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Abstract: Electroosmotic flow (EOF) is one of the most important techniques in a microfluidic system.
Many microfluidic devices are made from a combination of different materials, and thus asymmetric
electrochemical boundary conditions should be applied for the reasonable analysis of the EOF. In
this study, the EOF of power-law fluids in a slit microchannel with different zeta potentials at the top
and bottom walls are studied analytically. The flow is assumed to be steady, fully developed, and
unidirectional with no applied pressure. The continuity equation, the Cauchy momentum equation,
and the linearized Poisson-Boltzmann equation are solved for the velocity field. The exact solutions
of the velocity distribution are obtained in terms of the Appell’s first hypergeometric functions. The
velocity distributions are investigated and discussed as a function of the fluid behavior index, Debye
length, and the difference in the zeta potential between the top and bottom.
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1. Introduction

Recently, microfluidic device applications are increasing in the fields of chemical analysis, medical
diagnostics, material synthesis, and others [1–3]. In the field of microfluidics, flow control in a
microchannel is one of the most important issues. The problem with conventional pressure-driven
flow is that as the channel size decreases, the hydraulic area becomes extremely small, resulting in a
significant increase in the corresponding hydraulic resistance [4]. Electroosmotic flow (EOF) does not
suffer from this problem because it is the motion of fluid that depends on the electric field across a
microchannel [5–7].

Many efforts have been made to study electroosmotic flow (EOF) using Newtonian fluids.
However, a few microfluidic devices are used more frequently for processing biological fluids
such as blood, saliva, DNA, and polymer solutions, which cannot be treated as Newtonian fluids.
To analyze the EOF of such fluids, an approach to non-Newtonian constitutive relations should be
considered [8–15].

Among the various constitutive laws for non-Newtonian fluids, the power law model is the
most popular because of its simplicity and suitability for analyzing a wide range of fluids. Thus,
many researchers have conducted EOF studies using the power law model [16–25]. Zhao et al.
analyzed the EOF of power-law fluids and obtained the approximate solution of the velocity field
in a slit microchannel [16]. In addition, they studied a general Smoluchowski slip velocity over a
surface [17] and provided an exact solution of the velocity distribution in a slit microchannel [18].
They also analyzed the EOF of power-law fluids in cylindrical [19] and rectangular [20] microchannels.
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Tang et al. conducted a numerical study of the EOF in microchannels of a power-law fluid using the
lattice Boltzmann method [21]. Vasu and De analyzed a mathematical model of the EOF of power-law
fluids in a rectangular microchannel at high zeta potential [22]. Babaie et al. and Hadigol et al.
numerically analyzed the EOF of power-law fluids in a slit microchannel with pressure gradient [23,24].
Ng and Qi developed a simplified analytical model to describe the electrokinetic flow of a power-law
fluid for varying wall potentials and channel heights in a slit channel [25].

Most previous studies have been performed on microchannels with the same zeta potential at
the top and bottom walls. To our knowledge, however, many microfluidic devices are made with a
combination of different materials, such as silicon dioxide (glass) as the base and polydimethylsiloxane
as the top and side-walls. In these cases, asymmetric electrochemical boundary conditions should
be applied for reasonable analysis of the EOF. Afonso et al. [26] and Choi et al. [27] analyzed the
EOF of viscoelastic fluids in a microchannel with asymmetric zeta potential using the simplified
Phan–Thien–Tannar model. Qi and Ng investigated the EOF of a power-law fluid through a slit
channel where the walls were asymmetrically patterned with periodic variations in shape and zeta
potential [28]. Hadigol et al. numerically investigated the characteristics of electroosmotic micromixing
of power-law fluid in a slit microchannel with nonuniform zeta potential distributions along the walls
of the channel [29]. Jiménez et al. investigated the start-up from rest of the EOF of Maxwell fluids
in a rectangular microchannel with asymmetric high zeta potentials at the walls [30]. Peralta et al.
conducted theoretical analysis of the start-up of oscillatory EOF in a parallel-plate microchannel under
asymmetric zeta potentials [31]. Recently, Choi et al. presented the EOF in a rectangular microchannel
using numerical analysis [32] and suggested an approximate solution for the EOF of power-law fluid
with asymmetric zeta potential of a planar channel [33].

