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Abstract: A novel topology optimization approach is proposed in this paper for the design of
three rotational degree-of-freedom (DOF) spatially compliant mechanisms, combining the Jacobian
isomorphic mapping matrix with the solid isotropic material with penalization (SIMP) topological
method. In this approach, the isomorphic Jacobian matrix of a 3-UPC (U: universal joint, P:
prismatic joint, C: cylindrical joint) type parallel prototype manipulator is formulated. Subsequently,
the orthogonal triangular decomposition and differential kinematic method is applied to uncouple the
Jacobian matrix to construct a constraint for topology optimization. Firstly, with respect to the 3-UPC
type parallel prototype manipulator, the Jacobian matrix is derived to map the inputs and outputs
to be used for initializing the topology optimization process. Secondly, the orthogonal triangular
decomposition with the differential kinematic method is used to reconstruct the uncoupled mapping
matrix to derive the 3-UPC type parallel prototype manipulator. Finally, a combination of the solid
isotropic material with penalization (SIMP) method and the isomorphic mapping matrix is applied to
construct the topological model. A typical three rotational DOF spatially compliant mechanism is
reported as a numerical example to demonstrate the effectiveness of the proposed method.

Keywords: compliant mechanisms; topology optimization; isomorphic mapping matrix; 3-UPC type
parallel prototype manipulator; solid isotropic material with penalization (SIMP)

1. Introduction

Compliant mechanisms are widely used in precision manufacturing as they do not show problems
such as clearance, friction and wear [1]. In the past two decades, flexible hinges have been replacing
the rigid hinges in parallel mechanism configurations, and the pseudo rigid body method has been
used to build flexible or compliant mechanism models [2–4]. However, the whole structural stiffness
maximization is not satisfied by this method, while compliant mechanisms are limited in use to
micro positioning due to their spatial multi-DOF (degree-of-freedom) motion characteristics [5–7].
Recently, flexible beam structures and flexure joints are used to overcome these issues [8–11], such as
Tan et al. [12], who proposed a multi-leaf configuration of expanded-motion-range flexure hinges.

Previous works [13–16] highlighted how research into compliant mechanisms is divided into two main
directions: large stroke with multi-DOF and micro/nano scale displacement with multi-DOF. The latter
scope is further divided into lumped compliance (often referred to as the pseudo-rigid-body-model, PRBM)
and distributed compliance (often referred to as topology optimization), as reported in [17]. This paper
focuses on topology optimization.

Considering the multi-DOF motion characteristics of parallel manipulators, the hinge-replacing
method is used to reconstruct the spatially compliant mechanism. Examples can be found in the
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6-DOF compliant parallel mechanisms designed by Hudgens et al. [18] and Mclnroy et al. [19] and
in the three-DOF planar-compliant parallel mechanisms proposed by Yi et al. [20] and Hao et al. [21].
The model of compliant mechanisms with flexure joints can be built by using the pseudo-rigid-body
approach in contrast to the original structure of parallel manipulators. To improve the overall
stiffness of compliant mechanisms, the topology optimization approach has been used for its design.
For example, Sigmund [22–24] developed the density method based on the continuum-type topology
optimization technique for the optimal design of compliant mechanisms. Using the mutual energy
approach, the homogenization method is adopted by Nishiwaki [25] to solve compliant mechanism
optimization problems, and Saxena [26] generalized multi-criteria formulations for the performance
improvement of output deformation and strain energy computation. According to the stiffness of
elements, Wang [27] proposed a linear elastic structural analysis method. Large displacement, multiple
materials, and 3D topology optimization methods for compliant mechanisms are proposed in [28–30].

In hingeless topological structures, the pseudo-rigid-body method is not suitable for modeling,
because there is no exact rigid mechanism corresponding to the topological structure, moreover,
the error related to flexible elements is reported in the literature [31–33]. To overcome this shortcoming,
the Jacobian matrix of spatial multi-DOF parallel manipulators may be considered during the topology
optimization process. The Jacobian matrix is the mapping relationship between the operation space
and the joint space, and it is only concerned with structural parameters. A Jacobian matrix based on
a compliance frame is adopted in [34,35], and a planar-compliant mechanism is proposed. However,
the compliance frame is changed during topology optimization process, thus it cannot be used to model
the topological structure of the proposed planar-compliant mechanism. In this paper, a novel topology
optimization method for a three-DOF spatially compliant mechanism is proposed by combining the
Jacobian isomorphic mapping matrix with solid isotropic material with penalization (SIMP) topology
optimization method.

