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Abstract: Diamond nanocrystals smaller than 100 nm (nanodiamonds) are now recognized to
be highly biocompatible. They can be made fluorescent with perfect photostability by creating
nitrogen-vacancy (NV) color centers in the diamond lattice. The resulting fluorescent nanodiamonds
(FND) have been used since the late 2000s as fluorescent probes for short- or long-term analysis. FND
can be used both at the subcellular scale and the single cell scale. Their limited sub-diffraction size
allows them to track intracellular processes with high spatio-temporal resolution and high contrast
from the surrounding environment. FND can also track the fate of therapeutic compounds or whole
cells in the organs of an organism. This review presents examples of FND applications (1) for intra
and intercellular molecular processes sensing, also introducing the different potential biosensing
applications based on the optically detectable electron spin resonance of NV~ centers; and (2) for
tracking, firstly, FND themselves to determine their biodistribution, and secondly, using FND as cell
tracking probes for diagnosis or follow-up purposes in oncology and regenerative medicine.
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1. Introduction

Nanodiamonds (NDs) are diamond phase carbon nanomaterials that were initially used for their
strong abrasive properties and as lubricant additives [1] for industrial applications. They are produced
on a large scale by different processes [2] that include explosion during the detonation stage [3], the
milling of diamond microcrystals synthesized by high-pressure high-temperature process (HPHT), by
plasma-assisted chemical vapor deposition (CVD) [4], or by laser ablation [5]. ND can be endowed
with remarkable properties, in particular photoluminescence via embedded point defect with perfect
photostability, yielding fluorescent NDs (FNDs) [6,7] with optically detectable magnetic resonance
(ODMR) properties [8]. The fluorescence originates from nitrogen-vacancy defects that occur in neutral
(NV9) or negative (NV™) charge states. ODMR can only be observed in NV~ defects. Furthermore,
the NV defects within the ND lattice confer a very high resolution for imaging single molecules. NDs
also benefit from having a large variety of surface functionalizations [9]. Pristine or functionalized ND
have been repeatedly reported to be non-toxic for cells and organisms [10-12]. Considering this set
of unique properties, NDs are considered as a valuable nanoparticle for biomedical applications to
study intracellular processes and to follow the fate of molecule delivery when NDs are used as a drug
delivery platform.

Epifluorescence confocal imaging is the simplest method used to observe fluorescent
nanodiamonds due to an excitation at a wavelength of 532 nm and an emission between 600 and
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800 nm for the NV defects. When in vivo or ex vivo actions are performed, time-delayed detection is
then preferred. The radiative lifetime of NV centers in nanodiamonds of approximately 25 ns [13] is one
order of magnitude longer than the one of tissue autofluorescence, which is about 2 ns. Therefore, by
using sub-nanosecond pulsed laser excitation and time-resolved detection, rejecting most of the photon
counting events originating from autofluorescence light is possible, thus significantly improving the
signal over background ratio [14].

This short review focuses on some biomedical applications of fluorescent nanodiamonds, taking
advantage of their unique photophysical properties to use them for (1) intracellular and molecular
processes sensing and (2) for long-term tracking in organisms for therapeutic or diagnostic purposes.

2. Cellular Processes Sensing

2.1. Cell Internalization and Intracellular Trafficking

From their first application in cellular studies, NDs have been observed by various microscopy
techniques to be internalized efficiently in a large variety of cellular types, from human cancer cell
lines [15] to mouse hippocampal neurons [16]. Therefore, fluorescent NDs are effective for investigating
various intracellular processes, by detecting their fluorescence and, in some cases, by detecting a
colocalization with other biomarkers.

The first task involved identifying NDs’ internalization pathways. By using drugs that selectively
inhibit the different uptake pathways, several studies highlighted that clathrin-mediated endocytosis
was the dominant internalization process of HPHT nanodiamonds smaller than 100 nm [17,18].
The NDs were also revealed to only be located in the perinuclear region of the cytoplasm, and not
in the nucleus [18], as presented in Figure 1. Furthermore, the smallest, isolated particles were
observed to be free in the cytoplasm, when the bigger particles and aggregates were localized in the
intracellular endocytic vesicles. Besides, the shape of a HPHT diamond nanoparticle appears to affect
its internalization, trafficking inside the cell, and excretion from it [19,20]. Nevertheless, such behaviors
are still debated in the scientific community.

