [S1, S2]

1 S /∈ [S1, S2]
(17)

The function f 2 reflects whether there is an impact component at the tp +
L−l

2 τ0 moment. Where
τ0 is the sampling interval.

(3) The above two output function values are combined and then get the following relationship.

f
(
tp
)
= f1

(
tp
)

f2
(
tp
)

(18)

When f (tp) is 0, the characterization of the signal is stationary, and the end of the intercept signal
contains no impact components. When f (tp) is 1, the signal is unstable, and the rising edge of f (tp) is
collected, which is known as the impact component, exists at time tp +

L−l
2 τ0.

(4) When the dynamic Allan analysis of variance is analyzed, the maximum window length Lmax

for a steady signal and the minimum window length Lmin for an unstable signal are usually designed.
When f (tp) is 1, the signal contains the impact component at the tp +

L−l
2 τ0 moment, and the L window

starts to capture the signal at time tp +
L−l

2 τ0 with the minimum window length Lmin. Assuming
that the initial window length of the L window is L′, the maximum distance of the center about the
L window moving distance is L′−Lmin

2 , and the design of the window length variation factor ∆L1 is
as follows.

∆L1 ≥
L′ − Lmin

L′−Lmin
2

= 2 (19)

When f (tp) = 1, and at the next point tp+1, the L window’s window length L(tp+1) is as follows:

L(tp+1) =


Lmin L(tp) ≤ Lmin

L(tp)− ∆L1 Lmin < L(tp) < Lmax

Lmax L(tp) ≥ Lmax

(20)

When f (tp) = 0, the intercepted signal is stable and the starting point tp − L′
2 τ0 of the intercepted

sequence contains no impact component. In this case, it is required that L window after increasing the
window length can not acquire the signal before the tp − L′

2 τ0 time again. At this time, the window
length of the L window is increased until it reaches Lmax. The maximum distance of L window center
point moving is Lmax−L′

2 , then the window length variation factor ∆L0 is designed at this time.

∆L0 ≥
Lmax − L′

Lmax−L′
2

= 2 (21)

And at the next point tp+1, the L window’s window length L(tp+1) is as follows.

L(tp+1) =


Lmin L(tp) ≤ Lmin

L(tp) + ∆L0 Lmin < L(tp) < Lmax

Lmax L(tp) ≥ Lmax

(22)

5. Simulation and Test

Taking the rectangular window with a window length of 600 as an example, the adaptive change
of window length based on kurtosis is analyzed as follows. The analysis results are as in Figure 8.
If the stability threshold of kurtosis is 4, and the sensitive nodes of dynamic signals are 2700 s, 3115 s,
3963 s, and 4300 s. When kurtosis is used to control the change of window length, reduce the length of
the window at 2700 s, and the beginning of the rectangle window just collects the 3000 s data; increase
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the length of window at 3115 s, the end of the rectangular window collects the 2815 s data (3000 s
data should be collected), and the signal is in a stable range, so the adjustment of window length
is obviously too advanced. When the rectangle window is at 3963 s, the window length begins to
decrease to sense the dynamic change of 4000 s data. But the 4263 s data is collected at the beginning
of the rectangular window, and the signal is already in a stable state at this time, so there is a serious
lag phenomenon in adaptive adjustment of window length.
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Figure 8. The analysis of the different stability thresholds of kurtosis.

If the stability threshold of kurtosis is 3.45, the sensitive nodes of dynamic signals are 2700 s,
3201 s, 3868 s, 4300 s. When kurtosis is used to control the change of window length, reduce the
length of the window at 2700 s, and the beginning of the rectangle window just collects the 3000 s data;
increase the length of window at 3201 s, the end of the rectangular window collects the 2901 s data
(3000 s data should be collected), and there is still an adjustment ahead of time. When the rectangle
window is at 3868 s, the window length begins to decrease to sense the dynamic change of 4000 s
data. But the 4168 s data is collected at the beginning of the rectangular window, and there is also
a lagging control.

If the stability threshold of kurtosis is 3.3, the rectangle window begins to increase the length of
the window at 3228 s, and the end of the rectangular window collects the 2928 s data (3000 s data
should be collected); the rectangle window begins to reduce the length of the window at 3840 s, and the
4140 s data is collected at the beginning of the rectangular window.

