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Abstract: The micro-electro-mechanical system (MEMS) resonator developed based on surface
processing technology usually changes the section shape either due to excessive etching or insufficient
etching. In this paper, a section parameter is proposed to describe the microbeam changes in the upper
and lower sections. The effect of section change on the mechanical properties is studied analytically
and verified through numerical and finite element solutions. A doubly-clamped microbeam-based
resonator, which is actuated by an electrode on one side, is investigated. The higher-order model
is derived without neglecting the effects of neutral plane stretching and electrostatic nonlinearity.
Further, the Galerkin method and Newton–Cotes method are used to reduce the complexity and
order of the derived model. First of all, the influence of microbeam shape and gap variation on the
static pull-in are studied. Then, the dynamic analysis of the system is investigated. The method
of multiple scales (MMS) is applied to determine the response of the system for small amplitude
vibrations. The relationship between the microbeam shape and the frequency response is discussed.
Results show that the change of section and gap distance can make the vibration soften, harden, and
so on. Furthermore, when the amplitude of vibration is large, the frequency response softening effect
is weakened by the MMS. If the nonlinearity shows hardening-type behavior at the beginning, with
the increase of the amplitude, the frequency response will shift from hardening to softening behavior.
The large amplitude in-well motions are studied to investigate the transitions between hardening
and softening behaviors. Finally, the finite element analysis using COMSOL software (COMSOL Inc.,
Stockholm, Sweden) is carried out to verify the theoretical results, and the two results are very close
to each other in the stable region.
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1. Introduction

Electrostatically-actuated microbeams have become major components in many micro-electro-
mechanical system (MEMS) devices [1] such as switches [2,3], sensors [4,5] and resonators [6] due
to their geometric simplicity, broad applicability and easy to implement characteristics. Moreover,
the existence of structure nonlinearity and nonlinear electrostatic force can make microbeams exhibit
rich static and dynamic behaviors [7,8]. These behaviors have aroused the interest of many scholars,
who have joined the study of MEMS. However, most of them have been aiming at the equal section
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beam under ideal conditions. However, the microbeams and microdiaphragms fabricated through
surface processing technology are prone to errors during fabrication [9]. Such errors during fabrication
of microdevices cannot be ignored as they can cause the bending of the microbeam neutral surface and
change the width, thickness and gap distance of the microresonator. Hence, it is very important to
analyze the static and dynamic behaviors of the electrostatically-actuated beam with surface processing
error for understanding its global dynamic behavior, developing a dynamic control problem and
optimizing vibration design. In the present paper, a doubly-clamped beam of variable thickness
actuated by a one-sided electrode is considered to study the influence of section variation on static and
dynamic behaviors.

The static pull-in instability is one of the key issues in the design of MEMS [10,11]. When the
direct current (DC) voltage is increased beyond a critical value, the stable equilibrium positions
of the microbeam cease to exist, and the pull-in instability will be triggered [12,13]. For example,
Abdel-Rahman et al. [14] investigated an electrically-actuated microbeam accounting for midplane
stretching and derived the static pull-in position of microbeam. Younis et al. [15] studied the effect
of residual stress on the static pull-in of microresonators and found that the residual stress would
increase the pull-in voltage. The system’s vibrations can cause an interesting nonlinear phenomenon
such as hysteresis, softening behavior, snap through and dynamic pull-in instability when it is excited
with DC and alternating current (AC) voltages [16–18]. These analyses are helpful to further grasp
the dynamic instability of microcomponents. Ghayesh and Farokh [19] investigated the static and
dynamic behavior of an electrically-actuated MEMS resonator based on the modified couple stress
theory. It is found that the pull-in voltage is larger by the coupled correction theory compared with
the classical theory. Zhang et al. [20] used the method of multiple scales (MMS) to study the response
and dynamic behaviors of the resonant parameters resonant in the MEMS resonator. The softening
behavior of the DC voltage and the effect of damping on the frequency response curve were discussed.
Ibrahim [21] investigated the effect of nonlinearities of a capacitive accelerometer due to squeeze film
damping (SQFD) and electrostatic actuation by the theoretical and experimental methods. Theoretical
results are compared to experimental data showing excellent agreement. Ghayesh, Farokh and
Gholipour [22,23] investigated the nonlinear dynamics of a microplate based on the modified couple
stress theory. The influence of system parameters on the resonant responses was highlighted by the
frequency-response and force-response curves. Alsaleem et al. [24] conducted an experimental study to
understand the dynamic pull-in voltage of the electrostatic drive microresonator. The experimental and
theoretical results are in good agreement. Furthermore, the applicable microresonator conditions are
pointed out. However, the majority of the previous studies are based on the equal section microbeam,
i.e., the impact of model errors is neglected.