Endocytotic vesicles labeling FNDs
500-530 nm 600-750 nm

Merge

(a)

(b)

O pm

Figure 1. Localization of fluorescent nanodiamonds (FNDs) of size approximately 46 nm, in HeLa
cells. Confocal fluorescence raster scan of HeLa cells incubated with FNDs in normal conditions
then fixed. From left to right: raster scan in the green channel (500-530 nm) showing the endocytotic
compartments, in the red channel (600-750 nm) showing the FNDs and a merged image of the two
channels. (a) Colocalization study of FNDs with early endosomes labeled with EEA1-FITC (Fluorescein
IsoThioCyanate) fluorescent conjugate, and (b) colocalization study of FNDs with lysosomes labeled
with LysoTracker green dye. FNDs colocalized with endosomes or lysosomes appear in yellow in the
merged image. Reprinted with permission [18]. Copyright (2009) American Chemical Society.
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In addition, a comparison of the internalization process between positively charged amine
functionalized FND (FND-NH;) and transferrin grafted FNDs (FND-Tf) showed that the latter, which
triggers receptor-mediated endocytosis, has a higher uptake efficiency compared to the former, which
probably acts via electrostatic interactions between the NDs and the cell membrane [21]. This study
highlighted the fact that the surface chemistry of nanodiamonds influences the internalization
process and possibly the intracellular location. This was further documented by Alhaddad et al. [17]
who showed that different cationic polymer surface coatings, such as Poly-Ethylenelmine (PEI) vs.
Poly-Allyleamine Hydrochloride (PAH), used to load siRNA on NDs by electrostatic interaction led to
different internalization pathways. PAH coating involved clathrin-mediated endocytosis only, whereas
PEl-coating experienced both clathrin-mediated endocytosis and micropinocytosis. The latter process
allowed the siRNA-ND complexes to be engulfed in macropinosomes that have some leakage allowing
the release of siRNA into the cytoplasm where it is active. The fluorescence of nanodiamonds served
to precisely localize the FND in the cells by confocal microscopy, and to estimate the release dynamics
of fluorescently-labeled siRNA.

To direct drug transport by FND to the deleterious cells with better efficacy, targeting moieties
were grafted to the nanodiamond surface. Transferrin (Tf) is an ideal candidate molecule for such
targeting as it has receptors on a large variety of cancer cells. Taking advantage of FND fluorescence, Li
et al. demonstrated that the grafting of Tf at the surface of FND improved their internalization in HeLa
cells [22]. They also reported that when cell’s Tf receptors were pre-saturated by free Tf, FND uptake
decreased, indicating that it is a Tf-receptor-mediated process. This targeting strategy was then applied
to vectorize Doxorubucin (Dox), a classical anti-cancer drug, with Tf-FNDs, which demonstrated the
high specificity to cancer cells compared with normal cells, due to the active targeting [23]. Indeed, free
Dox was more toxic (reduction of cell viability) on normal cells when it is free that when vectorized by
FND-Tf, but END-Tf-Dox was as toxic as free Dox on cancer cells.

2.2. Sensing Intra- and Inter-Cellular Biological Processes

In addition to the observation of their internalization in cells, the perfectly stable fluorescence
conferred by the NV centers to NDs is particularly well suited for tracking intracellular processes such
as endosomal transports. This process is impeded in neurodegenerative diseases, such as Parkinson
and Alzheimer diseases [23]. The latter is detected at a too-advanced stage to be efficiently treated, so
a need exists for the development of new unbiased approaches for earlier diagnosis. FND was used
for this purpose by Haziza et al. [16]. The authors measured the intraneuronal transport parameters by
tracking FNDs internalized in endocytic vesicles that were moved along the microtubule cytoskeleton
by molecular motors. They demonstrated differences in endosomal transport parameters, such as
velocity and motor stopping duration and frequency, between control neurons and neurons from
transgenic mouse lines, mimicking a genetic risk factor for brain disease [16]. This study showed that
the perfect photostability, the high brightness, and very low toxicity of FNDs allow the sensing of the
impact of a very small protein concentration change in relation to neurodegenerative diseases.

