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Abstract: In this work, we designed a micro-electromechanical systems (MEMS) device that allows
simultaneous direct measurement of mechanical properties during deformation under external stress
and characterization of the evolution of nanomaterial microstructure within a transmission electron
microscope. This MEMS device makes it easy to establish the correlation between microstructure and
mechanical properties of nanomaterials. The device uses piezoresistive sensors to measure the force
and displacement of nanomaterials qualitatively, e.g., in wire and thin plate forms. The device has
a theoretical displacement resolution of 0.19 nm and a force resolution of 2.1 µN. The device has a
theoretical displacement range limit of 5.47 µm and a load range limit of 55.0 mN.

Keywords: piezoresistive sensor; electron microscope; in situ mechanical test

1. Introduction

Mechanical properties of materials are influenced strongly by their microstructures. Materials
often show special mechanical properties compared to their bulk counterparts when the grain size
or physical dimension is reduced to the nanometer scale [1–8]. For example, brittle Si and SiC show
super-plasticity when their sizes are reduced to below ~100 nm [9–13]; the elasticity of nanosized
copper can approach the theoretical elastic strain limit [14]; and the martensitic transformation
can be completely suppressed in NiTi shape memory alloys when the sample thickness is below
~50 nm [15,16]. In this regard, it is important to develop capabilities to allow quantitative studies of
the structure–property correlations of materials at the nano and atomic scales.

Many techniques and devices, adapted to scanning electron microscopes (SEM) or transmission
electron microscopes (TEM), have been designed to allow in situ studies of structure–property
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relationships at the nano and atomic scales [12,17–26]. Some devices allow the observation of the
microstructural evolution and simultaneous measurement of stress–strain curves, thus granting us
an opportunity to understand the microscopic mechanisms of deformation and to better guide the
development of new materials [27,28]. Techniques currently available for mechanical testing at
nanoscale include nano indentation [29], bugling [30], resonance [31], bending [32], and micro-tensile
testing [33] using micro/nanosized samples in SEM, TEM, and atomic force microscope (AFM).
For TEM in situ analysis, one of the main functional requirements of the technique for
structure–property correlation studies is to measure quantitatively, the stress–strain behavior of
the sample in TEM whilst having negligible impact on the double-axis tilt of the TEM sample
holder. Nano indentation has been adapted in TEM for in situ deformation measurement [34].
Nano indentation has high displacement and force resolutions of 0.03 nm and 0.1 µN [35], respectively,
which is commonly used to determine elastic modulus, hardness, and stiffness of the material
surface [36–41]. However, this technique places the displacement and force sensors at the end of
the TEM holder, thereby prohibiting the β-axis tilt and partially limiting the orientation capability of
the TEM.

Recently, MEMS-based devices, integrating actuators, sensors, and signal processing circuits,
on a millimeter and even micrometer scales, have been developed at the head of the TEM holder
for studying the structure–property relationships at the atomic scale [42–44]. Thus, the evolution of
mechanical parameters and microstructure of materials have been simultaneously obtained. This has
granted an opportunity to study directly the influence of microstructure on the mechanical properties
of materials and has provided experimental evidences for designing new high performance materials.
To measure accurately, the mechanical properties of nanosized materials, the displacement and force
sensor resolutions need to be in the order of tens of nanometers and micronewtons, respectively.
Displacement and force in electron microscopes can be determined mainly by imaging and capacitance.
The imaging method determines the displacement by measuring the displacement difference between
two flexible beams in TEM/SEM. The load is then given as the product of the force sensor beam
displacement and beam spring constant [45,46]. By using the imaging method, it is not possible
to output the stress–strain curve of the specimen in real time, thus restricting the deformation of
materials to occur only at a very low strain rate. In the capacitance method, the displacement and
force are measured based on the capacitance variance resulting from the deformation of the sensors
located at the roots of the beams. This method has been widely used in harsh environments because
of its superior properties, such as small temperature drift, low power consumption, good process
compatibility, and direct signal output [47]. Differential capacitance based sensors have high force
and displacement resolutions [27,48,49]. However, they have comparatively larger sizes, and thus,
they can be used only in single-tilt or small angle double-tilt TEM holders, and they are difficult to use
for atomic scale microstructural analysis.

