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Abstract: The evolution of double-emulsion droplets is of great importance for the application
of microdroplets and microparticles. We study the driving force of the dewetting process, the
equilibrium configuration and the dewetting time of double-emulsion droplets. Through energy
analysis, we find that the equilibrium configuration of a partial engulfed droplet depends on
a dimensionless interfacial tension determined by the three relevant interfacial tensions, and the
engulfing part of the inner phase becomes larger as the volume of the outer phase increases.
By introducing a dewetting boundary, the dewetting time can be calculated by balancing the driving
force, caused by interfacial tensions, and the viscous force. Without considering the momentum
change of the continuous phase, the dewetting time is an increasing function against the viscosity of
the outer phase and the volume ratio between the outer phase and inner phase.

Keywords: double emulsion; dewetting force; equilibrium configuration; dewetting time

1. Introduction

Microdroplets have great potential in many applications. For example, they could be used for
chemical reactions, therapeutic agent delivery and electronic paper [1,2]. Microdroplets used as
a chemical reactor could enhance the intensity and uniformity of the reaction because of the tiny
amount of reactant in the droplet. The structure of microdroplets usually plays an important role in
these applications. For example, the core-shell structure (Figure 1a) can encapsulate and protect active
ingredients and deliver them to the position with lesions [3–6]. Partial engulfing droplets (Figure 1b)
are desirable for producing particles with two distinct sides such as the Janus particle which could
be used as an emulsion stabilizer and building block of electronic paper [7]. The inner phase with
active ingredients could also be released from the outer phase by the dewetting process, forming
a non-engulfing structure [8] (Figure 1c). The structures of droplets are usually determined by the
thermodynamic principle that droplets prefer the configuration with the lowest energy level [9,10].
Torza and Mason [9] studied droplet morphology in terms of spreading coefficients and obtained
the theoretical relationship between the droplet morphology and spreading coefficients, which is
used widely by many researchers [11–17]. In their study, the spreading coefficient was defined as
si = σjk −

(
σij + σik

)
, where σij, σik, σjk denoted the three interfacial tensions between phases i, j,

k correspondingly in a double-emulsion system. The droplet morphology could also be predicted
directly by comparing interfacial tensions between different phases [17,18]. For the double emulsion,
these studies predicted three droplet morphologies: engulfing, partial-engulfing and non-engulfing,
shown in Figure 1, in the dewetting process where the outer phase and the inner phase separated from
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each other, forming a configuration with the minimum energy. However, the study on the interaction
of the forces during the droplet dewetting process is very limited. As these forces are important for
droplet configuration, especially when the driving force is small, kinetic factors such as viscosity
may play the dominant role instead of the thermodynamic effect, making a thermodynamically
non-engulfing droplet become partial-engulfing [8]. Furthermore, the droplet dewetting time is also
determined by these forces, which is critical for the drug delivery process. Meanwhile, the precise
prediction of the equilibrium configuration of droplets also depends heavily on these forces, which is
vital for the precise fabrication of Janus particles. In this work, we prove that the interfacial tensions
on the three-phase contact cycle are the exact forces driving the droplet dewetting process. Then,
the equilibrium configuration is predicted by thermodynamic analysis. At last, the dewetting time
of double emulsion is calculated. Hence, our study is of great importance for the fabrication and
application of micro-emulsions by predicting the droplet configuration and dewetting time.

Micromachines 2016, 7, 196 2 of 8 

 

separated from each other, forming a configuration with the minimum energy. However, the study 
on the interaction of the forces during the droplet dewetting process is very limited. As these forces 
are important for droplet configuration, especially when the driving force is small, kinetic factors 
such as viscosity may play the dominant role instead of the thermodynamic effect, making a 
thermodynamically non-engulfing droplet become partial-engulfing [8]. Furthermore, the droplet 
dewetting time is also determined by these forces, which is critical for the drug delivery process. 
Meanwhile, the precise prediction of the equilibrium configuration of droplets also depends heavily 
on these forces, which is vital for the precise fabrication of Janus particles. In this work, we prove that 
the interfacial tensions on the three-phase contact cycle are the exact forces driving the droplet 
dewetting process. Then, the equilibrium configuration is predicted by thermodynamic analysis. At 
last, the dewetting time of double emulsion is calculated. Hence, our study is of great importance for 
the fabrication and application of micro-emulsions by predicting the droplet configuration and 
dewetting time. 