The paper is organized as follows. By using the differential approximation method, the Jacobian
isomorphic mapping matrix of the 3-UPC (U: universal joint, P: prismatic joint, C: cylindrical joint) type
parallel prototype manipulator is calculated in Section 2. Section 3 reports the Jacobian isomorphic
mapping matrix combination with SIMP, along with the topological model of spatial compliant
mechanism with three rotational DOF. The sensitivities analysis and topological structure derivation
are described in Section 4. Experimental investigations are shown in Section 5. Concluding remarks
are summarized in Section 6.

2. Isomorphic Mapping Matrix of the 3-UPC Type Parallel Prototype Manipulator

The 3-UPC type parallel prototype manipulator is composed of a moving platform, fixed platform
and three symmetrical links [36]. Each link is composed by a universal joint (U) that is connected to
the fixed platform, a cylindrical joint (C) that is connected to the moving platform, and an actuated
prismatic joint (P) that is used to connect the universal joint with the cylindrical joint. Its structural
configuration is shown in Figure 1.

The {o− xyz} coordinate system is fixed to the base platform, and the {o′ − uvw} coordinate
system is fixed to the moving platform. The connection point of the ith limb (sub-chain) lying on

the base platform is denoted by vector Ai =
(

ai
x, ai

y, ai
z

)T
, i = 1, 2, 3, and the connection point of ith

limb (sub-chain) lying on the moving platform is denoted by vector Bi =
(

bi
x, bi

y, bi
z

)T
, i = 1, 2, 3.

The limbs are of equal initial length, their value is constant and equal to l, which means l1 = l2 = l3 = l.
The upper and base platforms are in the shape of an equilateral triangle, and the lengths of the upper
and base platforms are 2b and 2a, respectively.

The kinematic properties of the 3-UPC type parallel manipulator have been analyzed by means
of screw theory in [37]. The compliant mechanism obtained by the topology optimization method is
characterized by a micro/nanoscale motion. If factors such as friction and joint clearance are not taken
into account, theoretically the parallel prototype mechanism could achieve the same micro/nanoscale
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motion as the compliant mechanism. Under these circumstances, it is likely that the motion range of
each motion branch in the parallel prototype will tend to be infinitesimal. Assuming that the three
kinematic rotational parameters were α, β, γ, and that the initial topological convergence conditions
were set as 1 × 10−6 rad, without loss of generality, the following approximation was adopted:
sin(α) = α and cos(α) = 1. As the product of two infinitesimal quantities is a high order infinitesimal,
we can assume that α · β = α · γ = β · γ = 0. The above hypothesis applies equally to γ and β.

According to the Euler method and assumptions, the rotational transformation matrix is given by

R(α, β, γ) = Rx(α)Ry(β)Rz(γ) =

 cβcγ −cβsγ sβ

−sαsβ + cαsγ −sαsβsγ + cαcγ −sαcβ

cαsβcγ + sαsγ −cαsβsγ + sαcγ cαcβ

 =

 1 −γ β

γ 1 −α

−β α 1

 (1)

where sin(·) = s· and cos(·) = c·.
Assuming that the driving force is provided by peristaltic joint, and the value of actuated is ∆li,

i = 1, 2, 3, the vector equations can be written as follows

→
Aio +

→
oo′ =

→
o′B′ i +

→
B′ i Ai, i = 1, 2, 3 (2)

Multiplying the rotational transformation matrix by the original coordinate frame of B′ i,
the coordinate frame of B′ i is derived as

B′ i = BiR(α, β, γ), i = 1, 2, 3 (3)

Substituting the original coordinate frames into Equation (3), the isomorphic mapping matrix can
be written as follows ∆l1

∆l2
∆l3

 =


√

3ah
3l2

2bh
l2

2
√

3(a−b)b
3l2

−
√

3ah
3l2

ah
l2 0

2
√

3ah
3l2 0 0


 α

β

γ

 = JD

 α

β

γ

 (4)

where JD is the Jacobian isomorphic mapping matrix used for the topology optimization process.