Piezoresistive sensors fabricated with semiconductor materials have advantages such as easy
fabrication, small size, and high sensitivity [50], and thus, they are good candidates for double-tilt TEM
holders. The operating principle of piezoresistive sensors is that their resistance varies with external
stress/strain. The electric signals of the resistance can be directly read out using a Wheatstone bridge
circuit, which is small and can be integrated with the sensor using the MEMS technique. Because of
its small size, a piezoresistive sensor can be easily placed on simple structures such as cantilever and
clamped beams [49]. To improve their sensitivity, piezoresistors, in many cases, are fabricated on the
beam surface perpendicular to the force direction. The force resolution of piezoresistive sensors has
been reported to be as small as nanonewtons [51], thereby giving rise to the possibility of measuring the
mechanical properties of nanosized materials. However, no MEMS-based devices with piezoresistive
sensors seem to have been developed for structure–property studies at the nano/atomic scale.

In this work, we designed a piezoresistive sensor based MEMS device for mechanical deformation
of materials with displacement and force resolutions of 7 nm and 2.2 µN, respectively. The device
is small and has a potential to be adapted in SEM/TEM for quantitative uniaxial tensile testing of
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samples with thickness smaller than 100 nm and width of hundreds of nanometers. With this device
in TEM/SEM, we can simultaneously study the mechanical properties and evolution of the material
microstructure, which provides an opportunity to bridge the mechanical property-microstructure
relationship from the micro to the atomic scales. An aluminum thin film sample, with a thickness of
510 nm, was subjected to trial test the device in SEM to validate its effectiveness.

2. Mechanical Testing System

2.1. Description of the System

Figure 1 shows a schematic of the testing system design. Its operation control is given in Figure 1a.
The system comprises an actuation system, a MEMS device, two single-system-power suppliers,
and two digital multimeters (61/2 digits). The two single-system-power suppliers provide a DC
operating voltage for the two piezoresistive sensors. The beams on the device are driven by a
piezoceramic actuator with a travel distance of 100 µm and a minimum step of 7 nm. Two digital
multimeters were used to collect the sensor output voltages.
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Figure 1. Schematic of the testing system in scanning electron microscopes (SEM): (a) the actuation
control flow chart; and (b) design of the testing apparatus.

The MEMS device was fabricated using bulk silicon microfabrication process, and the design
is illustrated in Figure 1b. Two sensors, A and B, were placed on two beams, A and B, to measure
the displacement and force. Sensor A was placed at the root of beam A to measure the deflection of
its center. To maintain the stability of sensor A, two more clamped beams parallel to beam A were
connected with it by a shuttle, as can be seen in Figure 1b. Sensor B was placed at the root of beam
B, which is longer than beam A, to measure the deflection of beam B. The deformation strain of the
specimen is calculated using Equation (1):

ε =
xa − xb

l0
(1)

where xa and xb are the center deflections of beams A and B, respectively, and l0 is the initial length of
the specimen.

The load applied on the specimen approximately equals the driving force acting on the beam
center, which was calculated based on the deflection of beam B. The stress is given as follows:

σs =
Fb
S

(2)
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where Fb is the driving force acting on beam B and S is the cross-sectional area of the specimen. Using
a push-to-pull structure, the external compressive stress on the specimen was transferred to a tensile
stress, as shown in Figure 1b.