With the deepening research in this discipline, the importance of understanding the processing
error of the microbeam on its performance has been realized. There are several sources of errors
possible, for example, residual [25], initial offset imperfection [26], surface processing technology
precision [27], etc. The residual stress causes the bending of the microbeam to form a microarch [28].
Farokhi and Ghayesh [29,30] established the mathematical model of a geometrically imperfect
microbeam/microplate, the nonlinear force of which was actuated on the basis of the modified
couple stress theory. The influence of physical parameters on the natural frequency and frequency
response were analyzed. What is more, Farokhi and Ghayesh [31] investigated the three-dimensional
motion characteristics of perfect and imperfect Timoshenko microbeams under mechanical and thermal
forces. Ruzziconi [32] studied many kinds of nonlinear behaviors of the microarch under different
parameters through theoretical analysis. The conclusions are in good agreement with experimental
analysis. Besides, a reliable theoretical model was obtained. Ruzziconi [33] predicted the global
bifurcation of the electrostatically-actuated microarch and studied the complex dynamics of the
microarch. Krylov et al. [34] studied the electrostatically-actuated microarch structures, focusing
on the influence of system geometry parameters on its dynamic behaviors and found that the main
influencing factors are microarch thickness, microarch height and the distance between the microarch
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and the plate. Xu et al. [35] studied the dynamic behavior of clamped-clamped carbon nanotubes with
initial bending and explored the non-resonance and resonance of carbon nanotubes by the shooting
method. Hassen et al. [36] established a clamped-clamped beam model considering the initial bending
and obtained its static and dynamic response using the Galerkin method and MMS. The microbeam
with initial offset imperfections is usually actuated by two electrodes. In this case, the microbeam is
still rectangular. However, the initial offset imperfections can break the symmetry along the transverse
vibrational direction in dynamic MEMS devices. Mobki et al. [37] discussed the influence of the initial
offset imperfections on the static bifurcation of a MEMS resonator. Han et al. [38] considered the
effect of initial offset imperfections on the mechanical behaviors of microbeam. The global static and
dynamic analysis of the microresonator is carried out using MMS and the finite difference method.
Results show that the initial offset may induce a complex frequency rebound phenomenon, and there
exists the frequency response in the medium and large amplitude in-well transitions between softening
and hardening behaviors. Although these two kinds of error forms have a great influence on the
mechanical properties of the system, the microbeam model is still an equal section beam. The error
caused due to the accuracy of surface machining will change the width or thickness of the microbeam.
Such dimensional changes affect the structural stiffness and electrostatic force, so it is necessary to
study these. However, the influence of such errors on the shape of the microbeam is random. Therefore,
scholars usually do smoothing processing by setting up the parametric equation model and adjusting
the shape of the microbeam by changing the parameters. Herrera [39] studied the resonant behavior
of a single-layered variable section microbeam. Furthermore, scholars have attempted to optimize
the MEMS device by optimizing the equation parameters. Joglekar and Trivedi [40,41] proposed
a versatile parametric width function, which can smoothly vary the width of a clamped-clamped
microbeam along its length. The parameters of the width function are optimized, and the methodology
is demonstrated in several cases [40,41]. On this basis, Zhang [42] discussed the effects of the optimized
shape on the dynamic response of the microbeam. Few researchers have considered the influence of
variations in microbeam thickness on the mechanical behavior. Kuang and Chen [43] investigated
the effect of shaping the thickness of a microactuator and gap distance on its natural frequencies.
Their study concluded that the shape variation could significantly alter the dynamic behavior of the
microbeam. In particular, the working voltage range was increased six times as compared to a uniform
rectangular cross-section microbeam with a flat electrode. Najar et al. [27,44] simulated and analyzed
the deflection and motion of variable section beams in MEMS devices, and the effect of changing their
geometrical parameters on the static bifurcation and frequency response was observed. However, only
single-sided section changes were considered in their study. The sections of the microbeam both change
up and down by taking into account the actual processing result. One section change is merely applied
to special cases. Therefore, in this paper, simultaneous changes in two sections of the microbeam
are considered to ensure that the obtained research models will be closer to reality. In addition, only
the static pull-in voltage and frequency response were studied in [27,44]. The nonlinear softening
and hardening behaviors, spring softening and other non-linear behaviors are still unclear. It is also
essential to study the scope of applications of the theoretical analysis. In this work, the influence
of processing error on the nonlinear softening and hardening behaviors, electrostatic softening and
dynamic behavior with a large amplitude are analyzed.

The structure of this paper is as follows. In Section 2, the model (partial differential equations)
based on the electrostatically-driven microbeam considering the size effect is given. A parameter
is proposed for describing the variations in the microbeam section to study the degree of influence.
The Galerkin method and Newton–Cotes method are applied to transform the original equation into
the ordinary differential equation. In Section 3, the effects of section parameters and gap distance
on the static pull-in and safety area are discussed. In Section 4, the MMS is applied to determine
the response of the system under small amplitude vibrations. The relationship between section
parameters and nonlinear characteristics and the relationship between the section parameters and the
transitions between softening and hardening are discussed. In Section 5, the results obtained using
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COMSOL (COMSOL Inc., Stockholm, Sweden) simulations are presented to verify the theory. Finally,
the summary and conclusions are presented in the last section.