Figure 1. 3-UPC type parallel prototype manipulator (a) structure configuration model, (b) parameters
with coordinate frame.
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3. Topology Optimization Model of the Three-DOF Spatially Compliant Mechanism

3.1. Model of the Solid Isotropic Material with Penalization (SIMP)

Combining the finite element method with the optimization method, topology optimization is
used to solve the material distribution problem in the area of a given design field according to the
load or support constraints. The SIMP method is proposed on the basis of the relative density method,
and the optimization process is determined by the unit selection and relative density with a penalty
factor [25].

By introducing a penalty factor, a dominant nonlinear correspondence is established between
the elastic modulus of the material and the relative density of the element, which makes the middle
density value equal to 0 or 1. The relationship between the element density xi and element Young’s
modulus Ei can be written as follows

Ei = Ei(xi) = xp
i E0, xi ∈ [0, 1] (5)

where E0 is the elastic modulus of the solid material. p is the penalty factor of the intermediate material
density, and its values range can be defined as

p ≥ max
{

2
1− v0 ,

4
1 + v0

}
(6)

where v0 is the Poisson’s ratio.
The optimal model of the three-rotational DOF spatially compliant mechanism is described

as follows

f ind x = [x1, x2, · · · xn]
T

min c(x) = FTU(x) =
3
∑

i=1

3
∑

j=1
ŨT

j (x) K(x)Ui(x) =
n
∑

e=1

3
∑

i=1

3
∑

j=1
ŨT

ej
(
xj
)
ρ

p
e Kij

e Uei(xi)

s.t. v(x) = xT · v− v
JD ·U = L
K(x) ·U(x) = F
x ∈ Rn , 0 ≤ x ≤ 1

(7)

where x is the density function, defined as xi =
∑j∈n Hijvjxj
∑j∈n Hijvj

, j is the neighborhood of an element xi with

volume vi, Hij is a weight factor, n is the number of elements, v = [v1, v2 · · · vn]
T is element volume,

v is the convergence objective of the designed volume. The nodal force vector F is the input force
vectors, and U(x) is the output with displacement vector. By using Equation (4), the displacement with
input L and output U is the solution of JD ·U = L. K is the whole stiffness of the compliant mechanism,
and Uei is the ith element of the displacement vector, Ũej is the jth element of the displacement vector.
Ke is the stiffness of the element and ρe is the density of the element.

3.2. Sensitivity Analysis

Using the sensitivity values of the objective and constraint functions, the change of direction of
the design variables during the topology optimization process can be determined.

Deriving the volume constraint v(x) in Equation (7) with respect to the design variable xe, yields to

∂v(x)
∂xe

= ∑
i∈n

∂v(x)
∂xi

∂xi
∂xe

(8)

where ∂v(x)
∂xi

= vi and ∂xi
∂xe

= Hieve
∑j∈n Hijvj

.
A hexahedral element structure was adopted to mesh the partition grid, that is, vi = vj = ve = 1.
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The compliance sensitivity is satisfied by the following equation

∂c(x)
∂xi

= FT ∂U(x)
∂xi

= U(x)TK(x)
∂U(x)

∂xi
(9)

where the nodal displacement vector U(x) is the solution of the equilibrium equation, K(x)U(x) = F,
and its derivative with respect to xi is satisfied by

∂K(x)
∂xi

+ K(x)
∂U(x)

∂xi
= 0 (10)

Which yields
∂U(x)

∂xi
= −K(x)−1 ∂K(x)

∂xi
U(x) (11)

The element stiffness matrices Ki and K0
i are used to satisfy Equation (12)

K(x) =
n

∑
i=1

Ki(xi) =
n

∑
i=1

Ei(xi)K0
i (12)

then,
∂K(x)

∂xi
=

∂

∂xi

n

∑
i=1

xp
i E0K0

i = pxp−1
i E0K0

i (13)

Equation (11) can be rewritten as

∂c(x)
∂xi

= −U(x)T pxp−1
i E0K0

i U(x) (14)