Obtaining the exact solution not only provides physical insight into the phenomena but can also
serve as a benchmark for experimental, numerical, and asymptotic analyses. Zhao and Yang [18] have
reported the exact solution for the EOF of a power-law fluid with a symmetric zeta potential. However,
it remains a challenge to obtain the exact solution of the EOF in microchannels with asymmetric
electrochemical boundary conditions.

In the present study, exact solutions for EOFs of power-law fluids in a slit microchannel with
different zeta potentials at the top and bottom walls are presented. In addition, the key parameters
affecting the velocity distribution of EOF, including the fluid behavior index, Debye length, and
different zeta potentials at the top and bottom walls are analyzed.

2. Mathematical Formulation

Figure 1 shows a two-dimensional EOF in a slit microchannel of height 2H. The top and bottom
walls were charged with zeta potential ψt and ψb, respectively. An external electric field E0 was applied
to a power-law fluid with a constant density ρ and electric permittivity ε.
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Figure 1. Schematic diagram of electroosmotic flow in a slit microchannel.

The velocity field in the microchannel is governed by the continuity and Cauchy momentum
equations given as:

∇ · v = 0, (1)

ρ
Dv
Dt

= −∇p +∇ · τ + F, (2)
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where v = (u, v) is the velocity vector, p is the pressure, τ is the stress tensor, and F = (Fx, Fy) is the body
force. The stress tensor can be given by

τ = µ
(
∇v +∇vT

)
, (3)

where µ is the effective viscosity.
For a steady, fully developed, unidirectional flow with no applied pressure and negligible

gravitational force, the body force acts only along the x-direction and the Cauchy momentum equation
in Equation (2) can be simplified as:

d
dy

(
µ

du
dy

)
+ Fx = 0. (4)

The effective viscosity of the power-law fluid can be expressed as:

µ = m
∣∣∣∣du
dy

∣∣∣∣n−1
, (5)

where m is the flow consistency index, and n is the flow behavior index.
The body force along the x-direction is given by:

Fx = ρeE0. (6)

The net charge density ρe can be obtained by the Poisson equation, which takes the form of:

ε
d2ψ

dy2 = −ρe. (7)

With the assumption of Boltzmann distribution and small zeta potentials, the electrical potential
profile in the electrical double layer (EDL) is governed by the linearized Poisson–Boltzmann equation
expressed by:

d2ψ

dy2 = κ2ψ, (8)

which is subject to the following boundary conditions:

ψ
∣∣y=H = ψt, ψ

∣∣y=−H = ψb. (9)

κ−1 is called the Debye length and is defined as κ−1 = (εkBT/2e2z2n∞)1/2, where n∞ and z are the bulk
number concentration and the valence of ions, respectively, e is the fundamental charge, kB is the
Boltzmann constant, and T is the absolute temperature.

The solution for the electrical potential distribution is of the form:

ψ(y) =
ψt + ψb

2
· cosh(κy)

cosh(κH)
+

ψt − ψb
2

· sinh(κy)
sinh(κH)

. (10)

Then, the net charge density ρe can be expressed as a function of the EDL potential

ρe(y) = −κ2εψ(y). (11)

With all the aforementioned considerations, the Cauchy momentum equation in Equation (4) is
expressed as:

d
dy

[
m
∣∣∣∣du
dy

∣∣∣∣n−1 du
dy

]
− κ2εE0ψ(y) = 0. (12)
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This equation is constrained by the following boundary conditions (no-slip conditions)

u
∣∣y=−H = 0, u

∣∣y=H = 0. (13)

Substituting Equation (10) into Equation (12) yields:
d

dy

[(
du
dy

)n]
=

κ2εE0

m

(
ψt + ψb

2
· cosh(κy)

cosh(κH)
+

ψt − ψb
2

· sinh(κy)
sinh(κH)

)
, i f

du
dy
≥ 0, (14a)

d
dy

[(
−du

dy

)n]
= −κ2εE0

m

(
ψt + ψb

2
· cosh(κy)

cosh(κH)
+

ψt − ψb
2

· sinh(κy)
sinh(κH)

)
, i f

du
dy

< 0. (14b)