2. Mathematical Model

2.1. Governing Equation

In this paper, a model considering the effect of surface machining error on the thickness of the
microbeam is studied. The bending vibration equation of the system is obtained through force analysis.

The schematic diagram of microbeam is shown in Figure 1. The thickness of the microbeam is not
constant due to the processing errors. In this study, a section parameter λ is proposed. The shape of
the microbeam is controlled by adjusting the value of section parameter λ. When λ < 0, the thickness
of two clamped ends is greater than the thickness of the middle portion. When λ > 0, the thickness
gradually decreases from the middle to both of the clamped ends. The λ = 0 case is the ideal case
where the section beam thickness is uniform.
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Figure 1. Schematic of an electrically-actuated microbeam. (a) λ > 0 case. (b) λ < 0 case. The dotted
line in red is the ideal section location of the beam.

Since the pull-in behavior will cause structural damage, such instability should be avoided in
microresonators. Stability can be ensured by considering the impact of processing errors on the
pull-in effect.

The thickness of the microbeam changes according to y1(x) = h
2 + λh sin πx

L and y2(x) =

{−}( h
2 + λh sin πx

L ) after considering the effect of surface processing error. y1(x) is a function

consisting of the curve
_

A1 A2, and y2(x) is a function consisting of the curve
_

A3 A4. As shown in
Figure 1, A1, A2 and A3, A4 represent the end points at the upper and lower sections, respectively.
The parameter λ will be investigated to observe its impact on the system. The cross-sectional area
A(x) = A0(1 + 2λ sin(πx

L )) and moment of inertia I(x) = I0(1 + 2λ sin(πx
L ))3 are calculated from

y1(x) and y2(x). A0 = bh and I0 = bh3

12 are the area and the moment of inertia of the two clamped sides,
respectively. L and b are the length and the width of the microbeam, respectively. h is the thickness of
the microbeam at the clamped ends. c is the damping coefficient of the system. d is the distance from
the board to the x-axis. E is the effective Young’s modulus, and ρ is the material density. The actuation
of the clamped-clamped microbeam is realized by using a bias voltage VDC and AC voltage VAC cos
(Ωt). Ω is the alternating current excitation frequency. In the microresonator, VAC is far less than VDC.
ε0 is the dielectric constant in the free space, and εr is the relative permittivity of the gap space medium
with respect to the free space.

The equation of motion that governs the transverse deflection y(x,t) is written as [27]:

∂2

∂x2 (EI(x)
∂2y
∂x2 ) + ρA(x)

∂2y
∂t2 + c

∂y
∂t

=
E

2L

1∫
0

A(x)(
∂y
∂x

)
2
dx

∂2y
∂x2 +

ε0εrb[VDC + VAC cos(Ωt)]2

2(d− y1(x)− y)2 (1)
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The first term on the right-hand side of Equation (1) represents the mid-plane stretching effects,
and the second term represents the electrostatic force. The following are the boundary conditions:

y(0, t) =
∂y(0, t)

∂x
= 0, y(L, t) =

∂y(L, t)
∂x

= 0 (2)

The range of the parameter 6(d/h)2 is around 6(d/h)2∈ [0.1, 10] in the equal cross-section
microbeam resonator [1]. It can be deduced from 6(d/h)2∈ [0.1, 10] that the ratio of the gap distance
to the microbeam thickness ranges from 0.13–1.3 in equal cross-section microbeam resonator. After
adding the parameter λ, the thickness and the gap distance become h + 2λh and d – λh, respectively.
Therefore, the ratio becomes 0.13 ≤ d−λh

h+2λh ≤ 1.3. Besides, the range of λ should satisfy the physical
model. When the upper and lower sections of the microbeam are becoming thinner, the change of
section λh cannot exceed the microbeam’s neutral surface, which is λh > − h

2 . The change of section
cannot contact the plate when the microbeam section is becoming thicker, which is λh < d − h

2 .
Therefore, the ranges are as follows: {

0.13 ≤ d−λh
h+2λh ≤ 1.3

− h
2 < λh < d− h

2
(3)

It can be understood from Equation (3) that when λ = 0, the range of d/h is 0.12 ≤ d/h ≤ 1.3.
By simplification:

− 0.3 ≤ 0.27
d
h
− 0.37 ≤ λ ≤ 0.79

d
h
− 0.10 ≤ 0.9 (4)

For convenience, the following non-dimensional quantities are defined:

_
x = x

L ,
_
b = b

d ,
_
y = y

d ,
_
y 1 = y1(x)

d ,
_
y 2 = y2(x)

d ,
_
A(

_
x ) = A(x)

A0
,
_
I (

_
x ) = I(x)

I0
,
_
t = t

T , ω = Ωt
_
t

,

T =
√

l4ρA0
EI0

, µ = cL4

EI0T , α1 = ε0εrbl4VDC
2

2EI0d3 , ρ = VAC
VDC

, α2 = 6( d
h )

2
(5)

Substituting Equation (5) into Equations (1) and (2), the following non-dimensional equation of
motion can be obtained:

∂2

∂
_
x

2 (I(
_
x )

∂2_y

∂
_
x

2 ) + A(
_
x )

∂2_y

∂
_
t

2 + µ
∂
_
y

∂
_
t
− α2

1∫
0

A(
_
x )(

∂
_
y

∂
_
x
)

2

dx
∂2_y

∂
_
x

2 =
α1

(1−_
y 1(x)−_

y )
2 (6)

with boundary conditions:

_
y (0,

_
t ) =

∂
_
y (0,

_
t )

∂
_
x

= 0,
_
y (1,

_
t ) =

∂
_
y (1,

_
t )

∂
_
x

= 0 (7)

In the following simplifications, the “ˆ” notation is dropped for convenience.

