
Citation: Song, X.; Lu, R.; Guo, Z.

High-Performance Reconfigurable

Pipeline Implementation for

FPGA-Based SmartNIC.

Micromachines 2024, 15, 449. https://

doi.org/10.3390/mi15040449

Academic Editor: José de Jesús Rangel

Magdaleno

Received: 26 February 2024

Revised: 25 March 2024

Accepted: 26 March 2024

Published: 27 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

High-Performance Reconfigurable Pipeline Implementation for
FPGA-Based SmartNIC
Xiaoyong Song 1,2 , Rui Lu 1,2 and Zhichuan Guo 1,2,3,*

1 National Network New Media Engineering Research Center, Institute of Acoustics, Chinese Academy of
Sciences, No. 21, North Fourth Ring Road, Haidian District, Beijing 100190, China; songxy@dsp.ac.cn (X.S.);
lur@dsp.ac.cn (R.L.)

2 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences,
No. 19(A), Yuquan Road, Shijingshan District, Beijing 100049, China

3 Suzhou Haiwang Network Technologies Co., Ltd., Suzhou 215163, China
* Correspondence: guozc@dsp.ac.cn

Abstract: As the key module of programmable switches or the SmartNIC card, the packet processing
pipeline undertakes the task of packet forwarding and processing. However, the current pipeline for
the FPGA-based SmartNIC is inflexible, and the related reconfigurable commercial device designs are
closed-source. To solve this problem, this paper proposes a high-performance reconfigurable pipeline
design, which has fully reconfigurable match-action units, supporting various network functions
by its flexible reconfiguration. The fields of the match key and the size of the match table can be
reconfigured without recompiling the HDL code or modifying the hardware. The processing rules
and action instructions for the pipeline can be dynamically installed by the configuration module
at runtime. We implement our design on the Xilinx Alveo U200 board with a Virtex UltraScale+
XCU200-2FSGD2104E FPGA and show that the designed pipeline supports fast reconfiguration to
implement new network functions and that the throughput of the designed pipeline reaches 100 Gbps
with low latency.

Keywords: field programmable gate arrays (FPGA); pipeline; switch; SmartNIC; reconfigurable
match-action table

1. Introduction

As a classic architecture in computer hardware, the pipeline structure was originally
developed for the execution of instructions [1,2]. The design of a pipeline is of great
significance in improving the throughput of the processor and the efficiency of instruction
execution, and it has been widely adopted in various computer designs [3]. An alternative
model to the pipeline structure is the run-to-completion (RTC) model, where each task is
completed before moving on to the next [4]. In contrast, the pipeline structure divides the
entire processing task into multiple stages and executes independent subtasks in parallel
within each stage, following a specific order.

In contemporary times, the pipeline structure is commonly employed in network
devices, including SmartNICs, to enhance processing efficiency and throughput. The
entire packet processing process involves parsing and organizing the data processing flow
in a directed acyclic graph, following a particular order, which is then mapped into the
processing pipeline [5]. Each stage of the pipeline is responsible for executing specific
independent tasks, such as packet parsing, routing matching, rule matching, checksum
calculation, and packet encapsulation.

With the improvement in network speeds and the enrichment of network scenarios,
traditional networks face challenges in terms of flexibility and performance. SDN (software-
defined networking) networks separate the data plane from the control plane, enabling
greater flexibility [6]. However, the performance of current SDN software switches is
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limited, and the software switches consume a significant amount of the CPU resources of
host servers. In recent years, offloading and accelerating network functions on SmartNIC
have emerged as a popular approach [7].

In addition to the functions of the traditional network interface card (NIC), a SmartNIC
card has a wide range of applications and significant importance in the acceleration of
network function offloading. An FPGA-based SmartNIC is an important kind of SmartNIC.
The offloading of network functions from the software switch to the FPGA-based SmartNIC
can not only save server CPU resources but also realize faster processing or forwarding
of packets. After receiving a data packet, the SmartNIC performs various operations on
the packets as designed and forwards the packets after processing. In software-defined
networking (SDN), the data plane is offloaded to hardware, providing high-throughput
and low-latency packet processing and forwarding capabilities to optimize network perfor-
mance. The packet processing unit in the data plane also often adopts a pipeline design to
improve throughput and system frequency.

