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Abstract: An efficient electron field emitter based on a monolayer graphene coated well aligned Mo tip
array has been designed, fabricated, and evaluated. The advantages of this hybrid nanostructure film
morphology are explored and discussed. Efficient and stable field emissions with low turn-on fields
have been observed with the new devices. It is further found that the combination of graphene and
Mo tip array leads to significant improvements in efficiency for the nanoscale heterostructure emitters.
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1. Introduction

Electron field emission is a quantum tunneling phenomenon whereby electrons are emitted from
a solid surface which is affected by a strong electric field [1]. Due to its fast turn-on process, low
temperature, ultrahigh brightness, and miniaturized device size, field emission sources are essential
elements for a variety of applications such as electron microscopes, flat panel displays, high energy
accelerators, X-ray sources, and microwave amplifiers [2–6]. In this paper, the new generation of the
field emission devices using graphene-coated Mo tip array is designed, fabricated, and demonstrated.

The materials used for cold cathode emitter must exhibit field enhancing effects internally or
externally [7]. Nanostructured materials such as carbon nanotubes [8,9], carbon nanosheets [10,11],
graphene [12,13], graphene oxide (GO) [14,15], and sharp nanotips [16,17], are capable to function
as more efficient field emitters than traditional emission materials. The graphene and its derivatives
are particularly promising due to their unique geometry and electrical properties [15]. It has been
reported that the field emission performance of nascent graphene is moderate compared with other
nanostructure, such as carbon nanotubes [18]. Conventional method for graphene deposition such
as chemical vapor deposition usually lead to graphene flakes lie down or protrude at low angles
from the substrate, thereby, limiting their geometrical field enhancement. Planar surfaces with low
enhancement factors, contingent on the emitter’s material properties, may need a high turn-on fields
of up to 1000 V/µm [19]. High electric fields are undesirable as they can result in deleterious electrical
discharge and vacuum breakdown [20].

Significant enhancement of electron field emission capability can only be achievable from the
use of sharp edged graphene when the electric field is applied along the sheet due to the local field
enhancement at the edge [21]. Practically, field emitters are engineered to have needlelike shapes
with sharp tips for dramatic reduction of the turn-on electric fields by several orders of magnitude
due to strong local field enhancement at the tips [22]. Thus, tremendous research efforts have been
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devoted to generate vertically aligned graphene through fabrication technology such as control the
CVD growth process [23,24] as to obtain large quantities of free-standing exfoliated graphene from
graphite or depositing graphene films with solution processing technology like filtration and spin
coating [25,26].

In this paper, through device parameter optimizations, we investigated the field electron emission
characteristics of graphene-coated Mo tip array that can be used to fabricate an emerging class of highly
efficient nanostructured field emitters. Compared with pristine Mo tip array, and graphene-coated flat
Mo chip, the proposed graphene-coated Mo tip array was evidently observed with improved emission
efficiency and a reduced turn-on field. It is believed that the improved performance is due to the
reduction of effective field emission tunneling barrier, which is generated by graphene-metal charge
transfer interactions.

2. Design and Theoretical Analysis

Based on Fowler-Nordheim (F-N) theory, electron emission from electron dense surfaces
under intense electric fields has been used to investigate the electron-emission behavior of various
materials [27–29]. Though the degree of its validity at nanoscale remains unclear, it does, nonetheless,
coarsely approximate the field emission current (I) as a function of the applied electric field (E),
which can be expressed as [30]:

I =
(aAβ2E2)

ϕ
exp(−bϕ3/2/βE) (1)

where a = 1.54 × 10−6, b = 6.83 × 107, A is the emission area, β is the field enhancement factor, ϕ is
the working function and E (= V/d) is the applied electric field. d is the cathode to anode distance.

The emission current is highly dependent on both the geometry of the cathode and the material
properties. Based on this, at specific fields, lowering the work function of the materials with high
aspect ratio emitters is capable of producing higher emission currents [31,32].