2.2. Galerkin Expansion

The Galerkin method is applied to derive a reduced-order model, and the deflection is
expressed as:

y(x, t) =
∞

∑
i=1

ui(t)φi(x) (8)

The boundary conditions are as follows:

φi(0) = φi(1) = φi
′(0) = φi

′(1) = 0 (9)
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where ui(t) is the modal coordinate amplitude of the i-th mode. φi(x) is the i-th mode shapes of
the normalized undamped linear orthonormal. For an electrostatic actuated microbeam, a single
degree-of-freedom model is sufficient to capture all the key nonlinear aspects in the Galerkin
approximation [25]. However, the one-mode approximation cannot capture the mode coupling effect or
internal resonances. These phenomena can be predicted to obtain a reasonable result by implementing
the number of modes. Nevertheless, the analysis becomes computationally expensive. Since the main
objective of this paper is to explore the main resonance problem in the nonlinear dynamics problem,
the first-order mode is sufficient to obtain good results. In this paper, the first-order modal vibration
y(x, t) = u(t)φ(x) is assumed. Substitute Equation (8) into Equation (6). Upon multiplying by φi(x)
and integrating, the outcome is from x = 0 to 1, and one can obtain the following equation:

..
u + µ

.
u + k1u− α2k3u3 = α1

∫ 1
0

φ(x)
(1−y1(x)−φ(x)u)2 dx + 2α1ρ cos(ωt)

∫ 1
0

φ(x)
(1−y1(x)−φ(x)u)2 dx

+α1ρ2 cos2(ωt)
∫ 1

0
φ(x)

(1−y1(x)−φ(x)u)2 dx
(10)

where
.
u = du/dt. The symbolic meanings of µ, k1 and k2 are discussed in Appendix A.

2.3. Newton–Cotes Method

The integral of the electrostatic force in Equation (10) is complicated; therefore, the Newton–Cotes
method is applied to fit the electrostatic force.

The integral interval [ã,b̃] is divided into n equal divisions. The step length is set as ∆h = b̃−ã
n . The

node is xk = ã + k∆h, where k = 0, 1, 2, . . . , n. The interpolation type quadrature formula is as follows:

∫ b̃

ã

φ(x)

(1− y1(x)− φ(x)u)2 dx = (b̃− ã)
n

∑
k=0

C(n)
k

φ(xk)

(1− y1(xk)− φ(xk)u)
2 (11)

where Cn
k is the Cotes coefficient, C(n)

k = 1
b̃−ã

∫ b̃
ã lk(x)dx, lk(x) =

∫ b̃
ã ∏

j 6=k

(x−xj)

(xk−xj)
dx.

Using the equipartition of nodes, the coordinates are transformed using x = ã + t∆h. Using this
transformation, the Cotes coefficients can be simplified further as:

C(n)
k =

∆h
b̃− ã

∫ n

0

n

∏
j = 0
j 6= k

(t− j)
(k− j)

dt =
(−1)n−k

k!(n− k)!
1
n

∫ 1

0

n

∏
j = 0
j 6= k

(t− j)dt (12)

Through Equations (10)–(12), the simplified mathematical equation can be obtained.

..
u + µ

.
u + k1u− α2k3u3 = 0.61α1

(1−δλ−1.48u)2 + 2α1ρ cos(ωt) 0.61
(1−δλ−1.48u)2

+α1ρ2 cos2(ωt) 0.61
(1−δλ−1.48u)2

(13)

where δ = h/d. It should be noted here that the maximum lateral displacement of the microbeam is at
the midpoint viz., ymax = φ(0.5)u ∈ [λδ, 1− λδ]. At the middle point of microbeam, the value of the
modal function is φ(0.5) = 1.59. Therefore, the range of u is u ∈ [ λδ

1.59 , 1−λδ
1.59 ]. The degree of matching is

illustrated in Figure 2. The displacement is shown along the transverse coordinate and the electrostatic
force along the ordinate.
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3. Static Analysis

The equilibrium position and the maximum pull-in voltage of MEMS can be found through
static analysis. The geometric parameters of the microbeam are L = 400 µm, b = 45 µm, d = 2 µm,
h = 2 µm, E = 165 GPa, ρ = 2.33 × 103 kg/m3 and the dielectric constant in free space ε0 = 8.85 × 10−12.
Then, −0.1 ≤ λ ≤ 0.69 can be obtained from Equation (4). By removing the time-related items in
Equation (13), the static response of the microresonator under the DC voltage actuation can be obtained.