 
Figure 1. Morphologies of microdroplets: (a) Engulfing; (b) Partial-engulfing; (c) Non-engulfing. 

2. Driving Force of Dewetting Process 

The schematic of the dewetting process is shown in Figure 2. Phases (1), (2) and (3) are the inner, 
outer and continuous phases, respectively. Further, σij and Sij are the interfacial tension and interfacial 
area, respectively, between phase i and j, where i,j = 1,2,3. R1 and R2 are the radii of the inner phase 
and outer phase, respectively; r is the radius of a cycle which is formed by the three-phase contact 
line; l is the length of the inner phase out of the outer phase; h is the virtual height of the outer phase 
in the inner phase; α and β are the half central angles of the inner phase and outer phase with respect 
to the three-phase contact cycle; and θ is the angle between σ12 and σ23, shown in Figure 2. To simplify 
the analysis, we assume the morphology of the inner droplet remains unchanged during the entire 
dewetting process. 

 
Figure 2. Schematic of the dewetting process of a double-emulsion droplet. Phases (1), (2) and (3) are 
inner, outer and continuous phases, respectively; σij is interfacial tension between phase i and j; R1 
and R2 are the radii of inner and outer phases, respectively; r is the radius of a cycle formed by three-
phase contact line; l is the length of phase (1) out of phase (2); h is the virtual height of phase (2) in 
phase (1). 

Figure 1. Morphologies of microdroplets: (a) Engulfing; (b) Partial-engulfing; (c) Non-engulfing.

2. Driving Force of Dewetting Process

The schematic of the dewetting process is shown in Figure 2. Phases (1), (2) and (3) are the inner,
outer and continuous phases, respectively. Further, σij and Sij are the interfacial tension and interfacial
area, respectively, between phase i and j, where i,j = 1,2,3. R1 and R2 are the radii of the inner phase
and outer phase, respectively; r is the radius of a cycle which is formed by the three-phase contact line;
l is the length of the inner phase out of the outer phase; h is the virtual height of the outer phase in
the inner phase; α and β are the half central angles of the inner phase and outer phase with respect to
the three-phase contact cycle; and θ is the angle between σ12 and σ23, shown in Figure 2. To simplify
the analysis, we assume the morphology of the inner droplet remains unchanged during the entire
dewetting process.
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Figure 2. Schematic of the dewetting process of a double-emulsion droplet. Phases (1), (2) and (3) are
inner, outer and continuous phases, respectively; σij is interfacial tension between phase i and j; R1 and
R2 are the radii of inner and outer phases, respectively; r is the radius of a cycle formed by three-phase
contact line; l is the length of phase (1) out of phase (2); h is the virtual height of phase (2) in phase (1).
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When the inner phase comes out a small distance such as dl from the outer phase, the angle
α and β will correspondingly change dα and dβ, respectively. Thus, the work done by interfacial
tension is

δW = (σ12 − σ13)× 2πR1sinα× R1dα− σ23 × 2πR2sinβ× R2dβ
= 2π (σ12 − σ13) R2

1sinαdα− 2πσ23R2
2sinβdβ

(1)

The minus sign in the second term is because of the decrease of R2 in the whole dewetting process;
thus, the work done by σ23 is negative. The interfacial areas between the different phases are given by

S12 = 2πR2
1 (1 + cosα) (2)

S13 = 2πR2
1 (1− cosα) (3)

S23 = 2πR2
2 (1− cosβ) (4)

Hence, the variation of the Gibbs energy because of the change of the interfacial areas gives

dG = σ12dS12 + σ13dS13 + σ23dS23 = −2π (σ12 − σ13) R2
1sinαdα+ 2πσ23R2

2sinβdβ (5)

According to Equations (1) and (5), δW = −dG and we can thus conclude that the driving
forces for the dewetting process of the double-emulsion droplet are the interfacial tensions along the
three-phase contact cycle, a result consistent with the first law of thermodynamics. If the inner droplet
deforms, the directions of σ12 and σ13 change, but no new force is induced. Hence, the three interfacial
tensions remain the driving force of the dewetting process.

