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Abstract: Considering the isotropic release process of nanoelectromechanical systems (NEMSs),
defining the active region of NEM memory switches is one of the most challenging process
technologies for the implementation of monolithic-three-dimensional (M3D) CMOS–NEM hybrid
circuits. In this paper, we propose a novel encapsulation method of NEM memory switches. It uses
alumina (Al2O3) passivation layers which are fully compatible with the CMOS baseline process.
The Al2O3 bottom passivation layer can protect intermetal dielectric (IMD) and metal interconnection
layers from the vapor hydrogen fluoride (HF) etching process. Thus, the controllable formation of the
cavity for the mechanical movement of NEM devices can be achieved without causing any damage
to CMOS baseline circuits as well as metal interconnection lines. As a result, NEM memory switches
can be located in any place and metal layer of an M3D CMOS–NEM hybrid chip, which makes circuit
design easier and more volume efficient. The feasibility of our proposed method is verified based on
experimental results.
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1. Introduction

Complementary metal-oxide-semiconductor–nanoelectromechanical (CMOS–NEM) hybrid
circuits have been researched intensively thanks to their unique advantages: low power consumption,
high performance, low fabrication cost and high chip density [1–9]. Some pioneering experimental
results of CMOS–NEM hybrid circuits have been reported [2,5]. They have NEM devices on the top of
a chip or in CMOS back-end-of-line (BEOL) metal interconnection layers. For the implementation of
monolithic-three-dimensional (M3D) CMOS–NEM hybrid circuits, the release process is important
to form the atmospheric or vacuum environment for the mechanical motion of NEM memory
switches whose operating mechanisms have already been explained elsewhere [1,2]. Generally,
the release process is performed by using vapor hydrogen fluoride (HF) etching. By using the
vapor HF etching, the inter-metal-dielectric (IMD) layers such as the tetraethyl orthosilicate (TEOS)
layers, which surround NEM devices, can be effectively removed with high selectivity toward metal
layers [10]. However, a conventional release process using vapor HF etching can cause catastrophic
influences on IMD and metal interconnection layers because it is an isotropic etching process: NEM
structures and adjacent metal interconnection lines collapse due to the widespread removal of IMD
layers. Thus, as shown in Figure 1a,b, it is difficult to place the metal interconnection lines around
NEM memory switches, which will be called the “dead zone” in this manuscript. The existence of the
dead zone makes M3D CMOS–NEM hybrid circuit design difficult and volume inefficient.

To minimize the dead zone surrounding NEM devices, this manuscript proposes a novel
CMOS-process-compatible encapsulation method as shown in Figure 1c. In the proposed method,
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NEM memory switches are encapsulated by alumina (Al2O3) bottom/top passivation layers. The TEOS
lower/upper sacrificial layers encapsulated by the Al2O3 bottom/top passivation layers are selectively
removed by vapor HF etching while the rest of the regions are protected. Thus, the controllable
formation of a cavity is feasible for the mechanical movement of NEM devices without damaging
CMOS baseline circuits and metal interconnect lines. From now, this cavity will be called the “active
region” of a NEM memory switch. To sum up, because our proposed encapsulation method defines
the active regions of NEM devices without generating dead zones, they can be placed in any metal
interconnection layers. To confirm the proposed method, prototype encapsulated NEM memory
switches are implemented.
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Figure 1. Conceptual views of (a) a nanoelectromechanical (NEM) memory switch only on the top
layer, (b) a NEM memory switch in the CMOS back-end-of-line (BEOL) metal layers and (c) the
proposed encapsulated NEM memory switches for monolithic-three-dimensional (M3D) CMOS–NEM
hybrid circuits.