2.2. Sensor Design

Figure 2 shows the MEMS device with two piezoresistive sensors. The overall dimensions of
the device are 1.3 mm × 2.4 mm × 0.44 mm, thus they can be easily installed on the sample stage
at the head of a TEM hold. Four piezoresistors indicated by green were prepared on beams A and
B, as shown in the insets of Figure 2. The four sensors form a half Wheatstone bridge, to allow a
precise measurement of the resistive variance. The two piezoresistors, R1 and R2, located at the
roots of the beams A and B, measure the beam deflection. The resistances of the other two resistors,
R3 and R4, attached to the substrate, remain constant during the beam deflection. The four resistors
are electrically connected with aluminum (Al) interconnects. To improve the consistency of the process
and to partially compensate the influence of temperature, the resistors on the beam and those on the
substrate were placed as close as possible to each other [52]. The beams and the piezoresistors are
aligned along the <110> direction on the (100) plane of a silicon wafer substrate for obtaining a better
sensor sensitivity [53].
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Figure 2. Sketch of the micro-electromechanical systems (MEMS) device with piezoresistive sensors.

When the clamped beams deform upon an in-plane force, stress will concentrate at the beam roots.
The stress is free at the neutral plane of the beam and increases gradually with increasing distance
from the neutral plane. The variance of the resistance is given in Equation (3) [54]:

∆R
R

= πlσl + πtσt (3)

where σl and σt are the longitudinal and transverse stresses, and πl and πt are the piezoresistance
coefficients along the longitudinal and transverse directions. Since σt is much smaller than σl,
the term πtσt can be neglected [51]. Figure 3 shows the positions of the piezoresistors on the beam
and the parameters used in Equations (4) and (5). In the case of small deformation, the variance of the
resistance can be written as:

∆R
R

=
6πlEd′ω

L3 (L− lp) (4)

where E = 169 GPa [55] is the Young’s modulus of silicon in <110> direction, L is the beam length, lp is
the piezoresistor length, ω is the beam center deflection, and d′ is the distance between the resistor
centerline and neutral plane of the beam. The value d′ can be expressed as:
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d′ =
D
2
−

wp

2
− d′′ (5)

where D is the beam thickness (along the force direction), wp is the width of the piezoresistor, and
d” is the distance between the outer edge of the piezoresistor and the beam. Figure 3 shows all the
parameters in Equation (5).
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When a tensile stress is applied to the specimen, assuming that the piezoresistors R3 and R4 have
an equal resistance variance ∆R, the bridge output voltage is given as:

Vout ≈
∆R
2R

VB (6)

where VB is the bridge bias voltage.
The displacement sensitivity (SD) of the piezoresistive sensors is defined as the ratio of the output

voltage to the beam deflection, and is given by combining Equations (4) and (6):

SD =
3πlVBEd′

L3 (L− lp) (7)

The piezoresistive sensor noise arises from both intrinsic and extrinsic sources. Johnson noise
and 1/f noise are the two main intrinsic noises, and their noise power spectral densities are given in
Equations (8) and (9), respectively [56]:

VJ
2
=

4kBTlp
Npqµpdpwp

( fmax − fmin) (8)

VH
2
=

αVB
2

Nplpdpwp
ln

fmax

fmin
(9)

where kB is the Boltzmann constant, T is the absolute temperature, Np is the dopant concentration,
q is the amount of the carrier charge, µp is the hole mobility, dp is the piezoresistor thickness, α is a
non-dimensional fitting parameter depending on the annealing conditions, and f max and f min are the
upper and lower measurement frequency limits. The displacement resolution of the sensors is defined
as the ratio of the noise to the displacement sensitivity (only considering Johnson and 1/f noise),
and can be written as:

RD =

L3
√

4kBTlp
Npqµpdpwp

( fmax − fmin) +
αVB

2

Nplpdpwp
ln fmax

fmin

3πlVBEd′(L− lp)
(10)

Optimized design can effectively decrease the noise power and improve the displacement
resolution, i.e., the smallest signal that can be detected. According to Equation (10), the density
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of the noise power decreases with increasing piezoresistor width (wp). For a nearly constant d”,
depending on the MEMS technology, the d′ will become shorter when wp is increased, leading to a
decrease in the displacement sensitivity. To obtain an optimal width (wp-optimal), the resolution RD can
be partially differentiated against the piezoresistor width. The optimal width thus obtained is:

wp−optimal =
D
3
− 2

3
d′′ (11)