Even though FPGA has advantages in programmability, the hardware design and
development on FPAG is often time-consuming and laborious. The inflexible data plane
pipeline for an FPGA SmartNIC has problems especially in limited and fixed operation
functions and efficiency of development and testing. For the design of large-scale FPGA
hardware systems, the compilation of hardware code takes several hours. In the deploy-
ment of new functions or verification and testing of some new protocols, it is necessary to
remodify the hardware code or recompile and debug, which is inefficient. The pipeline
of the data plane is mainly organized by several match-action units (MAUs) with match-
action tables (MATs). In most current FPGA-based designs, the MAT is fixed in width,
depth, and type, and the actions performed in each MAU are also fixed. However, with
emerging of network protocols and network scenarios, the flexibility and reconfigurability
of a pipeline are increasingly required. For example, for packet forwarding processing
applications in SDN networks, the main difference among different functions often lies in
the forwarding match tables and the actions performed in the pipeline. If the requirement
changes, remodifying the hardware code and recompiling the FPGA take quite a long time.
If the pipeline in the SmartNIC data plane is reconfigurable, it only needs to quickly update
the configuration register to modify the function of the packet processing pipeline and
reconfigure the match-action units and other modules, which only takes a few seconds
or milliseconds.

To solve these problems, this paper proposes a reconfigurable pipeline for an FPGA-
based SmartNIC. The proposed pipeline can be reconfigured and reconstructed through the
control plane without redesigning and developing the hardware code. Different from the
way of communication in [8], our FPGA SmartNIC communicates with the control plane of
the host server with PCIe. The user does not need to modify the hardware code or reburn a
new bitstream file to the FPGA; rather, the user need only update the configuration registers
to complete a new configuration. The match-action units and the match-action table for the
designed pipeline can be reconfigured as user-defined, and the action instructions can be
reconfigured to realize different network functions. The main contributions of this work
are as follows:

• A complete reconfigurable pipeline scheme based on FPGA is proposed, and the
proposed pipeline design can achieve 100 Gbps throughput with low latency.

• The MAU for the proposed pipeline has full reconfigurability in its match field, table
size, table type, and action instructions. As we know, previous FPGA-based schemes
may have some but not all of these features.

2. Related Work

Hardware-based SmartNICs or programmable switches not only require high per-
formance, but also need to exhibit flexibility to accommodate various scenarios. The
packet processing pipeline plays a critical role in the data plane, particularly in terms of its
reconfigurability to handle different types of packets.
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In the protocol-independent switch architecture (PISA) [9] and the architecture of
P4 [10], the “Match + Action” abstraction is employed to handle packet processing, with the
processing pipeline organized using multiple match-action tables. The single match-action
table (SMT) structure allows for pipeline packet processing within a single match-action
table, but it has limited scalability. This limitation arises from the exponential increase in
the number of rules within the match table when multiple fields are used as the match field
simultaneously [11,12].

The multiple match-action table (MMT) structure offers greater flexibility and effec-
tively reduces the entry space requirement by employing multiple processing stages. In
the case of the MMT structure, there are implementations like AccelSDP [13] or the design
in [14] that utilize a multi-stage pipeline with several match-action tables. However, these
implementations lack support for reconfiguring the match table and the pipeline itself.
AccelSDP [13] implements two match stages in its pipeline and only allows a small number
of predetermined packet operations within a specific stage. This restricted configurability
limits its flexibility. The pipeline described in [14] supports a greater number of stages, and
the action performed within each stage can be configured with a controller. This provides
more flexibility compared to AccelSDP. However, the drawback is that the size of the match
table cannot be modified. This can result in wasted match resources and limits the overall
flexibility of the pipeline.

The reconfigurable match-action table (RMT) [12] structure was proposed to address
the disadvantages of the SMT and MMT structures. It has been widely adopted by designs
such as FlexNIC [15,16] and PANIC [17]. The RMT pipeline consists of multiple stages,
with reconfigurable match-action tables in each stage. The “reconfigurable” aspect means
that the size, type, and number of match-action tables can be reconstructed as needed. This
flexibility allows better customization and adaptation related to different requirements.
The action engine in the RMT architecture includes a set of ALUs (arithmetic logic units)
that support various action instructions, providing powerful processing performance and
flexible computing capabilities. It uses a VLIW (very long instruction words) to process
multiple PHV (packet header vector) containers simultaneously in each stage. However,
most of the RMT pipeline design is ASIC-based and unclosed, such as Intel Barefoot
Tofino [18] and FM6000 [19]. Menshen [20] implemented RMT on FPGA, and it has the
reconfigurability of search keys and action instructions, etc. However, its match table is
still fixed, which limits the flexibility of the pipeline. Drawerpipe [21] has good flexibility,
and it can quickly reconstruct a pipeline by recombining the developed hardware modules
of the SmartNIC pipeline, but its performance and efficiency are low.

Moreover, in the design of a reconfigurable pipeline, the crossbar is commonly used in
many modules to achieve higher flexibility and reconfigurability. The crossbar provides a
high degree of connectivity, allowing more versatile routing and data flow between different
components in the pipeline. The choice of the specific connectivity structure or technique
depends on various factors such as the target application, performance requirements, power
constraints, and design complexity. Different designs may opt for alternative solutions
based on their specific needs and trade-offs. By limiting the unit and range of selection
fields, resource consumption can be effectively reduced while ensuring rationality [22]. In
the work of [23], an efficient header analysis and field extraction architecture is proposed
for FPGA-based network applications. In the design of dRMT [24], to reduce the overhead
of the input crossbar in the action engine, only 32 ALU parallel operations are present in
each pipeline stage, and the corresponding fields are written back to the PHV through the
output crossbar. If processing is required for more than 32 fields in the PHV, it is done
several times, which saves a significant portion of the crossbar overhead.