2. Encapsulation Process

Figure 2 shows the key process steps of the encapsulated nanoelectromechanical (NEM)
memory switches. First, a 50-nm-thick silicon dioxide (SiO2) layer is grown by wet oxidation. Then,
a 500-nm-thick aluminum (Al) layer is sputtered and patterned by inductively coupled plasma
(ICP) etching. The Al patterns correspond to the metal interconnect lines of CMOS baseline
circuits. Third, a 500-nm-thick tetraethyl orthosilicate (TEOS) inter-metal-dielectric (IMD) layer is
deposited and patterned by plasma-enhanced chemical vapor deposition (PECVD) and magnetically
enhanced reactive ion etching (MERIE) processes, respectively, to define the active regions of NEM
memory switches. Subsequently, a 200-nm-thick Al2O3 bottom passivation layer is deposited by
a multisputtering process. The Al2O3 bottom passivation layer protects the metal interconnection lines
and IMD layers from the following vapor hydrogen fluoride (HF) etch at atmospheric pressure [11–13].
Fifth, a 200-nm-thick TEOS layer is deposited as a lower sacrificial layer. Next, a 500-nm-thick Al
layer is deposited and patterned to form NEM memory switches. During the patterning process,
the 85-nm-wide airgap between the movable cantilever beam and selection lines is formed by a focus
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ion beam (FIB) process while the rest of the patterns are defined by a conventional stepper. Seventh,
a 500-nm-thick TEOS layer is deposited and patterned as an upper sacrificial layer. It should be
noted that the active regions of NEM memory switches are defined and filled by the lower and upper
sacrificial layers. Eighth, a 200-nm-thick Al2O3 top passivation layer is deposited to encapsulate
the active regions of NEM memory switches. Subsequently, small-sized etch holes are patterned
on the Al2O3 top passivation layer by the FIB process. Tenth, the lower and upper TEOS sacrificial
layers are removed through the etch holes by vapor HF etching at 40 ◦C and 15 min. Finally, a thick
TEOS IMD layer is deposited on the Al2O3 top passivation layer to form the cavity surrounding
NEM memory switches which acts as the active region. The encapsulated active regions are in the
vacuum condition depending on TEOS deposition conditions. This encapsulation method is fully
CMOS-process-compatible, which can be easily applied to the fabrication of M3D CMOS–NEM
hybrid circuits.
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Figure 2. Key process steps of the encapsulated nanoelectromechanical (NEM) memory switches.
(a) Al deposition and patterning for the formation of metal interconnection lines; (b) Tetraethyl
orthosilicate (TEOS) deposition and patterning for inter-metal-dielectric (IMD) formation; (c) Al2O3

bottom passivation layer deposition; (d) Lower TEOS sacrificial layer deposition and patterning; (e) Al
deposition and patterning for the formation of a NEM memory switch; (f) Upper TEOS sacrificial
layer deposition and pattern; (g) Al2O3 top passivation layer deposition and etch hole formation;
(h) Removal of the lower/upper sacrificial layers through etch holes by using vapor hydrogen fluoride
(HF) etching; (i) TEOS deposition for cavity sealing.

For cavity formation, the etch holes should have the aspect ratio high enough to prevent TEOS
from filling the cavity again through the etch holes. Figure 3 shows scanning electron microscopy
(SEM, Thermo Fisher Scientific, Waltham, MA, USA) cross-sectional images of etch holes. In order
to form the etch holes with various aspect ratios, two FIB process conditions have been adjusted:
beam current and target diameter. The aspect ratio of the etch holes in Figure 3a–b are measured to
be 0.79 (beam current = 50 pA and target diameter = 160 nm) and 1.01 (beam current = 10 pA and
target diameter = 160 nm), respectively. It is interesting that two different layers are observed below
the Al2O3 top passivation layer in those two cases. The former is a thin TEOS layer which is originated
from the unwanted TEOS inflow through the etch holes. It is problematic in that it prevents the motion
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of a cantilever beam of a NEM memory switch. On the contrary, the latter results from the redeposition
process during the FIB sample cutting process for SEM measurement, which does not exist in the main
samples [14]. Thus, to suppress TEOS inflow, the aspect ratio of the etch holes needs to be increased.
If the aspect ratio is increased up to 1.14 (beam current = 10 pA and target diameter = 80 nm) as shown
in Figure 3c, no unwanted TEOS inflow is observed. Only the redeposition layer originated from the
FIB sample cutting process is formed under the Al2O3 top passivation layer.Micromachines 2018, 9, x FOR PEER REVIEW  4 of 7 
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Figure 3. Cross-sectional scanning electron microscopy (SEM) images of etch holes with the variation
of the beam current and target diameter of the focus ion beam (FIB) process. (a) Aspect ratio = 0.79
when beam current is 50 pA and target diameter is 160 nm; (b) Aspect ratio = 1.01 when beam current
is 10 pA and target diameter is 160 nm. (c) Aspect ratio = 1.14 when beam current is 10 pA and target
diameter is 80 nm.