Since K0
i is element stiffness matrix, Equation (14) can be denoted as

∂c(x)
∂xi

= −ui(x)T pxp−1
i E0k0

i ui(x) (15)

where ui is the nodal displacement vector element, and K0
i is positive definite, then

∂c(x)
∂xi

< 0 (16)

The derivative of the objective function with the design variables is

∂c(x)
∂ρe

=
∂

(
3
∑

i=1

3
∑

j=1
ŨT

j (x)KUi(x)

)
∂ρe

=

 ∂
3
∑

j=1
ŨT

j (x)

∂ρe
K +

3
∑

j=1
ŨT

j (x) ∂K
∂ρe

 3
∑

i=1
Ui(x)+

3
∑

j=1
ŨT

j (x)

 ∂K
∂ρe

3
∑

i=1
Ui(x) + K

∂
3
∑

i=1
Ui(x)

∂ρe

− 3
∑

j=1
ŨT

j (x) ∂K
∂ρe

3
∑

i=1
Ui(x)

(17)

Without the loss of generality, input load independence from design variables was assumed.
Differentiating the design variables of Equation (7) with respect to the stiffness matrix, yields

∂K
∂ρe

3

∑
j=1

ŨT
j (x) + K

∂
3
∑

j=1
ŨT

j (x)

∂ρe
= 0 and

∂K
∂ρe

3

∑
i=1

UT
i (x) + K

∂
3
∑

i=1
UT

i (x)

∂ρe
= 0 (18)
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Substituting K =
n
∑

e=1
ρ

p
e ke into Equation (18) and using Equation (17), the sensitivity of the

objective function can be given by

∂c(x)
∂ρe

=
n

∑
e=1

3

∑
i=1

3

∑
j=1

pŨT
j (x)ρp−1

e keUi(x) (19)

With the volume as the optimization constraint, the partial derivative of the volume with respect
to the material density is given by the constraint function sensitivity:

∂v(x)
∂ρe

=

∂

(∫
Ω

ρedv

)
∂ρe

= 1 (20)

3.3. Solution of the Topology Optimization Model

Based on the variation principle, the function equation that contains the compliance, objective,
and constraint functions can be built using the Lagrange multiplier. The update iteration of the
multi-input–output in the three-dimensional space is given by:

ρ
(k+1)
e =


min

{
(m + 1)ρ(k)e , 1} i f min{(1 + m)ρ

(k)
e , 1} ≤ (D(k)

e )ςρ
(k)
e

(D(k)
e )ςρ

(k)
e i f max{(1−m)ρ

(k)
e , ρmin} < (D(k)

e )ςρ
(k)
e

< min{(1 + m)ρ
(k)
e , 1}

max{(1−m)ρ
(k)
e , ρmin} i f (D(k)

e )ςρ
(k)
e ≤ max{(1−m)ρ

(k)
e , ρmin}

(21)

where ρ
(k)
e is the iteration value of kth step, ρ

(k+1)
e is the iteration value of k + 1th step, m is the moving

limit constant (m = 0.1~0.3) and ς is the damping factor (ς = 0.4~0.5).
D(k)

e is expressed as follows:

D(k)
e =

pρ
p−1
e

3
∑

j=1
ŨT

j (x)KE
3
∑

i=1
Ui(x)∆E

Λ(k)Ve
= (max(0,−∂c(x)

∂ρe
))/Λ(k)Ve (22)

Λ(k) is the Lagrange multiplier with the volume constraint of kth step iteration, updated adopting
bi-directional convex linear programming method, and ve is the element volume of kth step iteration.

4. Topology Structure of the Three-DOF Spatially Compliant Mechanism

4.1. Design Domain and Iterative Algorithm

In this section, the design of three-dimensional space actuators is carried out, and in all cases
boundary conditions forcing the treatment of the design object as a three-dimensional problem are
adopted. Three directions of actuating displacement are used to design the three-DOF spatially
compliant mechanism. The initial design domain is shown in Figure 2, where the dimensions are
also indicated.
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Figure 2. Initial design domain of the three-DOF spatially compliant mechanism.