Since most of the materials that make up the microchannels have negative zeta potential [34,35],
the wall zeta potentials are assumed to be negative in the present study; thus, the flow occurs in
the +x-direction (if E0 > 0). Let yc be the point where du

dy

∣∣∣
y=yc

= 0, (−H ≤ yc ≤ H), then the velocity

gradient is positive
(

du
dy ≥ 0

)
in the interval −H ≤ y ≤ yc, and negative

(
du
dy < 0

)
in the interval

yc ≤ y ≤ H.
Integrating Equation (14) with y leads to:

du
dy

=



(
−κεE0ψm

m

) 1
n
{
− sinh(κy)

cosh(κH)
− R · cosh(κy)

sinh(κH)
+ C+

} 1
n

, if − H ≤ y ≤ yc, (15a)

−
(
−κεE0ψm

m

) 1
n
{
−
(
− sinh(κy)

cosh(κH)
− R · cosh(κy)

sinh(κH)
+ C−

)} 1
n

, if yc < y ≤ H, (15b)

where ψm and R are the average zeta potential and the dimensionless zeta potential difference between
the top and bottom walls, respectively, which are defined by:

ψm ≡
ψt + ψb

2
, (16)

R ≡ ψt − ψb
ψt + ψb

, (17)

and C+ and C− are integral constants.
Both Equations (15a) and (15b) should be zero at y = yc. Therefore,

C+ = C− =
sinh(κyc)

cosh(κH)
+ R · cosh(κyc)

sinh(κH)
≡ C. (18)

Integrating Equation (15) with the corresponding boundary condition in Equation (13) leads to
the velocity distribution:

u(y) =



(
−κεE0ψm

m

) 1
n

y∫
−H

{
I
(
y′
)
+ C

} 1
n dy′, if − H ≤ y ≤ yc, (19a)

−
(
−κεE0ψm

m

) 1
n

y∫
H

{
−I
(
y′
)
− C

} 1
n dy′, if yc < y ≤ H, (19b)

where

I(y) ≡ − sinh(κy)
cosh(κH)

− R · cosh(κy)
sinh(κH)

, (20)
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By integrating Equation (19), the velocity distribution can be obtained as:

u(y) =

{
us
[
V+(y)−V+(−H)

]
, if − H ≤ y ≤ yc, (21a)

us
[
−V−(y) + V−(H)

]
, if yc < y ≤ H, (21b)

where us denotes the generalized Smoluchowski velocity for power-law fluids by employing the
average zeta potential ψm at the top and bottom walls on the basis of the work of Zhao et al. [16],
which is expressed as:

us = nκ
1
n−1
(
− εE0ψm

m

) 1
n

, (22)

and
V+(y) ≡ − 1

(n+1)
√

C2+w2 [I(y) + C]
n+1

n F1

(
1 + 1

n ; 1
2 , 1

2 ; 2 + 1
n ; I(y)+C

C+iw , I(y)+C
C−iw

)
, (23a)

V−(y) ≡ 1
(n+1)

√
C2+w2 [−I(y)− C]

n+1
n F1

(
1 + 1

n ; 1
2 , 1

2 ; 2 + 1
n ; I(y)+C

C+iw , I(y)+C
C−iw

)
. (23b)

yc =
1
κ

ln

 C +
√

C2 + w2

R
sinh(κH)

+ 1
cosh(κH)

. (24)

w =

√
1

cos h2(κH)
− R2

sin h2(κH)
. (25)

The integral constant C can be obtained from the following equation:

J(C) = 0, (26)

where J(x) are defined by:

J(x) = [I(−H) + x]
n+1

n F1

(
1 + 1

n ; 1
2 , 1

2 ; 2 + 1
n ; I(−H)+x

x+iw , I(−H)+x
x−iw

)
−[−I(H)− x]

n+1
n F1

(
1 + 1

n ; 1
2 , 1

2 ; 2 + 1
n ; I(H)+x

x+iw , I(H)+x
x−iw

)
.

(27)

The details of the mathematical derivations are described in Appendix A. It is a challenge to
obtain the explicit form for the integral constant C. Thus, in this study, a numerical method was used
for evaluating C.

F1(a; b1, b2; c; x, y) in Equation (23) is the Appell’s first hypergeometric function [36], which can be
represented as a one-dimensional integral form [37]:

F1

(
1 + 1

n ; 1
2 , 1

2 ; 2 + 1
n ; γ

α+iβ , γ
α−iβ

)
=

Γ(2+ 1
n )

Γ(1+ 1
n )

1∫
0

t
1
n√

1− γt
α−iβ

√
1− γt

α+iβ

dt

= n+1
n

1∫
0

t
1
n√

γ2t2−2αγt+(α2+β2)
α2+β2

dt,
(28)

where α, β, and γ are real values, and Γ(z) is a gamma function. It is evident from Equation (28) that,
although the Appell’s first hypergeometric function in Equation (23) has complex arguments, it always
has a real value.