So the dynamic tracking effect is best when the stability threshold of kurtosis is 3.3. But at this
time, the kurtosis value of the stationary interval has exceeded the kurtosis stability threshold, that is,
the threshold value of the kurtosis is relatively small. From Figure 8, we can see that the closer the
kurtosis threshold is to 3, the more sensitive the adjustment of the rectangular window is, and the
better the dynamic tracking effect is. Because in 3000~4000 s, the variance of the noise is increased
to 3, that is, there is a sudden increase in the amplitude of noise at 3000 s. According to Equation
(14), we know that the kurtosis value at 3000 s (the center of the rectangular window is in 2700 s)
is positively correlated with the difference of noise variance before and after mutation. When the
rectangular window intercepts the abrupt signal, the kurtosis will decrease gradually, no matter how
large the variance of the mutation signal is. So the kurtosis value changes slowly between 3000~4000 s.
The slow change leads that the adjustment of rectangular windows based on kurtosis is insensitive in
this area. The sliding kurtosis contribution coefficient is used to characterize the signal in the kurtosis
slowly changing region. So the stability threshold of kurtosis can be achieved closer to 3, and the better
the dynamic tracking ability of improved DAVAR will be.
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According to the analog MEMS gyroscope designed in Section 2.2, the random error of signal is
analyzed by the improved dynamic Allan variance method. Setting parameters: Lmax = 600, Lmin = 400;
K1 = 2.5, K2 = 3.3; S1 = 0, S2 = 0.07; l = 100; ∆L0 = ∆L1 = 2. The l window’s window length and above
parameters can be adjusted according to the sensitivity of the impact components in signal. The kurtosis
value of the captured signal which is obtained by capturing original signal with rectangular windows
with window length of 600, 400, or adaptive window length are obtained, respectively, as shown in
Figure 9. It can be found that before the impact signal is intercepted, the kurtosis value of the adaptive
window length rectangular window intercepting signal coincides with the kurtosis value of the 600
window length rectangular window intercepting signal. And after the impact signal, the kurtosis value
of the adaptive window length rectangular window intercepting signal coincides with the kurtosis
value of the 400 window length rectangular window intercepting signal.
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Figure 9. Kurtosis value of the intercepted signal with different window length.

The simulation test is carried out according to the above parameters. And the signal kurtosis,
f 1, sliding kurtosis contribution coefficient, f 2, f and adaptive window length is shown in Figure 10.
It can be seen from Figure 10 that the adaptive window length becomes the minimum window length
at the 2803 s, and the data of the 3003 s is intercepted which is at the end of the intercepted signal
and which is the starting point of the shock signal. Compared with the sliding kurtosis contribution
coefficient, kurtosis can characterize the signal stability better, but it is insensitive to the end position
of the impact component in the signal. As shown in Figure 10, the interval [K1,K2] is relatively small
(Some slightly fluctuating signals are shown unstable and f 1 jumps to 1). In this case, the shock signal
is only perceived when the L window reaches 3840 s. And at this time, the end of the L window
intercepting signal is the data at 4140 s. So the design of adaptive window length simply according
to kurtosis is difficult to meet the requirements. Compared to the sensitivity of the sliding kurtosis
contribution coefficient, the L window is already sensitive to the end of the shock signal when it reaches
3743 s. And at this time, the end of the L window intercepting signal is the data at 4043 s. Therefore,
the reduction of window length at this time can improve the sensitivity of the impact component.
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Figure 10. Simulation result.

According to the improved DAVAR method, the dynamic Allan variance of the analog signal is
shown in Figure 11.
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Figure 11. The analysis results of analog signals based on improved DAVAR algorithm.

Figure 12 shows the random walk analysis results of the signal sequences which are obtained
through intercepting the original signal by using the rectangular windows with different window
lengths. It can be seen that the rectangular window with the window length of 600 is sensitive to the
impact signal very early, and the recovery is later. The rectangular window with the window length of
400 is more sensitive to the impact signal, but the analysis result fluctuates obviously. The rectangular
window with adaptive window length can accurately detect the impact component in the signal, and it
ensures the stability of the analysis results.
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Figure 12. The angle random walk analysis results of intercepted signal of a rectangular window with
different window lengths.
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The angle random walk of gyro is identified by improved DAVAR method. The comparison
of confidence level and dynamic tracking ability of the analysis results between improved DAVAR
(Adaptive window length DAVAR, A-DAVAR), DAVAR-400 (window length is 400) and DAVAR-600
(window length is 600) is shown in Table 1.