The domain is a cube of dimension 125 mm × 125 mm × 125 mm discretized with 2000 eight
node elements. In order to reduce analysis computation time, the Hypermesh@ software (version
2017, Altair Engineering, Troy, MI, USA) was used to mesh the partition. In this case it is assumed
that the three-DOF spatially compliant mechanism will consist of a material with a Young’s modulus
2.06 × 10−5 F/mm2 and Poisson’s ratio 0.3. Considering the literature [38] and the actuated configuration
of a parallel prototype manipulator, the design three-DOF spatially compliant mechanism is set to
three actuated loads of Fin1 = Fin2 = Fin3 = 1 N, and three constraint displacements are designed at
the center point of the top domain. The volume restriction is 20 percent of the design domain. For the
elastic workpiece, a value of 2 × 106 mN/m is assigned to the spring constant.

The iterative algorithm of topology optimization for the three-DOF spatially compliant mechanism
is given as follows.

Step 1: The hexahedral mesh method is used to divide the design region of Figure 2 into grids,
and the size of the grid is determined.

Step 2: According to the spatially geometric constraint of a parallel prototype manipulator of the
3-UPC type, the boundary constraints and load conditions are defined, and combined with the SIMP
topology optimization method, proposed in Equation (7).

Step 3: Initial values are assigned to the design variables.
Step 4: Equation (21) is differentiated with the flexibility function.
Step 5: The sensitivity of the constraint function is calculated using Equation (7), and the sensitivities

of the material density and design variables are derived by Equation (18) and (20), respectively.
Step 6: The optimization criteria denoted by Equation (21) are calculated, and the design variables

are updated as in Equation (22). The mesh elements of the design domain will be removed if they
satisfy Equation (16).

Step 7: The optimization process will terminate when the remaining elements satisfy the volume
constraint in Equation (8) and (17). Otherwise, the process will return to Step 4.

4.2. The Topology Optimization Structure of the Three-DOF Spatially Compliant Mechanism

The topology optimization structure of the three-DOF spatially compliant mechanism with
an isomorphic mapping matrix can be obtained as shown in Figure 3. The topology optimization
iteration procedure of the three-DOF spatially compliant mechanism is shown in Figure 4 and
converges after four iterative steps.
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Figure 3. Topology optimization structure of the three-DOF spatially compliant mechanism,
(a) Structure of the three-DOF spatially compliant mechanism; (b) Top view of this structure.

Figure 4. Topology optimization iteration procedure of the three-DOF spatially compliant mechanism.

5. Numerical Implementation

5.1. Analysis of Differential Kinematic Characteristics

The differential kinematic approximation method is used to derive the isomorphic mapping
matrix as reported in Section 2. Furthermore, this isomorphic mapping matrix is applied to the
topology optimization process as a constraint condition. The SimMechanical@ software (version 2013a,
MathWorks, Inc., Natick, MA, USA) is adopted to build a model of the 3-UPC type parallel prototype
manipulator under the initial structural conditions that are shown as Table 1.

Table 1. Structural parameters of the 3-UPC type parallel prototype manipulator.

Structural Parameters Values Output Values

Length of moving platform b = 100 mm Actuator 1 ∆l1 = 0.03sin(3t)
Length of fixed platform a = 150 mm Actuator 2 ∆l2 = 0.05sin(3t)

Height h = 200 mm Actuator 3 ∆l3 = 0.025sin(3t) + 3
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The structure of the 3-UPC type parallel prototype manipulator is shown in Figure 5.

Figure 5. Structure of the 3-UPC type parallel prototype manipulator using SimMechanical@ software.

Substituting the structural initial parameters into Equation (4), the isomorphic mapping matrix
can be given by  ∆l1

∆l2
∆l3

 =

 0.404 0.932 0.135
−0.404 0.7 0

0.81 0 0


 α

β

γ

 (23)

Figure 6 shows that the isomorphism mapping matrix obtained using differential kinematic
approximation methods maintains the isomorphic kinematic characteristics of the 3-UPC type parallel
prototype manipulator, and its kinematic errors corresponding to small signal inputs are 0.34%, 0.56%
and 1.56%, respectively.