k1us − α2k3u3
s =

0.61α1

(1− δλ− 1.48us)
2 (14)

The relationship between the transverse displacement and DC voltage of the microbeam under
different sections is shown in Figure 3a. With an increase of λ, the motion distance us2 of the microbeam
gradually decreases. However, us2 has only a mathematical meaning and does not have any physical
significance. In addition, the pull-in voltage and the pull-in location decreases as the λ increases. This
is because the thickness of the beam increases as λ increases. As a result, the distance between the
plate and the microbeam section decreases, which causes the axial movement distance to decrease
resulting in pull-in. The influence of gap distance d on the static bifurcation is shown in Figure 3b.
It can be seen from this figure that the equilibrium point us2 is almost unchanged. The pull-in location
increases slowly with the increase of d, and this effect is opposite that of λ. Therefore, the study of the
relationship between λ and d is very necessary. The operating voltage range of the microresonator can
be predicted through analysis. When VDC = 25 V, several cases are selected to observe in Figure 4, and
the yellow regions are the stable regions. It can be found that λ promotes the pull-in phenomenon,
whereas d inhibits the pull-in occurrence. The results are consistent with the situation in Figure 3.
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Figure 3. Relationship between the DC voltage and static equilibrium point under different physical
parameters. (a) The influence of section parameters with d = 2.0 µm; (b) the influence of gap distance
with λ = 0. The solid lines represent the stable solution. The dashed lines represent the unstable
solution. The dotted lines are also stable, but it is impossible for them to appear in the physical model.
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Figure 4. Potential energy curves and the corresponding phase diagrams under different physical
parameters. (a) The potential energy curve under different section parameters with d = 2.0 µm;
(b–d) are phase diagrams of λ = −0.1, λ = 0 and λ = 0.1, respectively; (e) the potential energy curve
under different gap distances with λ = 0. (f–h) are the phase diagrams of d = 1.8 µm, d = 2.0 µm and
d = 2.2 µm, respectively.

4. Dynamic Analysis

The resonance frequency and bifurcation behavior can be obtained through dynamic analysis.
The MMS is used to investigate the response of the microresonator with small vibration amplitude
around the stable equilibrium positions. Introducing u = us + uA, us is the response to DC voltage
and uA is the response to AC voltage. The response of DC voltage us is obtained from Equation (14).

Substitute u = us + uA into Equation (13), and expand the electrostatic force equation up to
third-order via Taylor expansion; the terms representing the equilibrium position can be eliminated.
Since VAC is far less than VDC in the microresonator, the terms VDC = O(1) and VAC = O(ε3) are
considered. Here, ε is regarded as a small non-dimensional bookkeeping parameter. Therefore,
Equation (13) can be modified as:

..
uA + ε2µ

.
uA + ω2

nuA + aquA
2 + acuA

3 = ε3 f cos(ωt) (15)
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The symbolic meanings of ωn aq ac and f are presented in Appendix A.

ω = ωn + ε2σ (16)

The approximate solution of Equation (15) can be obtained in the following form:

uA(t, ε) = εuA1(T0, T1, T2) + ε2uA2(T0, T1, T2) + ε3uA3(T0, T1, T2) (17)

where Tn = εnt, n = 0, 1, 2.
Substituting Equations (16) and (17) into Equation (15) and equating the coefficients of like powers

of ε, the following equations can be obtained:

O(ε1) : D2
0uA1 + ω2

nuA1 = 0 (18)

O(ε2) : D2
0uA2 + ω2

nuA2 = −2D0D1uA1 − aqu2
A1 (19)

O(ε3) : D2
0uA3 + ω2

nuA3 = −2D0D1uA2 − 2D0D2uA1 − D2
1uA1

−µD0uA1 − 2aquA1uA2 − acu3
A1

+ f cos(ωnT0 + σT2)

(20)

where Dn = ∂
∂Tn

, n = 0, 1, 2.
The general solution of Equation (18) can be written as:

uA1(T0, T1, T2) = A(T1, T2)eiωnT0 + A(T1, T2)e−iωnT0 (21)

Substituting Equation (21) into Equation (19), yields:

D2
0uA2 + ω2

nuA2 = −2iωn
∂A
∂T1

eiωnT0 − aq(A2e2iωnT0 + AA) + cc (22)

where cc represents the complex conjugate terms.
To eliminate the secular term, one needs:

− 2iωn
∂A
∂T1

eiωnT0 = 0 (23)

which indicates that A is only a function of T2.
Thus, Equation (22) becomes:

D2
0uA2 + ω2

nuA2 = −aq(A2e2iωnT0 + AA) + cc (24)

The solution of uA2 can be given as:

uA2(T0, T2) =
aq A2

3ω2
n

e2iωnT0 −
aq AA

ω2
n

+ cc (25)

Substituting Equations (21) and (25) into Equation (20) yields the secular terms:

2iωn
∂A
∂T1

+ µiωn A−
10a2

q A2 A
3ωn2 + 3ac A2 A− f

2
eiσT2 = 0 (26)