According to Equations (8) and (9), increase in the length, lp, of the piezoresistor has an opposite
influence on the power density of the Hooge and Johnson noises, i.e., a decrease in the Hooge noise but
an increase in the Johnson noise. It is further noted from Equation (7) that increase in lp can also lead
to a loss in the displacement sensitivity. Because of the complicated effect of lp on the displacement
resolution and sensitivity, the resolution was partially differentiated against lp to obtain an optimal
length contributing to a high resolution. For each clamped beam length, L, an optimal lp-optimal is
obtained. Figure 4 shows the evolution of lp-optimal/L as a function of the clamped beam length.
The results show that the lp-optimal/L decreases with increasing L.

Micromachines 2017, 8, 31  6 of 16 

 

2
B p3 B max

max min
p p p p p p p p min

D
l B p

4
( ) ln

3 (

k Tl V f
L f f

N q d w N l d w f
R

V Ed L l

α+
μ

=
′π

-

- ）
 

(10) 

Optimized design can effectively decrease the noise power and improve the displacement 
resolution, i.e., the smallest signal that can be detected. According to Equation (10), the density of the 
noise power decreases with increasing piezoresistor width (wp). For a nearly constant d″, depending 
on the MEMS technology, the d′ will become shorter when wp is increased, leading to a decrease in 
the displacement sensitivity. To obtain an optimal width (wp-optimal), the resolution RD can be partially 
differentiated against the piezoresistor width. The optimal width thus obtained is: 

p-optimal
2

3 3
D

w d ′′= -  (11) 

According to Equations (8) and (9), increase in the length, lp, of the piezoresistor has an opposite 
influence on the power density of the Hooge and Johnson noises, i.e., a decrease in the Hooge noise 
but an increase in the Johnson noise. It is further noted from Equation (7) that increase in lp can also 
lead to a loss in the displacement sensitivity. Because of the complicated effect of lp on the 
displacement resolution and sensitivity, the resolution was partially differentiated against lp to 
obtain an optimal length contributing to a high resolution. For each clamped beam length, L, an 
optimal lp-optimal is obtained. Figure 4 shows the evolution of lp-optimal/L as a function of the clamped 
beam length. The results show that the lp-optimal/L decreases with increasing L.  

 

Figure 4. Evolution of the lp-optimal/L as a function of the clamped beam length (L). 

Setting one of the supporting points to be an original point, the deflection/displacement of a 
position at a distance x from the original point can be written as Equation (12) according to 
mechanical analysis [57]: 

2

3( ) (3 2 )
2
Fx

x L x
EWD

ω = -  (12) 

where W is the beam width, and F is the force applied on the beam center. The longitudinal stress of 
each point can be expressed as [57]: 

2

2

d [ ( )]( , )
d
x

x d Ed
x

ω′ ′σ =  (13) 

Substituting Equations (12) into (13), we obtain Equation (14): 

Figure 4. Evolution of the lp-optimal/L as a function of the clamped beam length (L).

Setting one of the supporting points to be an original point, the deflection/displacement of a
position at a distance x from the original point can be written as Equation (12) according to mechanical
analysis [57]:

ω(x) =
Fx2

2EWD3 (3L− 2x) (12)

where W is the beam width, and F is the force applied on the beam center. The longitudinal stress of
each point can be expressed as [57]:

σ(x, d′) = Ed′
d2[ω(x)]

dx2 (13)

Substituting Equations (12) into (13), we obtain Equation (14):

σ(x, d′) =
3Fd′

WD3 (L− 2x) (14)

According to Equation (14), the maximum longitudinal stress is located on the beam surface
(d′ = D/2), roots (x = 0), and center (x = L), which can be written as:
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|σl−max| =
3FL