Among the most promising fabrication technology to increase the field emission performance
is the hierarchical development of the cathode using nanoscale surface engineering technology.
The emitting surface, comprising primarily of microstructures, is complemented with 1D or 2D
nanostructured adlayers [33], which augment the emission efficiency. Molybdenum, along with other
refractory metals, is one of the most commonly used field emission materials to date; while graphene
and its derivatives are expected to come to the fore due to their unique geometry and electrical
properties [34]. The high aspect ratio of monolayer graphene could potentially give dramatic field
enhancement, if suitably aligned, and combined with its novel transport properties. In this study,
we optimally transfer graphene to Mo tip array for maximum emission efficiency. The design creates
an effective way of increasing electric current. Figure 1 shows the process of transferring grapheme
into Mo tip array.
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graphene-coated layer.
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There are four dominant factors influencing the level of field emission in the optimization; they
are the emitter tip radius r, emitter height h, inter-emitter pitch D, and the global electric field E.
The parameters r, h, and D are critical for influencing the field enhancement factor β. The surface
electric field Es, which dictates the emission current density J, is determined by E and β.

The Mo tip surface is designed and fabricated to be, the first order, hemispherical. The bottom
radius R is set to be 5 µm. The height of the tip is h. The distance d between the anode and the top of
the Mo tip is 100 µm. The red line on the surface of the hemisphere, in Figure 2a, denotes the probed
surface under study. Figure 2b shows the electric field distribution along the red line as a function of
height of the Mo tip, where r is 0.25 µm, and the curve length is 0.785 µm. The cathode and anode bias
are 0 V and 1000 V, respectively. The maximum surface electric field on the Mo tip, as a function of
height, was observed to increase from 11.3 V/µm to 13.6 V/µm given the notable geometry mediated
field enhancement.
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Figure 2. (a) Schematic of Mo tip geometry; and (b) Electric field verses different height of Mo tip.

Based on the single Mo tip simulation, the properties of the array of the Mo cold cathode have
been investigated herein. Figure 3a shows one possible model of the graphene-coated Mo tip array.
A square 4 × 4 array is set on the lower plate (cathode). Graphene are conformably grown exclusively
on the upper-most surfaces of the Mo tips. The distance between two individual Mo tip is D. All other
parameters remain the same as per the earlier single Mo tip model.

Figure 3b shows the field emission current as a function of h and D for a radius of 0.25 µm.
The distance between two Mo tips increase from 8 to 40 µm with the tip height increasing from 3 to
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6 µm. From the simulation results in Figure 3b, the emission current increases with the incensement of
h. The emission current reaches the maximum when the distance D is approximately three times the
height h. Compared with our experimental results below, upon geometrical optimization, the current
was observed to increase by two orders of magnitude. Figure 4a–c is the simulated beam trajectories
from graphene-coated Mo tip array, with 3D side view, front view and top view of the field emission.
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3. Fabrication Processes and Morphology Properties

A schematic description of the fabrication processes flow for the graphene-coated Mo tip array is
illustrated in Figure 5 [35]. For brevity, as shown in Figure 5a, a double-side-polished, 400 mm thick,
4-inch high purity (99.95%) Mo wafer was first coated with an evaporated 500 nm thick Al film to
form etch mask. The tip array was subsequently patterned by photolithography (Figure 5b,c), with the
Al patterned by dry etching in CH3F plasma (Figure 5d) [36]. The Mo tip array was etched using an
anisotropic SF6 dry etch in a commercial ICP etcher (Sentech PTSA 500, SENTECH Instruments GmbH,
Berlin, Germany) (Figure 5e). Residual Al was removed by ultrasonication (15 W) for 60 s (Figure 5f).
PMMA/graphene films were transferred onto the Mo tips (Figure 5g) by standard PMMA transfer [37],
outlined later, with the PMMA subsequently removed by heating to obtain the sample with graphene
uniformly covering the Mo tips (Figure 5h).
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Figure 5. Schematic of the processes flow of transferring the CVD graphene onto the Mo tip array:
(a) deposition of 300 nm Al; (b,c) photoresist patterning by optical lithography; (d) ICP etching of Al;
(e) Mo tip forming ICP etch, (f) removal of Al mask; (g) PMMA/graphene film transfer; and (h) PMMA
removal by heating.