At this point, it is convenient to express A in the polar form:

A =
1
2

a(T2)eiβ(T2) + cc (27)
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Substituting Equation (27) into Equation (26) and separating the imaginary and real parts yield:

Da
DT2

= −µ

2
a +

f
2ωn

sin ϕ (28)

a
Dϕ

DT2
= σa + a3(

5a2
q

12ω3
n
− 3ac

8ωn
) +

f
2ωn

cos ϕ (29)

where ϕ = σT2 − β.
The steady-state response can be obtained by imposing the conditions: Da

DT2
= Dϕ

DT2
= 0. Finally,

the frequency response equation can be derived as follows:

a2((
µ

2
)

2
+ (σ + a2κ)

2
) = (

f
2ωn

)
2

(30)

where κ =
5a2

q

12ω3
n
− 3ac

8ωn
.

The vibration peak value and backbone curve can be decided by amax = f /(µωn) and
ω = ωn − κamax, respectively. The stability of the periodic solution can be determined by evaluating
the eigenvalues of Jacobian matrix of Equations (28) and (29) at (a0, ϕ0).

J =

∣∣∣∣∣∣ − µ
2

f
2ωn

cos ϕ0

2κa0 − f
2ωna2

0
cos ϕ0 − f

2ωna0
sin ϕ0

∣∣∣∣∣∣ (31)

The system is stable if all the eigenvalues are negative; otherwise, the system is unstable [45].
The important dynamic properties of the microresonators include resonant frequency, frequency

response, pull-in behavior, and so on. These properties show a very significant influence on the
performance of microresonators. Therefore, the MMS and numerical analysis are used to observe the
dynamic behaviors of microresonator under the influence of various factors such as different geometric
parameters, external excitation, and so on.

4.1. Dynamic Analysis with Small Amplitude

The soft and hard nonlinearities of the system are related to k. Positive k can lead to a softening-
type behavior, while the negative value can lead to a hardening-type behavior. Meanwhile, when the k
value is approximately zero, i.e., the amplitude is small enough, the system experiences monostable
vibration, i.e., linear-like vibration, which is an ideal state for MEMS designers. From Equation (30),
one can notice that the nonlinear behaviors are affected by geometrical shape and electrostatic forces.
The shape of the section is changed by adjusting the value of λ. Further, the relationship between the
physical parameters and section shape is explored. The following physical quantities are assumed:
L = 400 µm, b = 45 µm, ρ = 2.33 × 103 kg/m3, E = 165 GPa, dielectric constant ε0 = 8.85 × 10−12 F/m
and the clamped end thickness h = 2 µm. The other variation parameters are listed in Table 1. Next,
the relationship between frequency response and various physical parameters is investigated.

Section changes due to the processing errors will have an impact on the system vibration.
The effect of λ and d on the nonlinear behavior is shown in Figure 5, and the dimensionless damping
coefficient µ = 0.1. VDC = 20.5544 V is obtained by calculating λ = 0 and k = 0. It can be noticed
in Figure 5a,d that both λ and d can change the nonlinear soft and hard behavior. When λ = −0.1,
the system has hard nonlinear characteristics. With the increase of λ, the system transits from hard to
soft nonlinearity. λ = 0 is the dividing line. The parameters λ and d show an opposite effect. The points
P0, P1, P2, P3 and P4 are selected for analysis. Figure 5c,f shows the relationship between DC voltage
and equivalent frequency at different λ and d. It can be seen that at VDC = 0, the larger the value of λ

is, the higher is the equivalent natural frequency. This is because of the increase of system stiffness,
which is caused by the increase of λ. One can see from Figure 5c,f that the pull-in phenomenon could



Micromachines 2018, 9, 34 11 of 19

be promoted with an increase in the value of λ and a decrease in the value of d. At the same time,
with the increase of the DC voltage, the equivalent frequency decreases. There is a significant “spring
softening” phenomenon. The greater the value of λ is, the more obvious the phenomenon becomes.

Table 1. Simulation cases under different parameters.

Case λ d (µm) Dynamic Behavior

P1 −0.1 2 hardening-type vibration
P0 0 2 linear-like vibration
P2 0.1 2 softening-type vibration
P3 0 1.8 softening-type vibration
P4 0 2.0 hardening-type vibration
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In addition to λ, the gap distance d will also affect the frequency response. The parameters λ and 
d affect the soft and hard behavior in the opposite way. The nonlinear behavior changes from soft 
nonlinear to hard nonlinear when d = 1.8 μm, d = 2.0 μm and d = 2.2 μm, as shown in Figure 6a,d,e. 
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Figure 5. Relationship between DC voltage and mechanical behaviors under different physical
parameters. (a–c) are the relationship between DC voltage and nondimensional parameter k, static
equilibrium and equivalent natural frequency, respectively, under different section parameters with
d = 2.0 µm. (d–f) are the relationship between DC voltage and nondimensional parameter k, static
equilibrium and equivalent natural frequency, respectively, under different gap distance with λ = 0.
The solid lines represent the stable solution. The dashed lines represent the unstable solution. The
dotted lines also represent a stable case, but it is impossible for them to appear in the physical model.