Intercellular communication is essential in various biological processes, such as immunity, tissue
regeneration, and development. This communication is completed through different gateways,
including chemical synapses, gap junctions, and tunneling nanotubes (TNTs) [24]. The latter was
investigated to be used as a delivery channel between various cells, being from identical or different
types. A study was conducted on the communication between human embryonic kidney cells
themselves or with human neuroblastoma cells, made through TNTs [25]. FNDs were coated with
Bovine Serum Albumin (BSA) or with a green fluorescent protein (GFP) to track the colocalization and
transport dynamics of the FNDs with the protein and their transport dynamics. The protein-loaded
FND entered cells, first moved randomly inside the cytoplasm and then, after entering the TNT,
continued with a directed motion, indicating a molecular-motor-mediated process. Furthermore,
stop-and-go and to-and-from motions were observed under 100 pm, for both homo- and heterotypical
intercellular transport, paving the way for a new delivery route in cancer therapy.
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2.3. Labelling Cell Membrane in Culture and Probing Receptor Dynamics

Acid-cleaned FNDs have been reported to be spontaneously internalized, but in some cases, only
the labeling of the cell membrane is desired without the internalization of the nanodiamonds. Such
labeling is made with PEG-modified FNDs that are covalently coated with neoglycoproteins or with
streptavidin. One application of this function is immunostaining to label the membrane of specific
cells, including hepatocytes, which can be further sorted by flow cytometry [26].

Such functionalization and labeling was also used to study some transmembrane signaling
functions and membrane endogenous proteins dynamics in live cultured-cells. Sotoma et al. [27]
targeted the Interleukin-18 receptor alpha (IR-18Rc) chains on the plasma membrane of human
embryonic kidney cells, and demonstrated that recording receptor trajectories at the cell surface
is possible by grafting a beta-lactase-tag system on FNDs, specifically targeting IL-18Re. In a
more advanced experiment, Liu et al. investigated the trafficking dynamics and cell signaling of
TGF-beta receptor [28]. The former is critical for the development of cancer targeting therapies. They
functionalized FNDs with NH,-PEG-COOH, on which streptavidin and then BSA and biotin-TGF
were attached. This complex efficiently labeled TGF-beta receptors, and the authors were able to track
their three-dimensional (3D) motion with a high localization accuracy (10 nm in x and y and 19 nm in z).
The trajectory analysis highlighted three different behavioral states of TGF-beta receptors: immobile,
intermediate, and fast diffusion [28]. They showed that specific treatment with small molecule kinase
inhibitors could change the dynamics of TGF-beta from immobile to intermediate and fast diffusion
states, providing a better comprehension of the mechanisms of the TGF-beta pathway and helping the
development of new therapeutics targeting TGF-beta-associated cancers.

2.4. Prospects in Biosensing Based on Electronic and Quantum Properties of NV~ Center in Nanodiamonds

The NV center charge state in a nanodiamond depends on the Fermi level of the host matrix,
which can be adjusted by varying the surface functionalization. The oxygen-terminated FND favors
emission of negatively charged NV~, whereas the hydrogen-terminated surface only emits neutral
NV? [29]. Each charge state population is quantified by the strength of its specific narrow zero-phonon
line in the photoluminescence (PL) spectrum. The change in proportion of NV~ to NV? PL intensity
has been used in a purely optical method to detect the release in the cytoplasm of negatively charged
nucleic acid transported by cationic polymer-coated FNDs [30].