2WD2 (15)

The sensors will fail when σl−max equals to the bending strength (3.70 GPa, [3]) of (100) single
crystal silicon. According to Equation (15), the theoretical maximum forces that can be applied on the
beam center and measured by the two sensors are calculated to be 888 mN for sensor A and 55.0 mN
for sensor B, as listed in Table 1. According to Equation (12), the beam center deflection is given by:

ω =
FL3

2EWD3 (16)

Then, the maximum displacements of the two sensors are calculated to be 5.47 µm for sensor A
and 175.14 µm for sensor B, as listed in Table 1. Therefore, the theoretical range limits of load and
displacement that can be measured by the MEMS device are 55.0 mN and 5.47 µm, respectively.

Table 1. Parameters of the two piezoresistive sensors.

Parameters
Value

Unit
Sensor A Sensor B

A 10−5 -
T 300 K
µp 0.934 × 10−2 cm2·V−1·s−1

Bias voltage 3.0 V
f max 1000 Hz
f min 10 Hz

Clamped beam length 150 600 Mm
Clamped beam width 60 60 Mm

Clamped beam thickness 30 15 Mm
Piezoresistor length 46 107 Mm
Piezoresistor width 8 3 Mm

Piezoresistor thickness 1.1 1.1 Mm
Theoretical displacement sensitivity 77.1 7.1 µV/nm
Theoretical displacement resolution 0.19 4.6 nm
Theoretical displacement range limit 5.47 175.14 µm

Theoretical load range limit 888 55.0 mN

3. Experiment

3.1. Fabrication Process

Using bulk silicon micromachining process, the MEMS device was fabricated on a 4 inch (100) SOI
(Silicon-On-Insulator) wafer, consisting of a 380-µm-thick handle layer, a 60-µm-thick n-type device
layer with resistivity of 1–2 Ω·m, and a 0.5-µm-thick buried oxide layer. The minimum feature size
of the device structure is 6 µm. The device has an aspect ratio of ten. Figure 5 shows the main steps
of the fabrication process. First, a 300-µm-thick SiO2 insulation layer was grown on each side of the
wafer by thermal oxidation (Figure 5a). The thermal oxidation SiO2 layer on the device side was
patterned and etched as a mask for subsequent ion implantation. The piezoresistors, with resistivity of
1.17× 10−2 Ω·cm, were prepared by boron doping by means of ion implantation at 100 keV with a
dose of 1015 cm−2 (p-doped, Figure 5b). Using the same process, electrical contacts were created with
an implantation energy of 100 keV and a dose of 3× 1015 cm−2 (p+ doped, Figure 5c). A 1-µm-thick
aluminum film was then sputtered on the surface and then etched using potassium hydroxide (KOH)
solution to form interconnects and pads (Figure 5d). The device layer was then etched by inductively
coupled plasma (ICP) etching (Figure 5e). Finally, ICP was used to etch out the handle and buried
oxide layers from the backside to create a movable structure (Figure 5f). Figure 6a shows a SEM image
of a MEMS fabricated device. Figure 6b shows a magnified view of sensor B. The corresponding
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lithography maps are shown in Figure 6c,d. Comparison between the fabricated device and the
lithography maps shows that the lateral undercutting of both ICP etching and aluminum film wet
etching was less than 1 µm, indicating a well-controlled etching processes.
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3.2. Device Calibration and Quantitative Tensile Testing