Table 1. The comparison of confidence level and dynamic tracking ability of the analysis results
between A-DAVAR, DAVAR-400, and DAVAR-600.

Analysis Node DAVAR-400 DAVAR-600 A-DAVAR

ARW (10−3◦/h1/2) (0~2000 s) 4.03 3.87 3.83
ARW (10−3◦/h1/2) (3000~4000 s) 10.97 10.32 9.45

Beginning (3000 s) 2800 2702 2703
End (3000 s) 3200 3300 3156

Beginning (4000 s) 3800 3700 3740
End (4000 s) 4200 4300 4200

In Table 1, the beginning (3000 s) means that the window first senses the 3000 s data, and the
window length should decrease at this time. The beginning (3000 s) should be close to DAVAR-600’s
beginning (3000 s). The end (3000 s) means that the window lost senses the 3000 s data, and the
window length should increase at this time. The end (3000 s) should be close to DAVAR-400’s end
(3000 s). The ARW (0~2000 s) means the mean value from 0 s to 2000 s and the region is in stationary
interval, so the ARW (0~2000 s) should be close to the refer value in Section 2.2.

From Table 1, we can see that the improved dynamic Allan variance solves the problem of both
confidence and dynamic tracking ability.

The MEMS gyro is sensitive to temperature, so the MEMS gyro is fixed to the stationary preheating
1 h on the turntable to make the temperature reach steady state. The accurate angular velocity can be
input to the MEMS gyro using the turntable. But the input angular velocity of the turntable is 0 in the
experiment. Since the gyroscope bandwidth is 40 Hz, the sampling frequency is 100 Hz according to
sampling theorem.

The gyro data collected for the 600 s is shown in Figure 13. When the turntable input angle speed
is 0, the output signal of MEMS gyroscope contains trend and random drift. Usually the mean value
method and polynomial fitting method are used to remove the trend terms. So the random drift of
MEMS gyro is obtained by removing trend items from data collection with 3-order polynomial fitting
method. The random drift is shown in Figure 13.
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Figure 13. The original output and random drift of MEMS gyroscope.

The random drift of gyroscope is analyzed with Allan variance, and the Allan standard deviation
curve is shown in Figure 14. The Figure 14 shows that the random error includes quantization error,
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zero bias instability, angular random walk and angular rate random walk. Fitting the Allan standard
deviation curve by least square method, the error coefficient of angular random walk is 0.355◦/h1/2.Micromachines 2018, 9, x 14 of 22 
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Figure 14. Allan standard deviation curve.

In the experiment, a slight disturbance is exerted to the gyroscope at 3000~4000 s. The sampling
frequency is 100 Hz. The sampling time is 6000 s. According to a rule, one of 100 consecutive sampling
data is selected as the research sample. And the gyro signal is shown in Figure 15. The Allan standard
deviation curve and the least square fitting curve of the MEMS gyroscope are shown in Figure 16.
We can get the error coefficient of random error by least square fitting. However, the analysis results
can not reflect the dynamic changes of signals.
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Figure 15. The dynamic signal of MEMS gyroscope.
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The rectangle window length is chosen as 600. The dynamic Allan variance of MEMS gyro is
obtained as shown in Figure 17.Micromachines 2018, 9, x 15 of 22 
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Figure 17. The dynamic Allan variance analysis.

The quantization noise (QN, Q is a coefficient), angle random walk (ARW, A is a coefficient),
bias instability (BI, B is a coefficient), rate random walk (RRW, R is a coefficient), rate ramp (RR, K
is a coefficient) are obtained by fitting Allan standard deviation curve with least squares. And the
random error is shown in Figure 18. We can see that the random error analysis results show strong
dynamic characteristics.
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Figure 18. The random error analysis results of MEMS gyroscope.