NV centers in diamonds are remarkable not only for their perfectly stable fluorescence but also
for the optically detectable electron spin resonance of the negatively charged form. In the presence of
an external magnetic field, the NV~ electron spin resonance is shifted by the Zeeman effect, providing
an optical means for magnetometry [31], or for orientation tracking of FNDs, even in the cellular
environment [32]. NV-magnetometry with a bulk diamond substrate was successfully used to detect
action potentials in the giant axon of a marine worm [33]. Although very promising, this approach
cannot be easily extended to nanodiamonds whose matrix contains more impurities and defects than
bulk diamond, leading to broader spin resonance and smaller spin coherence duration. However,
another strategy relying on spin-to-charge conversion could enable action potential sensing with
nanodiamonds placed very close to the source of the magnetic field [34]. The NV~ center electron spin
resonance frequency also experiences a shift upon a thermal variation that allows the measurement
of temperature changes with a noise as small as 9-10 mK-Hz /2 [35,36], in a range of temperatures
from 5.6 K to 295 K [37]. The localization precision of the measurement is potentially in the range of
a few tens of nanometers [38], making FND well suited for sensing temperature fluctuations at the
subcellular resolution in living cells [35,39].

Furthermore, the state of the NV~ electron spin can be coherently manipulated with light and
microwave at the ODMR microwave frequency, which provide additional sensing approaches. In
particular, modification of the spin longitudinal relaxation time T; can be measured by purely optical
manipulations [40-42]. T reflects the magnetic noise surrounding the electron: an increase in noise
results in a decrease in T1. Taking advantage of these properties, Rendler et al. [43] performed pH and
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redox potential sensing in conditions mimicking the intracellular environment. To achieve this goal,
they attached paramagnetic gadolinium complexes (a high-spin source of strong magnetic noise) to
FNDs by pH-dependent hydrolytically cleavable or reductively cleavable linkers. The change in pH
or redox potential was then translated into a reduction of the relaxation time. This result creates the
possibility of imaging physiological processes by purely optical means with high localization precision.
In addition, the NV~ center in diamond spin decoherence can also be used to improve the sensitivity
of electromagnetic field detection, which has been proposed for the real-time monitoring of membrane
ion channel activity [44]. McGuinness et al. [45] completed a proof of concept experiment in which the
coherence relaxation time T of NV~ spins in 45-nm FNDs was monitored with spin echoes sequences
during the addition of Mn2* ions in solution. The authors measured a decrease in T, induced by only
about 2500 Mn?* ions surrounding the FND. This type of approach was further improved, leading
to the detection of only 12 ferritin molecules at the FND surface [46,47] using T relaxometry and Tp
measurements. The challenge of translating these first experiments into real biosensing applications
relies on making them compatible with the complex ionic environment of the biological medium.

3. Long-Term Tracking of Biological Processes

3.1. Tracking the Fate of Molecules and Their ND Vector in Organisms

Nanodiamonds have been studied since the late 2000s as biomolecule delivery agents due to their
high biocompatibility [12] and versatile surface functionalization [48]. The surface chemical groups
can be modified and functionalized, modulating the surface electronic charges. Cationic or anionic
charges can be created by physico-chemical methods [49,50], by wet chemical treatments [51], or by
covalently grafting different functional groups [9]. The various functionalizations allow the fixing and
delivering in various living model organism cargos, including drugs (doxorubicin [52], paclitaxel [53],
water-insoluble compounds [51], etc.), nucleic acids and oligonucleotides [54-56], or DNA [57,58].
For instance, Doxorubicin can be physisorbed at the surface of functionalized NDs, allowing a slow
and sustained release [52], enhancing tumor size reduction and mouse survival when compared with
Doxorubicin injected with no vector.

When using ND for drug delivery in model living organisms like mice [52] (preclinical
evaluations), a good understanding of their tissue distribution and elimination is required given
their potential application in humans. This could be achieved due to the radioisotope labeling of
nanodiamonds (18Re-DND [59], 8F-DND [60], '2°I-DND [61], and **Tc-DND [62]) that provides a
qualitative distribution in the different organs. FNDs have been shown to preferentially accumulate
in the lungs, liver, and spleen. This method is technically demanding and can only provide
semi-quantitative information on the biodistribution. A more quantitative distribution was developed
by Su et al. [63] by using the fluorescence of the NV centers and by observing them in organ sections
with a time-gating microscopy imaging system. A qualitative insight in FND biodistribution was also
obtained by Vaijayanthimala et al. [64] using an in vivo imaging system. After only a few minutes,
FNDs spreading around the injection site could be monitored. The fluorescence intensity in different
organs was then measured ex vivo with the same apparatus. The use of intrinsic fluorescence of FND
for tissue distribution measurement appears to be a viable alternative to radiolabeling.