3. System Design
3.1. Hardware Architecture

The processing pipeline consists of multiple stages with match-action units, and the
key module of the reconfigurable pipeline is the reconfigurable match-action unit. In this
section, we describe the design of our pipeline and the MAU.
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As shown in Figure 1, in the packet processing system, the PHV of the packet is
generated by parser firstly, and then it enters the pipeline for processing. After the pipeline
processing, the processed PHV enters into deparser and is combined with a payload to
generate the processed packet. The focus of this paper is mainly in the yellow field of
Figure 1, which includes a reconfigurable pipeline, the reconfigurable MAU, and the config
interface to transform configuration information from the control plane to the hardware
module in FPGA.

Config Module

Parser MAU MAU Deparser

Packet Header Buffer

Payload Buffer

...

Pipeline

Pkt In Pkt OutPHV PHV

Config Interface
Config Rules

Figure 1. Architecture of the system.

The processing pipeline consists of multiple MAUs. As shown in Figure 2, the match-
action unit in each stage can be reconfigured, including the field and the length of the search
key, the number and size of the match table, and the action instructions to be executed. Each
MAU has a reconfigurable key extractor, reconfigurable match engine, and reconfigurable
action engine. The key extractor realizes different fields or different lengths of the search
key; then, the search key obtains match results with the match engine, and the action engine
performs operations on the PHV according to the match results and action instructions.

Key

Extractor

Reconfigurable

Match Table

VLIW

Instruction Mem

Action

Input

Crossbar

Action

Unit

Action

Unit

PHVPHV PHVPHV

...

...

PHVPHV

...

...
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Search Key
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Addr

Ops
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Op 
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Op 
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ctrl

Config Config

Config

PHV

In

PHV
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Match Engine

Figure 2. Architecture of the MAU.
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3.2. Packet Header Vector

The PHV transverses all modules in the processing system such as the packet parser,
pipeline, and deparser. It is made of the packet header information and the metadata
such as intermediate information and temporary values in the processing process, and it is
organized with several containers. In order to reduce the resource consumption of FPGA,
the PHV in the designed system only contains the information that needs to be processed
rather than all the packet header information. After the parsing of a packet, the original
packet header is not removed. The whole packet is stored in the packet buffer, and the
deparser updates or modifies the packet header based on the processed PHV.

As Figure 3 shows, in our design, the PHV has an overall width of 512 bits, which
is divided into four types of containers, totaling 25 containers. These containers consist
of eight 8-bit containers, eight 16-bit containers, eight 32-bit containers, and one 64-bit
container. During the process of parsing, the packet header fields are placed into the defined
container based on the configuration information. The first 24 containers are primarily used
to store packet header fields. Moreover, the 64-bit container is specially designated to store
specific information, such as the flag of whether the packet should be forwarded, indicated
by the [0] bit. Other fields in the 64-bit container are configured or reserved as required.

1B [0]1B [7] ... 1B [0]1B [7] ...2B [0]2B [7] ... 2B [0]2B [7] ...4B [0]4B [7] ... 4B [0]4B [7] ...8B [0] 1B [0]1B [7] ...2B [0]2B [7] ...4B [0]4B [7] ...8B [0]

1×8B 8×4B 8×2B 8×1B

06364191192447448511

Figure 3. The architecture of the PHV.

3.3. Key Extractor

The key extractor for each match-action unit can be configured independently by the
control plane. According to the configuration information, the specified fields in the PHV
are selected and combined as the search key. The search key generated by each key extractor
can be combined with different fields and have different lengths. The key extractor in our
design can generate up to two search keys in each stage, with one for the exact match table
and the other for the TCAM table. Each search key is composed of up to four container
fields in the PHV, that is, the maximum width of a single search key is 128 bits.

As Figure 4 shows, the key extractor is mainly composed of the key input crossbar
and the combine module, which are used to select the corresponding container fields from
the PHV and combine them as the needed key. The config module configures the key
information for the exact match and TCAM match in each match-action unit before it
works. The configuration information includes the type and the index of the container to
be selected, the starting position, and the offset length of the extract field in a container.
After the key input crossbar extracts the PHV fields based on configuration information, it
selects the fields from four specified containers for each search key. The combine module
then combines the valid parts of the four fields corresponding to the exact match and the
TCAM match, respectively, to generate the respective search keys and sends them to the
match engine for query.