3. Results and Discussion

Figure 4 shows the SEM images of the fabricated NEM memory switch encapsulated in a cavity.
Figure 4a–f show the NEM memory switches before and after vapor hydrogen fluoride (HF) etching,
respectively. The active region of the encapsulated NEM memory switch is formed well next to the
metal interconnection lines, as shown in Figure 4. Figure 4b,c confirm that Al2O3 top and bottom
passivation layers wrap the NEM memory switch and lower/upper tetraethyl orthosilicate (TEOS)
sacrificial layers. Figure 4d–f show that the TEOS lower/upper sacrificial layers are successfully
removed by vapor HF etching. In Figure 4e, it is confirmed that the sacrificial layers are completely
removed by vapor HF without damaging the cavity regions. This forms the active region of the NEM
memory switch, allowing activation between metal layers. Especially, Figure 4e shows the successful
implementation of the NEM memory switch in a cavity. On the other hand, Figure 4f shows that the
inter-metal-dielectric (IMD) layer out of the cavity is also removed by vapor HF etching, which means
that the Al2O3 bottom passivation layer fails to protect the IMD layer from vapor HF etching. It is
because vapor HF can penetrate into the Al2O3 layer following grain boundaries if the Al2O3 layer is
formed by the sputtering process. Thus, in order to increase the film density of the Al2O3 passivation
layer, an atomic layer deposition (ALD) process is used rather than a sputtering process. Figure 5a–d
show the transmission electron microscopy (TEM) images of the test sample using a 20-nm-thick
ALD-deposited Al2O3 layer before and after 1-, 5- and 15-min vapor HF etching at 40 ◦C, respectively.
As predicted, it is observed that the SiO2 IMD layer is completely protected by the ALD-deposited
Al2O3 layer.
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Figure 4. (a) Nanoelectromechanical (NEM) memory switch and metal interconnection lines; (b) NEM
memory switch and (c) metal interconnection lines before vapor hydrogen fluoride (HF) etching;
(d) NEM memory switch and metal interconnection lines; (e) NEM memory switch and (f) metal
interconnection lines after vapor HF etching.
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Figure 5. Transmission electron microscopy (TEM) images of an atomic layer deposition (ALD)-deposited
Al2O3 layer (a) before and after (b) 1-min, (c) 5-min and (d) 15-min vapor hydrogen fluoride
(HF) etching.

Figure 6 shows the current vs voltage curves of the fabricated NEM memory switch encapsulated
in a cavity. It shows the reasonable nonvolatile switching operation between selection line 1 (L1) and
selection line 2 (L2). The endurance cycle number is ~11 times due to the weak mechanical property
of aluminum. In the first switching operation, the voltage difference between the movable cantilever
beam and L1 (VL1) becomes higher than the pull-in voltage (Vpull-in), and then the movable cantilever
beam is stuck onto L1, which is called State 1. In this case, because the adhesion force (Fad) is larger than
the restoring spring force of the movable cantilever beam (Fr), the movable beam remains in contact
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with L1 even when VL1 is 0 V [15]. Thus, the nonvolatile data signal storage can be achieved. In the
second switching operation, the voltage difference between the movable cantilever beam and L2 (VL2)
becomes higher than the switching voltage (Vswit), and then the location of the beam tip is changed
from L1 to L2, which is called State 2. During the measurement, maximum current level was limited to
suppress microwelding effects. Poor endurance cycle number can be improved by downscaling the
dimension of NEM memory switches and changing beam materials [15,16].Micromachines 2018, 9, x FOR PEER REVIEW  6 of 7 
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4. Conclusions

In this work, a fabrication method to encapsulate an NEM memory switch for CMOS–NEM hybrid
circuits is proposed by using a commercial CMOS process and materials. Specification of the stable
encapsulated NEM memory switch is successfully confirmed based on the prototype fabrication and
measurement results. By applying the proposed method confirmed in this work, the active regions of
NEM memory switches can be formed without damaging CMOS baseline circuits as well as the metal
interconnect lines. Because NEM memory switches can be located in any place and metal layer, the
design of M3D CMOS–NEM hybrid chips can be easier and more volume efficient. It should be noted
that our proposed encapsulation method can be applied to any kind of NEM device, including NEM
switches, as long as they are fabricated by a CMOS backend process. For more uniform and reliable
processes, a reduced-pressure vapor HF etcher can be used rather than the atmospheric-pressure vapor
HF etcher used in this work. Therefore, the proposed fabrication process can lay the groundwork for
commercialization of M3D CMOS–NEM hybrid circuits.
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