FNDs were also used to track the fate of proteins within an organism. Kuo et al. [65]
followed the equivalent of low-density lipoproteins (LDLs) and Yolk lipoprotein complexes (YLC)
in Caenorhabditis elegans worm during 12 h due to their coupling to FND. Time-delayed fluorescence
imaging was used to achieve a higher signal over background imaging of FND in C. elegans compared
with confocal fluorescence (Figure 2). This technique, combined with the perfect photostability of
FNDs, allowed the tracking of the accumulation of YLC-FND in the multi-cellular embryos derived
from the oocytes after a 12 h incubation period [65].
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Figure 2. Observation of green fluorescent protein (GFP):Yolk lipoprotein complexes (YLC)-fluorescent
nanodiamonds (FNDs) in Caenorhabditis elegans by fluorescence lifetime imaging microscopy (FLIM).
(a) A fluorescence decay time trace of 100-nm FNDs excited by a picosecond pulsed laser; (b) bright
field image, blue arrow indicates the site of injection; (c) confocal fluorescence image; (d) FLIM image;
(e) time-gated fluorescence image at a delay greater than 10 ns; and (f) merged image of (b,e). Scale
bar: 50 um. Reprinted with permission [65]. Copyright (2012) Elsevier Ltd.

Nitrogen-vacancy defects have also been used to conduct long-term analysis, such as tracking of
cell division and stem cell differentiation, or for diagnosis and prognostic purposes in oncology, like
metastasis tracking.

3.2. Regenerative Medicine and Cancer Diagnosis Applications

Several pathologies that cannot be treated by pharmaceutical molecules could benefit from stem
cell therapies [66,67]. This personalized medicine is based on the ability to restore a function by
artificially differentiating stem cells into functional cells of choice. This therapeutic axis is mainly used
for neurological disorders, such as Parkinson’s disease [68], or to support or sustain failing organs [69].
The use of such therapies has been welcomed with enthusiasm but determining biodistribution to
characterize the basic features is still required. Assessing such distribution used to be complicated,
particularly in vivo. However, owing to nanotechnology, this hurdle is being minimized. FNDs can be
used to label whole cells by taking advantage of the efficient cellular uptake in most cell lines, their low
exocytosis [70] (ensuring a large signal even after few divisions), and their very low toxicity, including
toward stem cells [71]. FNDs provide a suitable platform to track stem cell fate, differentiation state
and rate, and to assess the distribution of different cells in the tissues, as was performed in the context
of lung regeneration [72].

Tracking of human placenta choriodecidual membrane-derived mesenchymal stem cells (pcMSCs)
was completed in small pigs [63]. This study used two methods to detect and measure the FND amount
in different organs to eventually measure the amount of pcMSCs. To determine the quantitative
biodistribution of FND-labeled pcMSCs, the collected organs were first chemically digested and
then the fluorescence of the FND was measured. By using a magnetically modulated fluorescence
acquisition that uses the magneto-optical properties of NV~ centers, they managed to isolate the FND
fluorescence signal from the background noise. With this method, they observed that the stem cells
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preferentially accumulated in the lungs, and then to a lesser extent, in the liver [63]. Furthermore,
they managed to observe, with single-cell resolution, the FND-labeled pcMSCs cells in lung tissue
sections, as shown in Figure 3, allowing the precise determination of the fate of pcMSCs after 24 or
48 h incubation in small pigs.
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Figure 3. Fluorescence imaging of FND-labeled mesenchymal stem cells (MSC) in pig tissues. (a) Fast
screening of a lung tissue before deparaffinization to find FND-labeled MSCs: (1) bright-field image,
(2) fluorescence image without time-gating, (3) fluorescence image with time-gating at delays greater
than eight nanoseconds, and (4) merged images of (1,3). Scale bar: 50 pm. (b) Identification of
FND-labeled MSCs in a lung tissue section by confocal microscopy: (1) Hematoxylin & Eosin staining
image, (2) confocal fluorescence image without time gating, (3) time-gated confocal fluorescence image,
and (4) merged image of (1,3). Scale bar: 20 pm. Reprinted with permission [63]. Copyright (2017)
Springer Nature.