In the combine module, a 2-level method is used to combine and shape fields in pairs
through multiple resizers. The resizer selects the valid parts from the two input data,
outputs the merged key, and generates a mask based on the valid key length. The mask is
used to represent the valid field of the search key to support the variable length key.
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Figure 4. Configurable key extractor.

3.4. Match Engine

The match engine responds to the query of the search key to obtain the action data and
instructions used by the action engine. It is mainly composed of match tables and memory
storage. As shown in Figure 5, there are TCAM resources and SRAM resources in each
pipeline stage MAU for the design of the match table and the storage of other information
like action data and instructions. At most, one TCAM logical match table and one exact
match table based on hash can be implemented in each stage. TCAM resources within a
single stage can only be configured as a single TCAM logical table or configured as an exact
match table in special cases. The SRAM resources include reconfigurable SRAM resources
and dedicated storage resources. Reconfigurable SRAM resources are used to implement
the user-defined exact match table and its action data table, and dedicated storage resources
are used to store the action data of TCAM and instructions of TCAM and EM. It should be
noted that because the number of action instructions is relatively small, specific resources
are allocated for storage. Similarly, because the TCAM depth implemented in our system
is relatively small, dedicated storage resources are directly allocated to store TCAM table
action data. In the case of a large TCAM depth, memory storage can be allocated from
configurable SRAM resources for its action data. In addition, since the exact match table
and the TCAM logical table in each pipeline stage can work parallelly, it is necessary to
ensure that their instruction actions are completely independent.

Bank

VLIW Instruction Mem 

(Fixed SRAM)

TCAM

TCAM Action Data

(Fixed SRAM)

SRAM

Figure 5. Memory for a single stage.

As shown in Figure 6, the reconfigurable TCAM match table in each MAU consists of
a TCAM crossbar, TCAM blocks, match-line merge blocks, and a priority encoder. After
the configuration of the TCAM crossbar, it is responsible for converting the logical table
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input signals into each TCAM block. In the query process of TCAM, the match lines of all
TCAM blocks are combined, and the final match address of the logic TCAM is obtained
from the priority encoder. The reconfigurable TCAM resources in each stage include eight
32b × 32 TCAM blocks. Corresponding to the maximum length that can be extracted by
the key extractor, the maximum width of the TCAM logical table can be configured to
128 bits. The logical table can be configured as 32b × 256, 64b × 128, 96b × 64, or 128b × 64
as required. According to the TCAM logical table width and depth configuration, TCAM
blocks are cascaded, combined, and organized into the required size. The implementation
of the TCAM block is independent of the reconfigurable design, and TCAM blocks here are
flip-flop based [25].

TCAM Crossbar

TCAM

Block

TCAM

Block

TCAM

Block

TCAM

Block

TCAM

Block

TCAM

Block

TCAM

Block

TCAM

Block

TCAM

Block

TCAM

Block

TCAM

Block

TCAM

Block

TCAM

Block

TCAM

Block

TCAM

Block

TCAM

Block

Merge MergeMerge Merge Merge MergeMerge Merge

Merge

Merge MergeMerge Merge

PE

Matchline 

Merge

Logical Table 

Result

Logical Table 

Inputs
Config

Figure 6. Reconfigurable TCAM.

A reconfigurable SRAM resource is used for the implementation of the exact match
table and the storage of the action data of the EM table. The reconfigurable SRAM resource
in a single MAU can be configured as two logical tables, an EM table, and its action data
memory. The reconfigurable SRAM resource consists of 32 32b × 1K BRAM and is organized
into eight 128b × 1K banks; the bank is the minimum unit for allocation or usage. The
maximum width supported by a single logical table is 128 bits. Each bank can be configured
in four modes: 32b × 4K, 64b × 2K, 96b × 1K, or 128b × 1K, which defaults to a 449.

According to the depth and width of logical tables, it allocates memory banks to
each table. The SRAM crossbar is used for signal mapping conversion to realize the
interconnection between logical and physical tables. The width configuration of the SRAM
logical table is done within the banks. Each bank has a read or write width of 128 bits.
However, each address space contains four 32b slots, and partial data can be written in a
single address space. That is, a single write of 32b, 64b, 96b, or 128b width data is supported.
The depth of the bank is cascaded to realize the wanted depth of the SRAM logical table.

After configuration, each logical table has its bank set as [Bank_Sid, Bank_Eid]. When
the logical table is written or read, each interface signal is mapped and transformed as
Table 1. The read and write address contains three levels of address fields. The first level is
the index of the bank (Bank_id), which is used to determine the bank block to be accessed.
The length of Bank_id here is 3 bits, corresponding to eight bank blocks. The second level
is the address space index (SRAM_id) in the bank block, which is used to index the 128-bit
address space in a bank. The length of SRAM_id is 12 bits, corresponding to the depth of
4K. The third level is the slot index (Slot_id) in a single address space of the bank, which
is used to locate the slots in a single address space. The width of Slot_id is 0 to 2 bits and
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is determined by the width configuration of the logical table and the width of the slot.
The start bank of a logical table (Bank_Sid) corresponds to the base address of the storage
space in the logical table. When it accesses a logical table, it needs to determine which
bank to access (Bank_id ) and obtain the bank address (SRAM_id) according to the base
address and the original address of logical table (lw_addr). The write data (Bank_data) and
the mask (Bank_mask) are generated by the original data (lw_data) and the width of the
logical table.