Alternatively, Equation (21) can be expressed in the single form using Equation (15) as follows:

u(y) = V(y)−V(−H), (29)

where
V(y) ≡ − 1

κ
n

n+1
1√

C2+w2

(
du
dy

)
[I(y) + C]F1

(
1 + 1

n ; 1
2 , 1

2 ; 2 + 1
n ; I(y)+C

C+iw , I(y)+C
C−iw

)
. (30)
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Equation (21) is applicable to the EOF of power-law fluids with arbitrary zeta potentials at the
top and bottom walls. If the top and bottom walls have the same zeta potential, then the velocity
distribution is expressed as follows:

u(y) = us
[
Vsymm(H)−Vsymm(y)

]
, (31)

where

Vsymm(y) ≡
(−1)

n−1
2n

n
cosh(κy)

cosh
1
n (κH)

2F1

(
1
2

,
n− 1

2n
;

3
2

; cos h2(κy)
)

(32)

which is identical to the result of Zhao and Yang [18] on the EOF of power-law fluid with a symmetrical
zeta potential. The detailed derivations are described in Appendix B.

3. Results and Discussions

The key parameters that affect velocity distribution are the fluid behavior index n, electrokinetic
parameter κH, and dimensionless zeta potential difference R = (ψt − ψb)/(ψt + ψb) between ψt and ψb.
In this section, the effects of these parameters on velocity distribution are investigated.

Figure 2 shows the dimensionless velocity (u/us) distributions from Equation (21) for different
values of fluid behavior index n at a fixed κH of 15. Figure 2a represents the velocity distributions with
same zeta potentials (R = 0) at the bottom and top, while Figure 2b indicates those of asymmetric zeta
potentials with R of 0.2 (ψt/ψb = 1.5). In both cases of symmetric and asymmetric zeta potentials, as
the fluid behavior index n decreases, the velocity gradient near the wall increases, and the plug-like
characteristics of velocity distribution are enhanced. This is because the fluid with smaller fluid
behavior index is less viscous, and the velocity can easily change from zero at the wall to the
Smoluchowski velocity at the core region.
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Figure 2. Dimensionless velocity distributions u/us for different values of the fluid behavior index n
under κH = 15. (a) Symmetric zeta potentials (ψt/ψb = 1). (b) Asymmetric zeta potentials (ψt/ψb = 1.5).

Figure 3 shows the dimensionless velocity (u/us) distributions for different values of κH. Figure 3a
shows the velocity distributions of the shear thinning fluid (n = 0.8) and Figure 3b shows those of
the shear thickening fluid (n = 1.2). In both cases, as κH increases, the velocity distribution changes
from parabolic type to plug-like type. The increase of κH means a decrease in Debye length. In other
words, the EDL thickness, on which the electrostatic body force is applied, decreases and the velocity
distribution changes to a plug-like type.
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Figure 4 shows the dimensionless velocity (u/us) distributions according to the dimensionless
zeta potential difference R at the bottom and top for the shear thinning fluid (Figure 4a) and shear
thickening fluid (Figure 4b). For comparison, the symmetric case (R = 0) is also included in the figure.
The velocity distributions near the top and bottom walls develop from zero (on the wall) to close to
the generalized Smoluchowski velocity determined by the corresponding zeta potentials; in the core
region, these two velocity distributions near the walls are almost linearly connected. Therefore, as the
difference in zeta potential between the top and bottom walls increases, the velocity gradient in the
core region increases. The velocity gradient in the core region decreases and increases the viscosity of
the shear thinning fluid and shear thickening fluid, respectively. As a result, as the dimensionless zeta
potential difference R increases, the velocity at the center (y/H = 0) increases for shear thinning fluids
and decreases for shear thickening fluids.Micromachines 2018, 9, x FOR PEER REVIEW  8 of 11 
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Figure 4. Dimensionless velocity distributions u/us as a function of the dimensionless zeta potential
difference R. The values −2/3, −1/3, 0, 1/3, and 2/3 of R, correspond to 0.2, 0.5, 1.0, 2.0, and 5.0 of the
zeta potential ratio (ψt/ψb), respectively. (a) Shear thinning fluid (n = 0.8). (b) Shear thickening fluid
(n = 1.2).