To validate the above theoretical results, the frequency responses of five cases shown in Table 1 are
studied using MMS. The long-time integration method of Equation (13) is used to obtain the numerical
solutions. The accuracy of the results is verified by comparing both results. The AC excitation
amplitude VAC is varied to adjust the maximum amplitude. It can be known from Figure 6a–c that the
nonlinear behavior changes from hardening to softening when λ = −0.1, λ = 0 and λ = 0.1. The system
shows a hard nonlinearity behavior at λ = −0.1. When λ = 0.1, the system shows a soft nonlinearity
behavior, and λ = 0 is the dividing line, where the vibration is linear.

In addition to λ, the gap distance d will also affect the frequency response. The parameters λ and
d affect the soft and hard behavior in the opposite way. The nonlinear behavior changes from soft
nonlinear to hard nonlinear when d = 1.8 µm, d = 2.0 µm and d = 2.2 µm, as shown in Figure 6a,d,e.
Therefore, adjusting the relationship between d and λ to achieve linear behavior is necessary.

However, this time, the numerical and analytical solutions do not match at point P0. The numerical
solution shows a softening behavior, whereas the analytical solution shows a linear behavior. This
situation will be elaborated in detail below.
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4.2. Dynamic Analysis with Large Amplitude

With an increase of AC voltage, the MEMS resonator may undergo large amplitude vibration.
When the AC voltage is increased to beyond a certain value, the analytical and numerical solutions
will not match, for example, corresponding to the point P0 in Figure 6a. This phenomenon will be
analyzed in detail in Figure 7. In addition, the VDC = 15 V and VDC = 23 V cases are considered to
observe the phenomenon in the soft and hard nonlinearity cases. The amplitude of vibration increases,
i.e., shifts from left to right, when the AC voltage is adjusted. When the vibration amplitude is small,
the numerical and analytical solutions match very well. When the amplitude is close to u = 0.2, this
difference between the solutions begins to appear. This phenomenon shows that the softening effect
of analytic solutions is weakened. This is because the higher order terms in the Taylor expansion
of the electrostatic force equation are omitted during the simplification process. These higher order
terms are negligible when the amplitude is small. However, as the amplitude increases, these terms
are not negligible; especially the frequency response in the red frame, which transits from hardening
to softening behavior. When the vibration amplitude reaches around u = 0.3 and as the DC voltage
increases, the influence of electrostatic force nonlinearity exceeds the structural stiffness nonlinearity.
At this time, the electrostatic force plays a leading role. During sweep frequency response analysis, the
resonator at the point of P may generate two kinds of motion. The motion is dynamic pull-in instability
or jumping motion to the upper stable branch.
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Figure 7. The frequency response changes with AC voltage at λ = 0. The DC voltages are VDC = 15 V,
VDC = 20.5544 V and VDC = 23 V, respectively, from top to bottom in the figure. The solid lines
represent stable solutions. The dashed lines represent unstable solutions. The point represents
a numerical solution.

The frequency response in the red frame is further considered for a detailed analysis; similarly,
the two models for the λ = –0.1 and λ = 0.1 cases are selected for analysis. It can be seen from Figure 8
that in the case of section parameter λ = 0, when the AC voltage amplitude VAC ≥ 0.22 V, the system
shows a jump in the frequency response. The vibration amplitude becomes large with the increase of
VAC, but the jump point does not change. The effect of the section parameter on jump phenomena is
shown in Figure 9. The increase of λ will promote the occurrence of the jump phenomenon. On the
contrary, when λ is small, a higher voltage is needed to observe a similar behavior. At the same time,
the system will generate more energy output.

The frequency is selected near the jump point in each case, and the corresponding time history
curves are shown in Figures 9–11. By setting different initial value x0, the displacement of all
stable solutions can be obtained. If there is no hardening-to-softening behavior, the vibration of
the resonator will appear from one stable solution to two stable solutions in the vicinity of the jump
point SN1 as shown in Figure 9. The case of two stable solutions appears after jump point SN1. If the
hardening-to-softening behavior appears, the solution case is the same as the one shown in Figure 9
when the nonlinearity is weak. On the contrary, in this situation, the two stable solutions case appears
before the jump point SN1, as shown in Figure 10. When the nonlinearity is strong as depicted in
Figure 11, there will be three stable solutions at most, and it changes into two stable solutions after the
jump at the SN2 point. As the frequency increases, the stable solution finally returns to one.
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5. Finite Element Verification