A focused ion/electron dual-beam system (FIB/SEM, FEI Helios Nanolab 600 i, FEI, Hillsboro,
USA) was used to calibrate the displacement of the MEMS device in a high vacuum environment
(10−5 Pa) with a purpose of avoiding the disturbances arising from variations in temperature, humidity,
electromagnetic radiation, mechanical vibration, etc. [58,59], as shown in Figure 7a. Figure 7b shows
the design of the testing system setup for calibration prior to tensile testing. The MEMS device was
first glued on to a custom-made printed circuit board (PCB) and then connected with the PCB by
ultrasonic bonding. The PCB was then fixed onto a three-dimensional micropositioner. The shuttle
beam of the device was precisely aligned with the probe fixed on the piezo nanopositioner. The piezo
nanopositioner moved in a step of 7 nm to drive the shuttle through the probe, ~10 µm in diameter.
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For each batch of MEMS devices fabricated on the same wafer, a few MEMS devices were selected for
calibration. The displacements of the beams A and B on the selected calibration device were measured
from the SEM images taken. The corresponding output voltages of the displacement sensors were
simultaneously measured by a digital multimeter and recorded in a computer. A sensor voltage–image
displacement curve is then obtained for each of the two sensors. During testing, the displacement
on the sample is read out from the sensor voltage output of the two beams (xa and xb) based on
the calibration. The deformation strain is then calculated according to Equation (1) by knowing the
original length (l0) of the specimen prior to testing. The force applied on the specimen (Fb) is calculated
based on the displacement of beam B, as per Equation (16). The stress can then be calculated using
Equation (2) by measuring the cross-sectional area (S) of the specimen prior to tensile testing.
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in SEM; and (b) schematic of the testing system.

Using this testing system, uniaxial tensile tests were conducted on aluminum thin films
in the FIB/SEM system. During the testing process, the piezocontroller, power suppliers,
and multimeters, which were placed outside the FIB/SEM system, were connected with the device
and the nanopositioner inside the system with shielded cables through the flange of the SEM.

3.3. Specimen Preparation

The accuracy of the testing system was tested by measuring the stress–strain curve of aluminum
film samples with different thicknesses. The aluminum films for tensile testing were prepared by DC
magnetron sputtering. The purity of the aluminum target was 99.99% and the sputtering parameters
included a working power of 400 W, vacuum level of 1.316× 10−6 Pa and argon pressure of 2–3 Pa.
An aluminum film with a thickness of ~1 µm was deposited on a thermally oxidized silicon wafer.
Specimens for tensile testing in SEM were cut by FIB in the following sequence. First, a piece of the
film was cut out with an ion beam using a current of 9.4 nA, lifted out and moved to the specimen
stages on the MEMS device with a W probe, and fixed by Pt deposition on both ends. The film was
then gradually thinned to hundreds of nanometers with the ion beam at a series of currents equal
to 9.4 nA, 2.3 nA, 0.77 nA, and 7 pA to minimize the damage caused by the incident ion beam.
A specimen with thicknesses of 510 nm is shown in Figure 8. The dimensions of the specimen are
listed in Table 2.
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Table 2. Dimensions of the Al specimen.

Length (nm) Width (nm) Depth (nm)

4880 620 510

4. Results and Discussion

4.1. Sensors Performance

Figure 9 shows the current–voltage characteristics of the two piezoresistive sensors. It is seen
that both sensors exhibited perfect linear behavior within the range of −5–5 V. This also indicates
a perfect contact between the sensors and the Al interconnects. The resistances of sensors A and B
are determined to be 0.34 and 2.1 kΩ, respectively. Figure 10 shows the effect of the bias voltage
on the zero-point output voltage of the two sensors. It is seen that the zero-point output also has a
linear dependence on the bias voltage for both sensors. The zero-point deviation can be attributed to
the uneven ion implantation among the four resistors, despite identical processing conditions used.
Therefore, zero setting of the bridge output voltage was conducted on each sensor before calibration.
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Figure 11 shows SEM images used to calibrate the displacements measured by the sensors A and B.
For each sensor, the beam center deflection, on which the sensor is located, was obtained by measuring
the distance variation between two reference points in SEM, i.e., points C and D for sensor A
(Figure 11a–f), and E and F for sensor B (Figure 11g–l). The movements of beams A and B were
driven by the piezo nanopositioner through the shuttle beam and probe with a movement step size of
7 nm. Beams A and B need to be calibrated separately. For this, beam A was calibrated prior to beam
B until rupture. When beam B was calibrated, beam A was already in the broken state as shown in
Figure 11g. Figure 12 shows the output voltages of the two sensors versus the measured beam center
deflections under a bias voltage of 3 V. It is seen that the sensor outputs are practically linear against
the beam deflection. Using linear fitting, the displacement sensitivity is determined to be 37.4 µV/nm
for sensor A and 4.8 µV/nm for sensor B. Comparing with the theoretical values listed in Table 1,
the deviations are 51.5% and 17.9% for the two sensors, respectively. This is commonly attributed to
the non-uniformity of ion implantation and excess resistance in the bridge [60]. The linearities of the
sensors A and B are calculated to be 1.92% and 1.94%, respectively. Both values are smaller than the
standard of a good linearity, i.e., 2%, demonstrating good sensor performance.