According to the improved DAVAR algorithm designed above, the sampled signal is analyzed.
The kurtosis, sliding kurtosis contribution coefficient, and adaptive window length are shown in Figure 19.
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Figure 19. The analysis result of kurtosis, sliding kurtosis contribution coefficient, and adaptive
window length.
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Figure 19 shows that when the beginning of shock signal is collected by the L window at 3000 s,
the length of the rectangular window begins to decrease gradually until the length of the window is
reduced to a minimum Lmin. And when the beginning of the shock signal is collected by the end of
the rectangular window, the length of the rectangular window increases gradually to the maximum
length Lmax. In the interval of the end of the shock signal, there is a slight fluctuation in the signal for
a short time due to temperature and electromagnetic interference which leads to reduce the length of
the rectangular window in the improved DAVAR method. The sliding kurtosis contribution coefficient
highlights the more sensitive ability, such as the peak in Figure 19. And the window length decreases
in the growth interval after 4000 s, so the tracking ability of dynamic Allan variance has improved by
the window length decreasing. The measured signals are analyzed with the improved DAVAR method,
and the dynamic Allan variance analysis results of the measured signals are as shown in Figure 20.
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Figure 20. DAVAR analysis results.

The feasibility of the improved DAVAR algorithm is analyzed by taking the angle random walk
as the analysis example. The dynamic changes of the angular random walk error coefficient of the
measured MEMS gyroscope signal are shown in Figure 21. We can find that the improved DAVAR
algorithm with adaptive window length can be very sensitive to impact signal. And in the stationary
interval (0~3000 s, 4000~6000 s), the improved DAVAR analysis results coincide with the DAVAR
analysis results obtained from the rectangular window interception signal with a window length of 600.
The results of the analysis have good confidence and stability. In the perturbation interval (3000~4000 s),
the improved DAVAR analysis results coincide with the DAVAR analysis results obtained from the
rectangular window interception signal with a window length of 400. The results of the analysis have
good confidence and stability. And the analysis results have good dynamic tracking ability. So the
feasibility of the proposed method is verified.
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The error of gyro angle random walk is identified by improved DAVAR method. The comparison
of confidence level and dynamic tracking ability of the analysis results between improved DAVAR
(A-DAVAR), DAVAR-400, and DAVAR-600 is as shown in Table 2. The Refer value is obtained by the
Allan variance in Figure 16.

In order to further verify the feasibility of the proposed method, change the time of mechanical
interference. And the interference is introduced into the gyroscope test at 1000~2000 s and 4000~5000 s.
Remove the trend items from the original output and the dynamic random drift is obtained, as shown
in Figure 22.

Table 2. The comparison of confidence level and dynamic tracking ability of the analysis results
between A-DAVAR, DAVAR-400 and DAVAR-600.

Analysis Node DAVAR-400 DAVAR-600 A-DAVAR

Refer value (◦/h1/2) 0.355 0.355 0.355

ARW (◦/h1/2) (0~2000 s) 0.518 0.476 0.451

ARW (◦/h1/2) (3000~4000 s) 1.083 1.032 1.025

Beginning (3000 s) 2800 2702 2713

End (3000 s) 3200 3300 3189

Beginning (4000 s) 3800 3700 3723

End (4000 s) 4200 4300 4176
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Figure 22. The dynamic random drift of MEMS gyroscope.

If the kurtosis threshold is 3.6, 3.45 and 3.3, the rectangular window with a window length of
600 and 400 is used to intercept signal for dynamic Allan variance analysis. The nodes obtained by
the window length adjustment according to kurtosis are shown in Figure 23. As shown in Figure 23,
the closer the kurtosis threshold is to 3, the more sensitive the adjustment will be. But if the kurtosis
threshold is too close to 3, the judgement of the stationarity of the signal will be distorted according
to kurtosis. For example, when the length of the window is 600 and the kurtosis threshold is 3.3,
735~1539 s is judged to be unstable, and there is a big misjudgement. Therefore, we need to combine
the sliding kurtosis contribution coefficient and kurtosis together to determine the stable form of
the signal.