Table 1. Mapping table of the SRAM signal.

Logical Table
Width slot_id Access

Bank_id
Access

Bank_addr
Access

Bank_data
Access
Bank_mask

32b 2’b00 Bank_Sid+lw_addr[12:14] lw_addr[11:2] {96’h0,lw_data[31:0]} 16’h000F
32b 2’b01 Bank_Sid+lw_addr[12:14] lw_addr[11:2] {64’h0,lw_data[31:0],32’h0} 16’h00F0
32b 2’b10 Bank_Sid+lw_addr[12:14] lw_addr[11:2] {32’h0,lw_data[31:0],64’h0} 16’h0F00
32b 2’b11 Bank_Sid+lw_addr[12:14] lw_addr[11:2] {lw_data[31:0],96’h0} 16’hF000
64b 1’b0 Bank_Sid+lw_addr[11:13] lw_addr[10:1] {64’h0,lw_data[63:0]} 16’h00FF
64b 1’b1 Bank_Sid+lw_addr[11:13] lw_addr[10:1] {lw_data[63:0],64’h0} 16’hFF00
96b - Bank_Sid+lw_addr[10:12] lw_addr[9:0] {32’h0,lw_data[95:0]} 16’h0FFF

128b - Bank_Sid+lw_addr[10:12] lw_addr[9:0] lw_data[127:0] 16’hFFFF

In addition to the exact match table and the TCAM match table, there are action
data memory and instruction memory. In this design, each match table (EM or TCAM) is
equipped with an action instruction memory and an action data memory. The depth of
each instruction storage unit is 32, and the width is the same as VLIW. After the EM and
TCAM match table are queried, the action data are obtained from the action data store
according to their match addresses. In the designed system, the lowest 5 bits of the action
data represent the instruction address, which is used to obtain the VLIW instruction from
its memory. The remaining fields can store the operands and other information outside the
instruction as needed. The VLIW instructions of EM and the TCAM are merged to obtain
all the VLIW instructions for a stage. Both VLIWs indicate that some fields in the PHV
are operated, but the actions performed by two tables in the same pipeline stage should
be completely independent. The invalid field in the instruction is set to “0”. Similarly,
the action data of EM and TCAM are merged and entered into the action engine together
with the PHV and VLIW instructions, and the corresponding actions are performed on the
containers in the PHV.

3.5. Action Engine

As shown in Figure 2, the action engine consists of an action input crossbar and a set
of arithmetic logic units (ALUs). The action input crossbar is used to extract the operands
and the opcode of ALUs from PHV, action data, and VLIW. There are 25 ALUs in each
action engine, which correspond to the 25 containers in the designed PHV. Therefore, it is
possible to operate on all PHV containers in a single stage simultaneously. To reduce the
overhead of the crossbar, the input crossbar is divided into the PHV crossbar and the action
data crossbar. The PHV crossbar primarily extracts fields from the PHV containers and
immediate values from the instructions as operands. The action data crossbar primarily
extracts operands from the action data.

The action instructions are organized as VLIW and stored in specific storage within
the match engine. Each VLIW consists of multiple independent action instructions. Based
on the operation code and operands in the action instructions, the ALUs perform the
corresponding arithmetic operations and output the results, which are then written back to
the corresponding containers in the PHV. Just like the container type of PHV, the ALUs are
divided into 8-bit, 16-bit, and 32-bit ALUs, and a specific ALU handles the remaining fields
in the PHV.
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The instructions supported are mainly divided into register-based instructions and
immediate-based instructions. Each instruction has a length of 27 bits, including a 6-bit
operation code. There is no need for a destination address in our instructions since the
ALUs and PHV are hard-wired in our action engine, meaning that the destination address
for the ALU output is determined. In Figure 7a, the instruction contains two container
fields, indicating that both operands of this instruction are from PHV containers. Each field
indicates that the index of the container is 5 bits. The upper 2 bits represent the container
type, with 2’b00 representing an 8-bit container, 2’b01 representing a 16-bit container, 2’b10
representing a 32-bit container, and 2’b11 representing a 64-bit container. The remaining
3 bits represent the container position, corresponding to a maximum of 8 containers from
0 to 7. In Figure 7b, the instruction contains one container field and one immediate field.
The immediate field can support up to 16 bits. Operand2 may come from the immediate
value in the instruction or the action data. In Figure 7c, the instruction only contains an
immediate field. Operand1 of this instruction may come from the immediate value in the
instruction or the action data, and it can be a combination of both.