FNDs were also used to label and then track quiescent cancer stem cells (CSCs) [73]. CSCs are
suspected to increase drug resistance in certain cases and are known to be responsible for tumor
initiation, growth, and recurrence [74]. In addition, some CSCs are maintained in a quiescent state,
preserving their self-renewal capacity after treatment [75]. The study of these cells using dye-labelled
biomarkers is complicated and does not allow tracking in organs over a long time period. Lin et al. [73]
used a model of CSCs labelled by endocytosis of FNDs and showed that such labeling outperforms
conventional biochemical methods in regards to long-term tracking capability. Using a mammosphere
assay, the authors observed that, even after 20 days, FIND could still be detected in a subpopulation of
cells, corresponding to slow-proliferating/quiescent cancer stem cells [73] (Figure 4). Furthermore, the
sentinel lymph nodes (SLN), playing a key role in monitoring cancer progression, were also labelled
with FND [64]. Indeed, the first metastases are suspected to develop in SLN. Their biopsy should then
provide prognosis data. In this case, FND labelling of SNL should facilitate the biopsy.
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Figure 4. Confocal fluorescence imaging of two stages of development of quiescent cancer stem cell
mammospheres labeled with FNDs. (a,c) primary stage and (b,c) secondary stage. Both mammospheres
were stained with a cell membrane marker, Fluorescein IsoThioCyanate (FITC)-conjugated wheat germ
agglutinin (green), and FNDs appear as the sparse red dots in cells. (a,b) single-section images, and
(c,d) maximum projection images of a stack. Yellow arrows indicate the internalized FNDs. Scale bar:
100 um. Reprinted with permission [73]. Copyright (2015) Wiley-VCH.

After assistance in diagnosis, support in the follow-up of the proliferation of the cancer is necessary.
To this aim, Hui et al. [76] imaged individual FND-labeled cells circulating in whole blood by using a
microfluidic circuit combined with fluorescence microscopy. Moreover, by applying the time-delayed
detection modality (Figure 2a), these cells were still observed through a thin layer of chicken breast
skin mimicking in vivo imaging conditions in an autofluorescent medium.

Together, these studies are improving accurate tumor cell and metastasis detection. We can
envision the development of diagnostic devices based on tracking circulating tumor cells (CTC) in
patients’ blood after labeling of the tumor with fluorescent nanodiamonds.

4. Conclusions

Nanodiamonds containing NV centers appear to be valuable bioimaging and biosensing probes.
They allow the observation, characterization, and measurement of subcellular processes, from cellular
uptake to intracellular physico-chemical parameters. NDs are also valuable for biomolecular dynamics
sensing. Fluorescent nanodiamonds have also shown superior properties for the long-term tracking
of stem cells or cancerous cells, offering possible applications in disease status monitoring. Despite
the promising biomedical results presented in this review, a bottleneck still exists for fully in vivo
live observation and imaging of fluorescent nanodiamonds. In vivo observations are complicated by
the high autofluorescent background from tissues. This could be circumvented by taking advantage
of the specific ODMR response of NV~ centers that allow the selective imaging of NV-containing
nanodiamonds in an autofluorescent background [77,78]. A simpler version of this approach—although
less sensitive—that only requires magnetic field modulation [79] was successfully used to detect FND
in tissue with high contrast with wide field microscopy in vivo. When considered altogether, the
remarkable physico-chemical and photophysical properties of fluorescent nanodiamonds makes them
a unique and highly versatile nanoprobe for bioimaging and biomedicine.
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