A Mo tip array, of 10 µm pitch with D/h ≈ 1.6, was implemented with good uniformity and a
high aspect ratio ≈ 1.8, shown in Figure 6a. The side view of single Mo tip with a tip radius of about
91 nm, as shown in Figure 6b [35]. The graphene functionalized Mo tips were shown in Figure 6c,d.
Figure 6d shows the side view of new cones. Upon coating Mo tip with the CVD graphene, we note the
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occurrence of new conical surface features, where the dimensions of these new cones are comparable
to those of the original Mo tips, though the height of the new cones are somewhat shorter, with D
remaining broadly the same, thus enlarge the D/hnew. From the simulation above, with the enlarged
D/hnew, the emission current is improved significantly. The planar bulk Mo chip before and after
being functionalized with graphene was characterized by scanning electron microscopy, as shown in
Figure 6e,f.
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Raman shifts of the graphene-coated Mo tips and graphene-coated flat Mo chip are shown in
Figure 7a [35]. The increase in the ID/IG ratio of the graphene-coated Mo tips and SEM micrographs
indicates an enhancement in defect density in the graphene-coated Mo tips, likely induced by the
transfer process and high basal plane stresses induced at the Mo tip apexes. Such defects likely provide
additional new emission sites as the variation in field is much larger at defects, edges, and ripples
at the atomic scale, which leads to larger local electric fields. The surface roughness of the graphene
sheets on the Mo tips, as shown in Figure 7b, predicts the wrinkles on the graphene surface.
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4. Experimental Results and Discussions

The samples were measured at a base pressure of <10−7 mbar in a custom-built, automated
field emission system. All measurements were performed at a cathode-to-anode distance of 1 mm.
An ITO/glass anode was positioned adjacent to the emitting surface and the emission area of all
the three samples was 12.5 mm2. The emission characteristics were measured from 0–5 kV, at 50 V
increments, with spectra consisting of both up and down sweeps. The emission current was averaged
(n = 3) at each bias.

Three different FE cathodes were measured and compared: pristine Mo tip array,
graphene-functionalized Mo tip array, and graphene-coated flat Mo chip. Typical I-V characteristics
are shown in Figure 8a, with the corresponding F–N plots shown in Figure 8b [35].

The maximum emission current of graphene-coated Mo tip array was 1.27 × 10−4 A, around
an order of magnitude greater than the maximum emission current of the unfunctionalized Mo tips
(5.70 × 10−6 A). There was little measurable emission current above the SMU noise floor from the
graphene sheets on flat Mo chip, even under the maximum applied electric field of 5 × 106 V/m,
as shown in Figure 8a. We observed that the maximum emission current of the fabricated devices
was remarkedly enhanced when the graphene-coated Mo tips field emitters are used as the cathodes.
The observed enhancement of the FE performance may be attributed to the gradual formation of the
increased electric field at the wrinkled graphene protrusions [38].

Controlling the tip areal density was also important in determining the field emission performance,
as electron screening from neighboring tips must be minimized. Our simulations suggest that the
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emission current density reaches a maximum when the distance D is approximately three times the
height h. For the Mo tip array, D/h ≈ 1.6, suggesting that the cones are overly closely packed for the
optimal emission. Upon coating Mo tip with the CVD graphene, we noted the occurrence of new
conical surface features, where the dimensions of these new cones are comparable to those of the
original Mo tips, though the height of the new cones are somewhat shorter, with D remaining broadly
the same, thus enlarging D/hnew and, thus, adjusting the emission current density.

Additionally, after coating Mo tip array with graphene, field emission occurred at considerably
lower turn-on fields. We attribute this to the possible formation of a triple junction between
Mo, graphene, and vacuum [39] coupled to the increased areal density of atomically sharp,
though admittedly small, protrusions. In the triple junction, the surface potential undergoes a
step change at the junction between the graphene and Mo due to the difference in work function.
This surface potential irregularity may modify the local potential in the vicinity of the junction. In this
regard, it is possible to explain the electron emission for the graphene functionalized Mo tips as follows:
The emission from the Mo tips/graphene/vacuum triple junction occurs due to an enhancement of the
applied field brought about by an augmented aspect ratio, which is possibly further amplified by triple
junction affects. The graphene-coated planar Mo chip aspect was especially low, and triple junction
effects may, indeed, enhance the observed emission. It appears that aspect ratio effects dominate the
emission improvements greatly.
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5. Conclusions

In this paper, an innovative design for using a hybrid graphene-coated Mo tip array for
efficient field emission is demonstrated, designed and fabricated. Both simulation and testing results
demonstrate the new present methodology leads to lowering of the turn on field and enhanced
maximum emission currents. The maximum emission current of the graphene-functionalized Mo tip
array is 22 times larger than the pristine Mo tip array. The feasibility of depositing wrinkled graphene
sheets in large scale will allow further investigation of the new devices, as well as exploiting their
unique 2D structure for many potential applications. This work could pave the way for the design and
applications of future electron emission 2D heterostructure nano devices.
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