Opcode(6b) Container1(5b) Container2(5b) Rev/ExOpcode(11b)Opcode(6b) Container1(5b) Container2(5b) Rev/ExOpcode(11b)

Opcode(6b) Container1(5b) Rev/Immediate value(16b)Opcode(6b) Container1(5b) Rev/Immediate value(16b)

...Inst.0 Inst.N-1Inst.1 ...Inst.0 Inst.N-1Inst.1

(a)

(b)

Opcode(6b) Rev/Immediate value(21b)Opcode(6b) Rev/Immediate value(21b)

(c)

Figure 7. The design of VLIW and instructions. (a) Instruction with 2 operands from PHV container.
(b) Instruction with 1 operand from PHV container. (c) Instruction with 0 operand from PHV container.

As shown in Table 2, the supported action instructions in the current design mainly
include logical and arithmetic operations on registers or immediate values as well as specific
processing of data packets such as TTL decrease by 1, setting port numbers, discarding or
forwarding data packets, and so on.

Table 2. Supported operations in ALU.

Action Description

add/sub Two operands are both from PHV containers.
addi/subi One operand is from a PHV container, and the other is

an immediate value from the instruction or action data.
set field Set a field with a specific value. The operand is from the instruction or action data or both.
or/xor
sll/srl Shift left or right. Two operands are both from PHV containers.
slli/srli Shift left or right immediate. One operand is from a PHV container, and the other is

an immediate value from the instruction or action data.
sub-1 TTL-1.
Outport Set outport.
drop Discard specific packets.

All operations in the action engine are unidirectional pipelined. The action engine
does operations for PHV containers and generates a new PHV, which is then passed to the
next stage or MAU in the pipeline for further processing. Multiple stages are connected
in the processing pipeline, and the deparser combines the processed PHV with the packet
payload to a new packet.
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3.6. Config Module

In the designed system, the pipeline in the FPGA hardware data plane is reconfigurable.
Its reconfigurability is reflected in two aspects. Firstly, the match-action units in the pipeline
are fully reconfigurable, including the fields and lengths of search keys, the size and type of
the match tables, etc. Secondly, the configurability is exhibited in the data packet processing
rules, including the matching rules of the match tables, the action data, and the processing
of action instructions. The former is statically configured, meaning that the data plane
needs to be reset if the pipeline is reconstructed. The latter is dynamically configured,
meaning that processing rules and action instructions can be installed in runtime.

Communication between the configuration module and hardware is via PCIe. The
generation of configuration information or processing rules is not the focus of this work, so
we do not discuss it here. Here, we configure this by configuring registers and assume that
this information is already generated. After receiving the information, the configuration
interface module in the hardware system converts it into the required signals and sends
them to the match-action units in each pipeline stage. After each configuration is completed,
the configuration information memory in each module stores the information and uses it
until the next reset or update.

4. Implementation and Evaluation
4.1. Implementation

A designed reconfigurable pipeline together with a packet buffer, packet parser, and
deparser form the packet processing system. Each pipeline stage has reconfigurable TCAM
resources, including 8 32b × 32 TCAM blocks; reconfigurable SRAM resources include
32 32b × 4K SRAM blocks. The packet buffer is 1MB.

The system is integrated into Corundum [26] for implementation and testing. We
developed the system and pipeline with Verilog and implemented it on the Xilinx Alveo
U200 [27] board. There is a Virtex UltraScale+ XCU200-2FSGD2104E FPGA (16 nm) on the
AU200 board, and it has 1,182,240 LUTs, 591,840 LUTRAM, 2,364,480 FF, 2160 BRAM36K,
and 960 URAM on the FPGA. The data width of the AXIS interface is 512 bits, and the
system frequency is 250 MHz. The configuration module and devmem file work on the
server. The AXI-Lite interface is used to transmit control signals on the FPGA, configure
the pipeline, and install processing rules.

The AU200 FPGA is deployed on the Dell R730 commercial server and communicates
with the FPGA through PCIe. A QSFP28 Ethernet transceiver in the U200 and a 100 Gbps
optical port of the IXIA XGS12 network tester are connected via fiber optics. After the
control plane sends configuration information, the IXIA tester sends data packets to the
FPGA for processing. The processed data packets are output from the FPGA and sent back
to the IXIA tester.

4.2. Use Cases of the L2/L3 Switch

When the pipeline is not configured or reset, the default pipeline only forwards
packets like the Corundum framework without any extra processing. In addition, in this
section, a 4-stage pipeline processing system is used to verify its reconfigurability through
configurations of the pipeline to achieve the function of the L2/L3 switch with different
match-table sizes, processing rules, etc.