4. Conclusions

In this study, the exact solutions are proposed for fully developed two-dimensional steady
unidirectional EOFs of power-law fluids with different zeta potentials at the top and bottom walls.
The exact solutions are expressed in terms of Appell’s first hypergeometric functions. The effects of
parameters such as the fluid behavior index n, electrokinetic parameter κH, and zeta potential ψt and
ψb on the velocity distribution are investigated.

Author Contributions: All authors formulated the mathematical solution and discussed the results. D.-S.C. wrote
the original manuscript. S.Y. and W.S.C. reviewed and edited the manuscript. All authors read and approved the
final manuscript.
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Appendix A

The general integral formula for Equation (19) is∫
(asinh(x) + b cosh(x) + c)ndx = 1

a(n+1)
√

1− b2
a2

sech
(

tanh−1
(

b
a

)
+ x
)
·

√√√√√ a
√

1− b2
a2−i asinh(x)−i b cosh(x)

a
√

1− b2
a2 +i c

√√√√√ a
√

1− b2
a2 +i asinh(x)−i b cosh(x)

a
√

1− b2
a2−i c

· (asinh(x) + b cosh(x) + c)n+1·

F1

1 + n; 1
2 , 1

2 ; 2 + n; i(asinh(x)+b cosh(x)+c)

a
√

1− b2
a2−i c

, i(asinh(x)+b cosh(x)+c)

a
√

1− b2
a2 +i c

+ const.

(A1)
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Using Equation (A1), the primitive function of {I(y) + C}
1
n in Equation (19) can be evaluated as

∫
{I(y) + C}

1
n dy = 1

κ
n

n+1
1√

C2+w2
|ψ(y)|
ψ(y) [I(y) + C]

n+1
n ·F1

(
1 + 1

n ; 1
2 , 1

2 ; 2 + 1
n ; I(y)+C

C+iw , I(y)+C
C−iw

)
+ const. (A2)

where ψ(y), I(y) and w are defined in Equations (10), (20), and (25), respectively. The term |ψ(y)|
ψ(y) means

the sign of the electrical potential. Since the wall zeta potentials are assumed to be negative (ψt, ψb

< 0), ψ(y) always has a negative value; therefore, the term |ψ(y)|
ψ(y) is −1. With all the aforementioned

considerations, the velocity distribution is obtained as Equation (21).
At point y = yc, the two equations according to the interval in Equation (21) should have the

same value.
us
[
V+(yc)−V+(−H)

]
= us

[
−V−(yc) + V−(H)

]
. (A3)

Since I(yc) + C = 0 by Equation (18), V+(yc) = V−(yc) = 0.
Therefore, the integral constant C can be obtained from the following equation

V+(−H) + V−(H) = 0 (A4)

which is simplified as Equation (27).

Appendix B

For a symmetrical zeta potential, the R in Equation (17) is zero and the integral constant C is also
zero because du

dy

∣∣∣y=0 = 0 . Owing to the symmetry, the velocity distribution can be considered only in
the interval 0 ≤ y ≤ H. Then, Equation (23b) becomes

V−(y) = 1
n+1 cosh(κH)

[
sinh(κy)
cosh(κH)

] n+1
n F1

(
1 + 1

n ; 1
2 , 1

2 ; 2 + 1
n ; isinh(κy),− isinh(κy)

)
= 1

n+1 sinh(κy)
[

sinh(κy)
cosh(κH)

] 1
n

2F1

(
1
2 , 1

2n + 1
2 ; , 1

2n + 3
2 ; −sin h2(κy)

) , (A5)

where Appell’s first hypergeometric function is reduced to the hypergeometric function 2F1(a1, a2; b; y).
Applying Euler’s hypergeometric transformations [38,39] to the hypergeometric function in

Equation (B1) gives

V−(y) =
(−1)

n−1
2n

n
cosh(κy)

cosh
1
n (κH)

2F1

(
1
2

,
n− 1

2n
;

3
2

; cosh2(κy)
)
+

√
π

2n

Γ
(

n+1
2n

)
Γ
(

2n+1
2n

) (−1)
n−1
2n

cos h
1
n (κH)

. (A6)

Then the velocity distribution can be obtained as

u(y) = us
[
−V−(y) + V−(H)]= us[Vsymm(H)−Vsymm(y)

]
. (A7)

where Vsymm(y) is expressed in Equation (32).
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