We can see the dynamic tracking ability of analysis results is best when the stability threshold of
kurtosis is 3.3 in Figure 23. So adjust the length of a rectangular window only based on kurtosis (brief
account DAVAR-K-3.3) as the same as Wang’s method [12,13]. The kurtosis and the window length are
shown in Figure 24. In Figure 24, the stability threshold of kurtosis is 3.3 and the window length in the
red circle is not perfect. The ideal situation is that the signal should be intercepted by the rectangle
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window with 600 window length from 0s to 700 s. At 700 s, the beginning of the rectangular window
begins to intercept the 1000 s signal, so the length of the window begins to decrease and the beginning
of the rectangular window has been at 1000 s. When the rectangle window moves to 800 s, the length
of the window is minimized to 400, at this time the beginning of the rectangular window is still in
1000 s. Then use the rectangular window with a length of 400 to intercept the signal after 1000 s until
the movement reaches 1200 s. At 1200 s, the end of the rectangular window begins to intercept the
1000 s signal, the rectangle window length begins to increase, and the end of the rectangular window
has been at 1000 s until it moves to 1300 s. And the length of the window grows to the maximum at
1300 s, at this time the end of the rectangular window is still located in 1000 s. The signal should be
intercepted by the rectangle window with a 600 window length from 1300 s to 1700 s. This is the most
ideal case, with the strongest sensitivity and the highest confidence level at every moment. The process
of changing the length of the window is the same as that of the process mentioned above. So the
window length in the red circle region influences the analysis results because of the small stability
threshold of kurtosis.
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Figure 23. The analysis of the different stability thresholds of kurtosis.

Micromachines 2018, 9, x 18 of 22 

 

the rectangular window is still in 1000 s. Then use the rectangular window with a length of 400 to 
intercept the signal after 1000 s until the movement reaches 1200 s. At 1200 s, the end of the 
rectangular window begins to intercept the 1000 s signal, the rectangle window length begins to 
increase, and the end of the rectangular window has been at 1000 s until it moves to 1300 s. And the 
length of the window grows to the maximum at 1300 s, at this time the end of the rectangular 
window is still located in 1000 s. The signal should be intercepted by the rectangle window with a 
600 window length from 1300 s to 1700 s. This is the most ideal case, with the strongest sensitivity 
and the highest confidence level at every moment. The process of changing the length of the window 
is the same as that of the process mentioned above. So the window length in the red circle region 
influences the analysis results because of the small stability threshold of kurtosis. 

 
Figure 23. The analysis of the different stability thresholds of kurtosis. 

 
Figure 24. The kurtosis and the window length in DAVAR-K-3.3. 

The dynamic Allan variance analysis results with DAVAR-K-3.3 are shown in Figure 25. And 
the angle random walk obtained by the DAVAR-K-3.3 is shown in Figure 26. 

Do not change the parameters in the algorithm and the sampled signals are analyzed with the 
improved DAVAR algorithm. The analysis results of kurtosis, sliding kurtosis contribution 
coefficient and the window length are shown in the Figure 27. In Figure 27, the window length has 
been achieved adjust adaptively and the window length adjustment is close to the ideal situation. 

The improved dynamic Allan variance analysis of dynamic random drift signals is shown in the 
Figure 28. 

0 791 1258 1744 2297 38304158 4768 5213 6000
2

4

6

8

K

 

 

0 790 1299 1719 2297 3829 4226 4744 5289 6000
2

4

6

8

K

0 735 1691 2297 3758 4257 4708 5291 6000
2

4

6

8

K

0 824 12831664 2197 4166 4769 5230 6000
2

4

6

8

Time ( s )

K

3.6

3.45

3.3

3.3

1539

Window length 600

Window length 600

Window length 600

Window length 400

3584

0 1000 2000 3000 4000 5000 6000
2

3

4

5

6

7

K

0 838 1288 1692 2197 3860 4275 4816 5401 6000
400

450

500

550

600

Time ( s )

W
in

do
w

 le
ng

th

738 1616 1792 2297 3760 4167 4713 5301

3.3

Figure 24. The kurtosis and the window length in DAVAR-K-3.3.

The dynamic Allan variance analysis results with DAVAR-K-3.3 are shown in Figure 25. And the
angle random walk obtained by the DAVAR-K-3.3 is shown in Figure 26.