3. Equilibrium Configuration

The equilibrium configuration of a double-emulsion droplet is determined by its energy level,
since droplets prefer the configuration with the lowest energy. In the following, the equilibrium
configuration is derived through energy analysis.

According to mass conservation of the outer phase during the droplet dewetting process, we have

ρ2
4
3
πR3

21 = ρ2

[
4
3
πR3

2 −
1
3
πR3

1 (L− 2)2 (L + 1)− 1
3
πh2 (3R2 − h)

]
(6)

where R21 is the radius of the outer phase when the inner phase and outer phase separate completely,
ρ2 is the density of the outer phase and L = l/R1 which is a dimensionless position used to denote the
droplet configuration in this section. Thus, the inner phase is totally in the outer phase when L = 0, and
they separate completely from each other when L = 2. Let k = R21/R1 characterizing the volume ratio
between the outer phase and inner phase, and then we have h2/R2

2 ∼ h2/R2
1 ∼ O

(
10−2) when

k ≥ 1 (O is a sign denoting the order of magnitude), so the last term of Equation (6) can be ignored.
Assuming the density of the outer phase to be constant, we can get

4
3
πR3

21 =
4
3
πR3

2 −
1
3
πR3

1 (L− 2)2 (L + 1) (7)

Hence, Equation (7) could be rearranged to

R2 = KR1 (8)

where K = 1/2×
(
8k3 + 8− 6L2 + 2L3)1/3, which could be regarded as a shape factor characterizing

the shape change of the outer phase with respect to L and k.
Therefore, the total Gibbs energy of the system is given by, based on geometry analysis,

G = σ13S13 + σ12S12 + σ23S23 = 2πR2
1σ12

[
(2− L) + xL + y

(
K2 + K

√
K2 − 2L + L2

)]
(9)
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where x = σ13/σ12, y = σ23/σ12. Furthermore, we have the dimensionless Gibbs energy normalized
by the Gibbs energy of the inner phase:

G∗ =
G

4πR2
1σ12

=
1
2

[
(2− L) + xL + y

(
K2 + K

√
K2 − 2L + L2

)]
(10)

Taking the derivative of the dimensionless Gibbs energy (Equation (10)) with respect to L, we have

dG∗

dL
= −1

2
+

1
2

x +
1
4

y

[
L2 − 2L

K
+

L2 − 2L + 4KL− 4K
2
√

K2 − 2L + L2
+

(
L2 − 2L

)√
K2 − 2L + L2

2K2

]
(11)

By solving Equation (11) = 0, the equilibrium configuration could be described implicitly by

1
2

[
L2 − 2L

K
+

L2 − 2L + 4KL− 4K
2
√

K2 − 2L + L2
+

(
L2 − 2L

)√
K2 − 2L + L2

2K2

]
= Σ (12)

where Σ = (σ12 − σ13) /σ23, which is a dimensionless interfacial tension determined by the three
interfacial tensions in the double-emulsion system.

Therefore, the equilibrium configuration denoted by L is determined by the dimensionless
interfacial tension Σ for a given radius ratio k. Table 1 gives the interfacial tensions
between poly(2-phenylpropylme-thylsiloxane) (PPPMS), poly(octylmethylsiloxane) (POMS),
poly(3,3,3-trifluoropropylmethylsiloxane) (PFPMS) and water (the surfactant concentration of sodium
dodecyl sulfate (SDS) is 5 mM) [15], which will be applied to analyze the equilibrium configuration of
a double-emulsion droplet.

Table 1. Interfacial tension (mN/m). PPPMS: poly(2-phenylpropylme-thylsiloxane); POMS:
poly(octylmethylsiloxane); PFPMS: poly(3,3,3-trifluoropropylmethylsiloxane).