Figure 6. Forward kinematic comparison between differential kinematic approximation method and
actual model of the 3-UPC type parallel prototype manipulator.
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5.2. Differential Kinematic Characteristics of the Topology Optimization Structure

The stress distribution values before and after topology optimization are reported in Table 2 and
illustrated in Figure 7.

Table 2. Stress distribution before/after topology optimization.

Max Min

Before 8.769 × 10−2 MPa 2.152 × 10−6 MPa
After 8.752 × 10−2 MPa 2.983 × 10−13 Mpa

The topology optimization structure of three-DOF spatially compliant mechanism is shown in
Figure 3, and its three nano-rotational direction displacements are shown as Figure 8.

Figure 7. Stress distribution comparison: (a) before optimization; (b) after optimization.
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Figure 8. The three nano-scale-rotational displacements of the spatially compliant mechanism;
(a) Along the x-axis the maximum displacement is 7.774 × 10−7 rad and the minimum displacement
is −6.299 × 10−7 rad; (b) Along the y-axis the maximum displacement is 3.541 × 10−6 rad and the
minimum displacement is −2.299 × 10−7 rad; (c) Along the z-axis the maximum displacement is
4.344 × 10−6 rad and the minimum displacement is 0 rad.
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5.3. Experimental Study

Before the optimization, a background hexahedron mesh was set up for the reference domain.
In each iteration step of the optimization process, the modification of the fixed background mesh
was performed to obtain a mesh that is conformal to the geometry of the compliant mechanism.
On the other hand, in order to place the piezoelectric (PZT) actuator, three non-design areas were set
according to the driver configuration characteristics of the parallel prototype manipulator. The output
displacements corresponding to the center of the top platform were measured by Renishaw laser
interferometer, and the experiments were conducted under a closed-loop control strategy by using
a proportional-integral-derivative (PID) controller. The parameters of three PZT actuators are given in
Table 3.

Table 3. The parameters of the piezoelectric (PZT) actuator.

Terms Values

Model of PZT PSt150 VS10
Nominal stroke (µm) 9 ± 10%

Stiffness (N/µm) 50 ± 20%
Nominal pull/thrust (N) 550/100
Electrostatic capacity (µF) 0.35 ± 20%
Resonant frequency (kHz) 40

Length (mm) 19 ± 0.3
Driving voltage (V) 0–120

The topological structure, controller and actuator are shown in Figure 9. A formula for the
calculation of voltage and output of the PZT actuators is used:

Mactive
piezo (t) =

b · Ep · (tb + tp)

2
·Vactuator(t) = Mp ·Vactuator(t) (24)

where Mactive
piezo (t) is the output of PZT actuators, Ep is electrostatic capacity, Mp is the constant parameter,

b is the width of PZT actuator, tb is the installation channel, tp is the thickness of PZT, and Vactuator(t)
is the applied voltage.

Figure 9. Topological structure, controller and actuator. (a) The physical model of the topological
structure, (b) Controller, (c) PZT actuator.

The experimental device is shown in Figure 10. The nominal stroke is the displacement stroke
corresponding to the driving voltage of 0–150 V; for high reliability long term use, the recommended
driving voltage is 0–120 V, and the maximum output up to 25,000N.
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Figure 10. Experimental device.

5.4. Experimental Results and Analysis

A double frequency laser interferometer was used to obtain the precise position of three rotational
directions x− y− z, the displacement step was 33.5 nm, and the initial voltage of the PZT actuators
was 20 V. The measurement results are shown in Figure 11a–c, respectively.

Figure 11. Cont.
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Figure 11. Displacement of three rotational directions along x − y − z axes; (a) Around x-axis,
(b) Around y-axis, (c) Around z-axis.

The comparison of the kinematic results between the simulation and experiment is given in
Table 4.

Table 4. Comparison of the kinematic results between the simulation and experiment.