Do not change the parameters in the algorithm and the sampled signals are analyzed with the
improved DAVAR algorithm. The analysis results of kurtosis, sliding kurtosis contribution coefficient
and the window length are shown in the Figure 27. In Figure 27, the window length has been achieved
adjust adaptively and the window length adjustment is close to the ideal situation.
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The improved dynamic Allan variance analysis of dynamic random drift signals is shown in the
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Taking the angle random walk as an example, the validation of the proposed method is carried
out, and the analysis result is shown in Figure 29. As shown in Figure 29, the analysis results of the
improved DAVAR algorithm have stronger sensitivity than the DAVAR-600, and they are more stable
than the results of DAVAR-400.
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The comparison of confidence level and dynamic tracking ability of the analysis results between
improved DAVAR, DAVAR-400, DAVAR-600, and DAVAR-K-3.3 is shown in Table 3.

Table 3. The comparison of confidence level and dynamic tracking ability of the analysis results
between A-DAVAR, DAVAR-400, and DAVAR-600.

Analysis Node DAVAR-400 DAVAR-600 DAVAR-K-3.3 A-DAVAR

Refer value (◦/h1/2) 0.355 0.355 0.355 0.355

ARW (◦/h1/2) (1000~2000 s) 1.136 1.091 1.107 0.963
ARW (◦/h1/2) (2500~3500 s) 0.423 0.385 0.389 0.383
ARW (◦/h1/2) (4000~5000 s) 1.172 1.105 1.086 1.061

Beginning (1000 s) 800 700 738 738
End (1000 s) 1200 1300 1288 1209

Restore 600 (1000 s) - - 1616 1388
Beginning (2000 s) 1800 1700 1616 1697

End (2000 s) 2200 2300 2297 2215
Beginning (4000 s) 3800 3700 3760 3760

End (4000 s) 4200 4300 4167 4128
Beginning (5000 s) 4800 4700 4713 4739

End (5000 s) 5200 5300 5301 5126
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In Table 3, the beginning (1000 s) means that the window first sense the 1000 s data, and the
window length should decrease at this time. The beginning (1000 s) should be close to DAVAR-600’s
beginning (1000 s). The end (1000 s) means that the window lost sense the 1000 s data, and the window
length should increase at this time. The end (1000 s) should be close to DAVAR-400’s end (1000 s).
The restore 600 (1000 s) means the window length restores to 600 after 1000 s, and the window begins
to intercept the signal in stable region after 1000 s, so the restore 600 (1000 s) should be close to the
DAVAR-600’s end (1000 s). Other nodes are similar to the above. ARW (2500~3500 s) means the mean
value of ARW from 2500 s to 3500 s and, in the stationary interval, the ARW should be close to the
refer value.

From Table 3 and the analysis above, we can see that the improved dynamic Allan variance solves
the problem of both confidence and dynamic tracking ability and the analysis results are the closest to
the ideal situation in A-DAVAR, DAVAR-400, DAVAR-600, and DAVAR-K-3.3.

6. Conclusions

This article elaborates the shortcomings of Allan variance and dynamic Allan variance by using
these two methods to analyze the analog MEMS gyro signal. Because the dynamic Allan variance
analysis using the rectangular window with a fixed window length to capture the original signal
has the disadvantage of power leakage and insensitive tracking of the impact signal. In this paper,
the DAVAR analysis of signal with a rectangular window with fixed window length is used to analyze
the signal. When the window length is long, the dynamic tracking ability of the signal is poor, but the
reliability is high. On the contrary, when the window length is small, the dynamic tracking ability is
strong but the confidence level is poor. Using kurtosis to adjust the length of the rectangle window,
the method can improve the dynamic tracking ability of the analysis results. But by comparing and
analyzing the different kurtosis stability threshold, it is found that the more closer the kurtosis stability
threshold is close to 3, the stronger the dynamic tracking ability of DAVAR will be. However, when
the kurtosis stability threshold is too close to 3, there is a misjudgement in kurtosis analysis of signal
stability, resulting in distortion of DAVAR analysis results. So the slipping kurtosis contribution
coefficient is proposed to deal with the impact component at the end of sensitive signals. And the
paper carry out the beginning and end interval data of the signal with an inverted mirror extension
to increase the utilization of beginning and end data. Through the kurtosis and sliding kurtosis
contribution coefficient jointly adjusting the window length of the rectangular window, the kurtosis
stability threshold can be closer to 3, which improves the dynamic tracking ability of the analysis
results and realizes the adaptive change of the length of the window. It solves the problem that the
dynamic Allan variance tracking ability and confidence level are difficult to take into account, and also
solves the problem of misjudgement in the stability analysis of kurtosis.
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