NO. Phase (1) Phase (2) Phase (3) σ12 σ13 σ23 Σ x ( σ13
σ12

) y( σ23
σ12

)

1 PFPMS water POMS 12 21 12.7 −0.7087 1.750 1.058
2 POMS water PFPMS 12.7 21 12 −0.6917 1.654 0.945
3 PFPMS water PPPMS 12 15.4 14.1 −0.2411 1.283 1.175
4 water PFPMS PPPMS 12 14.1 15.4 −0.1364 1.175 1.283
5 PPPMS water PFPMS 14.1 15.4 12 −0.1083 1.092 0.851
6 water PFPMS POMS 12 12.7 21 −0.0333 1.058 1.750
7 water POMS PFPMS 12.7 12 21 0.0333 0.945 1.654
8 PPPMS PFPMS water 15.4 14.1 12 0.1083 0.916 0.779
9 water PPPMS PFPMS 14.1 12 15.4 0.1364 0.851 1.092

10 PFPMS PPPMS water 15.4 12 14.1 0.2411 0.779 0.916
11 POMS PFPMS water 21 12.7 12 0.6917 0.605 0.571
12 PFPMS POMS water 21 12 12.7 0.7087 0.571 0.605

Figure 3 shows the variation of the equilibrium position L (L = l/R1) with respect to the radius
ratio (k = R21/R1) for systems 1, 5, 6 and 9 in Table 1. It indicates that the equilibrium position L
decreases dramatically with the increase of k when k is small such as k < 10, but gradually tends to
be a constant when k is large enough. Therefore, the inner phase tends to be engulfed into the outer
phase as the volume of the outer phase increases. However, if the volume of the outer phase is large
enough, the volume of the inner phase engulfed in the outer phase tends to be constant. Furthermore,
comparing the data between system 1 and system 9, Figure 3 denotes the equilibrium position L
decreases with the increase of x (σ13/σ12). On the other hand, the data of system 5 and system 6 shows
that the equilibrium position L increases with the increase of y (σ23/σ12).
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Figure 4 demonstrates the variation of equilibrium position L with respect to dimensionless
interfacial tension Σ ((σ12 − σ13)/σ23), which indicates that the equilibrium position L linearly
depends on Σ approximately, providing a practical approach to predict the droplet configuration.
The equilibrium position L increases with the increase of Σ, which means the larger the Σ, the smaller
the part of the inner phase engulfed in the outer phase (this qualitatively agrees with the results in the
literature [18]). Furthermore, with the increase of the volume ratio k (k = R21/R1), the slope of the L
variation with respect to Σ increases, which means the equilibrium position is more sensitive to the
dimensionless interfacial tension at a larger volume ratio of the outer to the inner phase. However, the
slope tends to a constant when k is sufficiently large, indicating the existence of a saturated equilibrium
position at a large volume ratio, which agrees with the results in Figure 3. At the saturated condition, the
equilibrium position is determined by the dimensionless interfacial tension with negligible influence
of the volume ratio.
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4. Dewetting Time of Double-Emulsion Droplet

As the velocities of the inner phase and outer phase are usually very small in the dewetting
process, the droplets’ movement relative to each other could be considered approximately as Stokes
flow; the resistance force per unit area is thus f = 3ηu/2R , where η is the dynamic viscosity of the
surrounding fluid and u is the relative velocity of the adjacent phases.

Assuming the viscosity of the continuous phase is sufficiently small, the momentum change of
the continuous phase is neglected. Based on the momentum conservation of the inner phase and outer
phase, we have

m1u1 = m2u2 (13)

where u1 and u2 are the velocities of the inner and outer phases during the dewetting process,
respectively, which depend on the dimensionless position L.