Direction Simulation
(maximum)

Experiment
(maximum)

Simulation
(minimum)

Experiment
(minimum)

Rotation around x-axis 0.47 × 10−4 rad 0.36 × 10−4 rad −0.21 × 10−4 rad −0.18 × 10−4 rad
Rotation around y-axis 0.51 × 10−4 rad 0.39 × 10−4 rad −0.46 × 10−4 rad −0.12 × 10−4 rad
Rotation around z-axis 0.12 × 10−4 rad 0.18 × 10−4 rad −0.48 × 10−5 rad −0.32 × 10−4 rad

It can be seen that the experimental results are not compatible with the theoretical simulation
results due to the three actuators mounted during the 3D printing process, consistency of surface
shape, and so on. Therefore, in the processing of the spatially compliant mechanism, it is necessary to
take into account the shape error of its topological configuration.

5.5. Modal Analysis of the First Three Orders

Modal analysis is inherent to the vibration characteristics of mechanical structures, and it is
important in the micro/nano manufacturing field. The Optistruct software was used to analyze the
first and second modal of the spatially compliant mechanism proposed in this paper, and modal
analysis is proposed for the same input load conditions and boundary constraint conditions. The first
and second order modal analyses are shown in Figures 12 and 13, respectively.

Figure 12. First order modal of the proposed spatially compliant mechanism with three-rotational-DOFs.
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Figure 13. Second order modal of the proposed spatially compliant mechanism with three rotational DOFs.

The results show that the natural frequency is higher than the same compliant mechanism with
the hinge replacement method proposed in the literature [17].

6. Conclusions

In this paper, a topology optimization approach was proposed for the design of three rotational
degree-of-freedom (DOF) spatially compliant mechanisms. In this method, the isomorphic Jacobian
matrix of the 3-UPC type parallel prototype manipulator was calculated, and then the orthogonal
triangular decomposition and differential kinematic method were applied to uncouple the Jacobian
matrix in order to construct a constraint field of topology optimization. Firstly, in terms of the 3-UPC
type parallel prototype manipulator, the Jacobian matrix was derived to map the inputs and outputs
to be used during the topology optimization process. Secondly, orthogonal triangular decomposition
with the differential kinematic method was used to reconstruct the uncoupled mapping matrix for
the topology optimization process. Finally, the SIMP method was applied to construct the topological
model in combination with the isomorphic mapping matrix. A typical three rotational DOF spatially
compliant mechanism was used as a numerical example to demonstrate the effectiveness of the
proposed method.

(1) In order to build accurate modeling after the structural topology optimization, the SIMP
topology optimization method combined with the isomorphic mapping matrix of 3-UPC type
parallel prototype manipulator was used for the structural synthesis for the spatially compliant
mechanism with three rotational DOFs.

(2) The optimized three-DOF spatially compliant mechanism with the isomorphic mapping matrix
was imported to Hyperworks for finite element static analysis. The maximum and minimum
rotational angles of 0.47 × 10−4 rad and −0.21 × 10−4 rad in x direction, 0.51 × 10−4 rad
and −0.46 × 10−4 rad in y direction, and 0.12 × 10−4 rad and −0.48 × 10−5 rad in z direction
were obtained by simulation, while the corresponding experimental rotational angles of the
maximum and minimum were 0.36 × 10−4 rad and −0.18 × 10−4 rad in x direction, 0.39 × 10−4

rad and −0.12 × 10−4 rad in y direction, and 0.18 × 10−4 rad and −0.32 × 10−4 rad in
z direction, respectively.

(3) The comparative simulation studies, the stress distribution and the first/second order modal of
the proposed spatially compliant mechanism, show that the proposed method can ensure the
integral isomorphism characteristics between the proposed spatially compliant mechanism and
the conventional parallel prototype manipulator with uniform stiffness and vibration suppression.

(4) The compliant mechanism obtained through the topology optimization had a very irregular
shape, which is related to the configuration of the topological optimization conditions. By using
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a topological optimization method combining a Jacobian matrix with the SIMP method of
isomorphism mapping, regardless of the initial optimization conditions, the resulting topologies
all had the same differential motion characteristics as the parallel prototype mechanism,
i.e., isomorphism. The piezoelectric actuator is in an enclosed space and its spatial configuration
is determined based on the parallel prototype mechanism actuator configuration. The approach
adopted consisted of interrupting the printing process during 3D printing and resuming it once
the piezoelectric actuator is implanted. Therefore, there is no better way to implement the driver
than the 3D printing technology.
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