In the network, L2/L3 switches in packet forwarding and routing, the match fields
include an Ethernet type, a destination IP address, a source MAC address, and a destination
MAC address. A combination of these match fields is typically used to match the routing
table, and based on the match results, routing decisions are made about from which
interface to forward packets.

We configure the pipeline by the size and the order of the match table. The MAU in the
1st stage is configured as an exact match table with the source MAC address as its match
field, and the logical table size is 48b × 4K. The key extractor extracts a 16-bit container and
a 32-bit container from the PHV to generate its search key. The MAU in the 2nd stage is
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configured as an exact match table that is the same as the former one, whose match field
is the destination MAC address. The MAU of the 3rd stage is configured as a 32b × 256
TCAM table to match the IPv4 destination address. The search key is extracted from a
32-bit container of the PHV. The MAU of the 4th stage is configured as a 128b × 64 TCAM
table with the IPv6 destination address as the match field. The key extractor extracts the
corresponding four 32-bit container fields from the PHV and combines them to form the
query key.

A 100 Gbps optical port on the IXIA instrument connects to the QSFP0 port on the
Alveo U200 via an optical fiber, and the FPGA forwards the packet directly from the original
port back to the IXIA after receiving and processing it. The throughput of the system with
a single port is 100 Gbps. As shown in Figure 8, overall, the packet processing system
has low latency. For packets under 4096 bytes, the latency is less than 2 µs. Compared
to the Corundum prototype, the proposed application increases the processing delay by
about 1 µs and is correlated with the stage number of the pipeline. The processing latency
increases with the number of pipeline stages, and the processing of each stage is eleven
clock cycles, including one clock cycle for the key extraction, seven clock cycles for the
match engine, two clock cycles for the action engine, and one clock cycle delay for the
output. That is, in this implementation, each additional stage theoretically increases the
processing delay by 44 ns.
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Figure 8. Latency test.

4.3. Use Cases of the Packet Filter
4.3.1. ACL

The 5-tuple of a packet is usually used to describe its characteristics and is used as the
match field of ACL (Access Control List) for traffic access control. The five fields include the
following: the source IP address, destination IP address, transport layer protocol, source
port, and destination port. The ACL can match and control the traffic direction based on
the values of these fields, or it can deny access.

The 5-tuple of IPv4 packets is used as the matching rule of the ACL, and its total
width is 104 bits. In the process of configuration, the packet parser places the IPv4 source
address and destination address into a 32-bit container, respectively. The transport layer
protocol field is placed into an 8-bit container, and the source port and destination port are
combined and placed into a 32-bit container. Bit [0] of the 64-bit reserved field in PHV is set
as the Deny Flag, indicating whether a packet is allowed to pass or deny. Because there
are IP fields, wildcard matching needs to be performed using the TCAM match table. We
configured a 104b × 128 TCAM in each stage, and the key extractor is configured to extract
the specified 4 containers (three 32-bit containers and one 8-bit container) and combine
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them to obtain the search key. Four TCAM tables in the four pipeline stages are cascaded
to a 104b × 512 TCAM table. The ACL table with rules actually is a blacklist. If a match
succeeds, the Deny Flag field in the PHV is marked as 1, indicating that the packet is denied,
and it would be discarded in the outport.

As shown in Table 3, we use the 5-tuple of the packet as the metric for packet for-
warding. The IXIA tester generates four types of packets with different packet headers
and sends them into the packet processing pipeline of the FPGA SmartNIC. All packets
can pass through the packet processing pipeline before ACL rules are installed. After the
installation of ACL rules, the successfully matched packets are discarded and cannot be
forwarded. More details of the experiment are presented in Appendix A.

Table 3. ACL test.

Metrics (Five Tuple)
Test 1 Test 2

Before Installing ACL Rules After Installing ACL Rules
Packet Forwarding Match Success Packet Forwarding

Packet Type

A
B
C
D

A, B, C and D represent four different types of packets with different packet headers. means success, and
means failed.

4.3.2. Multi-Stage Packet Filter

It also could map the user-defined table into the pipeline with other methods and
configure the pipeline as a multi-stage packet filter to implement the ACL. It could divide
the ACL rule as four subfields and configure four match tables in the 4-stage pipeline.
Moreover, it also could divide the match field into two subfields. For example, the source
IP address and destination IP address are combined to perform ternary matching, and the
TCAM in the MAU is configured with a width of 64b; the protocol type, source port, and
destination port are combined to perform exact matching, and the exact table in the MAU
is configured with a width of 40b. The reserved field in PHV could be defined to indicate
whether a packet should be sent or discarded.