Static and dynamic analyses of the system were carried out through the mathematical model in the
previous research. The influence of surface machining error and gap distance on the nonlinear vibration
was obtained. However, the results are obviously not convincing since the analysis was carried out using
the mathematical model alone. In this section, the following physical quantities are assumed: L = 400 µm,
b = 45 µm, d = 2 µm, ρ = 2.33 × 103 kg/m3, E = 165 GPa, dielectric constant ε0 = 8.85 × 10−12 F/m
and the clamped end thickness h = 2 µm. The finite element simulations of the several λ values are
carried out using COMSOL software. The module used for this analysis is the MEMS module, and the
electrical physical field interface is selected. The interface combines solid mechanics and electrostatics
with the dynamic grids to model the deformation of an electrostatically-actuated structure. The number
of degrees of freedom for solving this system is 31,185. Some nonlinear behaviors such as the pull-in
effect and the electrostatic force softening effect are simulated in the real situation. The simulation of the
pull-in voltage is carried out in the steady-state solver. The simulation of electrostatic force softening
first proceeds through the parameterized scanning of DC voltage and then calculates the corresponding
value of each point voltage in the steady-state solver and the eigenvalue solver. The physical model
established through the finite element software is shown in Figure 12. As shown in the figure, below is
the beam model and above is the air area.
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A comparison between the finite element simulation and analytical solution on the electrostatic
softening effect is shown in Figure 13. Before VDC = 20 V, the two results are in the good agreement.
However, the error starts to increase near the pull-in position when the DC voltage exceeds 20 V.
It is evident from these results that the error increases as the value of λ increases. The finite element
simulation and analytical solution of the static pull-in effect are shown in Figure 14. It can be found
that the pull-in position of the two results is same. The pull-in voltage is well simulated at λ = 0, while
the other two cases are slightly different. It can be seen from Figures 13 and 14 that the maximum
error occurs near the pull-in point. The reason for the error could be as follows: the COMSOL software
acquiescent structure stiffness is linear, while the actual system contains nonlinear stiffness. Although
the analytical solutions take the nonlinear factors into account in the analysis, because of the limitation
of MMS, an error between the analytical and numerical solution is inevitable especially when the
amplitude is too large. The comprehensive mechanical behavior of the system cannot be obtained only
through the numerical method. Therefore, the contradiction really needs further consideration, which
is not within the scope of this paper.
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6. Conclusions

In this paper, the static and dynamic characteristics of a doubly-clamped electrostatic microresonator
considering the effect of surface processing error on the thickness are studied. A section parameter is
proposed to describe the microbeam changes in the upper and lower sections. The Galerkin discrete
method is used to decouple, and the finite element analysis is carried out using the software COMSOL.
To observe the system’s nonlinear vibration, the MMS is applied to obtain the approximate frequency
response equation, and the long-time integral method is used to verify. The key conclusions are as follows.

(1) From derivation, the range of section parameter in micro resonators is λ ∈ [−0.3, 0.9].
(2) The occurrence of pull-in phenomenon could be promoted by λ increasing and d decreasing.

Several typical cases are analyzed by using the potential energy curve and phase diagram. With
either the increase of the parameter λ or the decrease of d, the barrier energy gradually decreases
and the safe region reduces. As a result, the pull-in will occur.

(3) Under small perturbations, the resonator may vibrate in the neighborhood of the equilibrium
point. When the gap distance is constant, the sectional parameter λ > 0 will make the system
vibration tend to softening-type behavior. On the contrary, λ < 0 will make the system vibration
lean towards hardening-type behavior. When the section parameter is constant, as the gap
distance of the microbeam is larger, the hardening-type behavior more easily appears. Similarly,
as the gap distance is smaller, the softening-type behavior is easier to obtain. Therefore, if the
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microresonator is thinner or thicker because of the surface machining error, the gap distance d
can be adjusted to make the system vibration close to linear.

(4) The frequency response is obtained by MMS will lead to the nonlinear softening effect being
weakened. This error is negligible when the amplitude of vibration is relatively small. As the
amplitude increases beyond a certain value, this error will be more obvious. If the nonlinearity
exhibits hardening-type behavior at the beginning, the nonlinearity of electrostatic force will
gradually strengthen with the increases of the amplitude. Finally, the electrostatic force began to
dominate when its nonlinearity effect on the system exceeded the influence of structural stiffness
nonlinearity. At this time, the frequency response will exhibit hardening to softening behavior.
The higher the value of λ is, the more easily it appears.

It can be concluded from the presented results that the surface processing error does affect the
static and dynamic characteristics of the microresonator. When the existing micromachining process
is not improved, it will go for a revision only after considering the processing errors in the original
theoretically-based design. It can make the final product meet the theoretical design requirements and
increase the rate of finished products.
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Appendix A

g =
∫ 1

0
A(x)φ2(x)dx (A1)

µ = c/g (A2)

k1 =
∫ 1

0
(I(x)φ′′ (x))′′φ(x)dx/g (A3)

k3 =
∫ 1

0
A(x)(φ′(x))2dx

∫ 1

0
φ′′ (x)φ(x)dx/g (A4)

ωn =

√
k1 − 3α2k3us2 − 1.8056α1

(1− 1.48us − δλ)3 (A5)

aq = −3α2k3us −
4.00843α1

(1− 1.48us − δλ)4 (A6)

ac = −α2k3 −
7.90997α1

(1− 1.48us − δλ)5 (A7)

f =
1.22α1ρ

(1− 1.48us − δλ)2 (A8)
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