The driving force component in droplets separating direction is given by

FR = [(σ12 − σ13) sinα+ σ23sinβ]× 2πr = 2πσ12R1L (2− L)
(

1− x +
y
K

)
(14)

With a sufficiently small viscosity of the continuous phase, the viscous resistance force generated by
the outer phase is dominant and is thus given by, based on Stokes flow,

FD =
3η2 (u1 + u2)

2R1
S12 = 3πη2u1R1

(
1 +

1
Ak3

)
(2− L) (15)

where A = ρ2/ρ1, in which ρ1 and ρ2 are the density of the inner phase and outer phase, respectively,
and η2 is the dynamic viscosity of the outer phase. According to energy conservation, we have

∫ L

0
(FR − FD)dL =

1
2

m1u2
1 +

1
2

m2u2
2 (16)

Therefore, the dewetting time could be calculated by

t =
∫ Leq

0

1
u1 + u2

dL (17)

where Leq is the value of L in the equilibrium configuration of the double emulsion.
Solving Equations (13)–(17) yields the dewetting time. However, in the initial stage where L

is small, the driving force is too small, which leads to an extremely long dewetting time that is not
consistent with experimental results; thus, a dewetting boundary should be introduced here. It is
better to define the dewetting boundary by experiment. According to Einstein’s theory, the average
dimensionless displacement per unit time normalized by the radius of the inner phase, induced by
Brownian motion, is on the order of O

(
10−3) for an emulsion with a diameter of 100 µm at 300 K in

water. Hence, to get the solution of this problem, we define 0.5% of the diameter of the inner phase as
the dewetting boundary, which means L = 0.01, so the dewetting time could be calculated by

t =
∫ Leq

0.01

1
u1 + u2

dL (18)

Figure 5 shows the dewetting time from the numerical calculation for the PPPMS/PFPMS/water
system (R1 = 0.1 mm, ρ1 = 1.02 g/mL, η2 = 1.5/15/150 mPa·s, σ12 = 15.4 mN/m, A = 1.25, x = 0.916,
y = 0.779). From Figure 5, we see that the dewetting time increases with the increase of volume ratio
k and the viscosity of the outer phase. According to momentum conservation, with the increase of
volume ratio k, a larger outer phase associates with a smaller relative velocity, and thus a longer
dewetting time. Based on Equations (16) and (17), the dewetting time is determined by the balance
of the driving force of interfacial tensions, and the viscous force. Assuming a constant driving force,
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a more viscous outer phase leads to a smaller velocity based on Equation (15). As such, the dewetting
time becomes longer (qualitatively agrees with the results in the literature [8]). The orders of the
dewetting time are, respectively, O(1 s), O(10 s) and O(100 s), while the orders of the viscosity of the
outer phase are O(0.001 Pa·s), O(0.01 Pa·s) and O(0.1 Pa·s), respectively. On the other hand, if the
viscosity of the continuous phase is so large, the momentum change of the continuous phase cannot be
ignored and, thus, momentum conservation, Equation (13), is not satisfied. As a result, the momentum
of the inner and outer phase becomes smaller, leading to a longer dewetting time.Micromachines 2016, 7, 196 7 of 8 
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Figure 5. Dewetting time of double emulsion for the poly(2-phenylpropylme-thylsiloxane)/
poly(3,3,3-trifluoropropylmethylsiloxane)/water (PPPMS/PFPMS/water) system under different
viscosities of the outer phase.

5. Concluding Remarks

We analyze the dewetting process of a double emulsion analytically based on force analysis.
The equilibrium configuration of double-emulsion droplets depends on a dimensionless interfacial
tension determined by the three interfacial tensions in the system. The outer phase engulfs more inner
phase when the volume ratio between the outer phase and inner phase is larger, but the engulfing part
of the inner phase is almost constant at a sufficiently large volume ratio. By balancing the interfacial
tensions and viscous force in the dewetting process, with an introduced dewetting boundary, the
dewetting time of double-emulsion droplets can be calculated based on momentum and energy
conservation with a sufficiently small viscosity of the continuous phase. A large volume ratio between
the outer phase and inner phase leads to the increase of the dewetting time based on momentum
conservation. Meanwhile, the larger the viscosity of the outer phase, the longer the dewetting time
required. As the precise configuration and the dewetting time of double-emulsion droplets could be
calculated, it is of great importance for the application of double emulsions such as in drug delivery
and electronic displays.
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