The maximum displacement of the beam center achieved in this calibration is <5 µm. This is far
smaller than the beam length, thus the deflection can be treated as a linear system and described by the
small deflection theory [61]. Therefore, we take the stress defined by Equation (16) as the load applied
on the clamped beam. Based on the displacement sensitivities of the sensors A and B and Equation (10),
the corresponding displacement resolutions are determined to be ~0.19 nm for sensor A and ~6.8 nm
for sensor B. The sample elongation resolution is then determined to be 6.8 nm. The force resolution
of sample/sensor B is then calculated to be 2.1 µN using Equation (16). Since the displacements of
the sensors are measured by imaging method, the resolution that can be experimentally determined
depends on that of the SEM or TEM used. Further work on TEM is required to determine more
accurately, the displacement resolution.

It is well known that the electron beam inside an electron microscope can lead to electron
accumulation in the device, which may interfere with the sensor behavior. To assess the influence of
the electron beam on the sensor displacement sensitivity, sensors A and B were irradiated under the
electron beam at an accelerating voltage of 2 kV (operating voltage) inside a SEM under magnifications
of 2000×, 8000× and 16,000×. Table 3 shows the sensitivities of the sensors under irradiation of
e-beam in SEM. The results show that no apparent changes of sensitivity can be detected, indicating a
neglected influence of electron beam on sensor sensitivity.
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4.2. Stress–Strain Curve

An Al thin film of 510 nm in thickness was subjected to tensile deformation on the device in
the FIB/SEM system with an actuation step size of 7 nm. SEM images were taken during tensile
deformation. Figure 13 shows the stress–strain curve measurement of the Al film sample. The Young’s
modulus of the specimen is measured to be 71.5 GPa by linear fitting, consistent with bulk materials
(68.5–71 GPa). The Young’s modulus is also consistent with the 100 nm Al film measured by the MEMS
sensors [62]. The flow stress is determined to be ~460 MPa, which is low compared to ~700 MPa [62].
This may be related to the thickness and density of the film used.
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5. Conclusions

A small sized MEMS device was designed and fabricated to study quantitatively, the mechanical
properties of thin film materials in situ during TEM/SEM observation. The device was tested in
SEM. Piezoresistive sensors were integrated onto the device to measure quantitatively the mechanical
properties of materials. This device allows the study of microstructure–property correlations in small
materials and understanding of deformation mechanisms at nanometric and atomic scales. The main
outcome of this work may be summarized as follows:

(1) Sensors A and B have displacement sensitivities of 37.4 µV/nm and 4.8 µV/nm.
(2) Sensor A has a theoretical displacement resolution of 0.19 nm and sensor B has a force resolution

of 2.1 µN.
(3) The MEMS device has a displacement range limit of 5.47 µm and a theoretical load range limit of

55.0 mN.
(4) Measurement of the Young’s modulus of the Al film by the device verifies the reliability of

the sensors.
(5) The device has a dimension small enough to be integrated on the TEM holder to study the

property–structure correlation at the atomic scale.
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