4.4. Resource Utilization

The designed reconfigurable pipeline and processing system are integrated into the
Corundum. Table 4 shows the system resource consumption with different pipeline stages.
The framework of the Corundum consumes about 6.07% onboard LUT resources, and the
packet parser, packet deparser, and packet buffer in our system consume approximately
1.43% LUT resources of Alveo U200. Beyond that, the extra resources are consumed
primarily by the multi-stage pipeline. As Table 4 shows, the designed pipeline has good
scalability for the number of stages. In the system integrated with the 8-stage pipeline, it
occupies in total about 21.13% of LUT resources of the whole board, and other resource
consumption is no more than 18%, which leaves enough resource and development space
for other applications.

Table 4. Resource utilization for the whole system on the U200 FPGA.

System LUT LUTRAM FF BRAM URAM

Corundum [26] 71,704 ( 6.07%) 12,877 (2.18%) 115,129 (4.87%) 141 (6.53%) 34 (3.54%)
2-stage Pipeline with Corundum 130,865 (11.07%) 15,221 (2.57%) 178,711 (7.56%) 160.5 (7.43%) 75 (7.81%)
4-stage Pipeline with Corundum 170,351 (14.41%) 17,447 (2.95%) 226,967 (9.60%) 164.5 (7.62%) 107 (11.15%)
6-stage Pipeline with Corundum 209,880 (17.75%) 19,673 (3.32%) 275,791 (11.66%) 168.5 (7.80%) 139 (14.48%)
8-stage Pipeline with Corundum 249,794 (21.13%) 21,899 (3.70%) 323,485 (13.68%) 172.5 (7.99%) 171 (17.81%)

The resource utilization of a single MAU in the pipeline is shown in Table 5. Logical
resources are mainly consumed by the TCAM blocks and various crossbars. The TCAM
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block here is implemented with flip-flops. In each MAU, there are eight 32b × 32 TCAM
blocks, and eight 128b × 4K SRAM blocks to implement the match tables. It has an
additional two 675b × 32 SRAM to store the VLIW of the TCAM table and EM table and a
128b × 256 SRAM to store the action data of the TCAM table.

Table 5. Resource utilization for a single MAU on the U200 FPGA.

Module LUT FF BRAM URAM

Match-Action Engine 23,676 (2.00%) 25,775 (1.09%) 2 (0.09%) 16 (1.67%)
Key Selector 4003 (0.34%) 274 (0.01%) 0 0

Match Engine 11,417 (0.97%) 21,561 (0.91%) 2 (0.09%) 16 (1.67%)
Action Engine 7486 (0.63%) 2880 (0.12%) 0 0

TCAM Crossbar 1050 (0.09%) 0 0 0
SRAM Crossbar 3052 (0.26%) 1553 (0.07%) 0 0

Action Input Crossbar 3050 (0.26%) 1830 (0.07%) 0 0
TCAM Pool 5632 (0.48%) 16,904 (0.71%) 0 0
SRAM Pool 0 1040 (0.04%) 0 16 (1.67%)

4.5. Comprehensive Evaluation

As shown in Table 6, the proposed design has advantages in both performance and
flexibility compared with other FPGA-based designs. Although the data plane of Drawer-
pipe has good flexibility and reconfigurability, its performance is very low and cannot meet
the demand of a high-speed network. The work of AccelSDP [13] and M. Sha et al. [14]
both have high throughput, but their pipelines have limited flexibility. In the AccelSDP
pipeline, the function of each stage is fixed, and the size and type of the match-action table
is unchanged. The pipeline of M. Sha et al. [14] has higher flexibility than AccelSDP, and
the ALU could perform some preset actions according the configuration, but its flexibility is
still limited and its match tables are solidified. Compared with these methods, the designs
of our work and Menshen’s have more flexibility and more powerful packet processing.

Table 6. Comparison of FPGA-based designs.

Work Platform LUT BRAM Freq Throughput Pipeline Note about Action and
/ALM |URAM (MHz) (Gbps) Flexibility MAT in Pipeline

AccelSDP [13] Intel N3000 19.7% 9.2%|- 200 100 Low
Action in each stage is

fixed.
MAT is fixed.

M. Sha et al. [14] Xilinx XCZU19EG 41% 35.72%|- 250 100 Mid
Actions could be config-

ured with SIMD.
MAT is fixed.

Menshen [20] Xilinx AU250 13.65% 11.75%|- 250 100 Mid
Actions could be config-

ured with VLIW.
MAT is fixed.

Our work Xilinx AU200 14.41% 7.62%|11.15% 250 100 High
Actions could be config-

ured with VLIW.
MAT is reconfigurable.

The platform of the Intel N3000 has an Arria 10 (1150GT) FPGA (20 nm), and it has 1,150,000 logic elements,
427,200 ALMs, and 2713 M20K memory blocks. The platform of the Xilinx XCZU19EG FPGA (16 nm) has
522,720 LUTs, 984 BRAMs, and 128 URAMs. The platform of the Xilinx AU250 has a Virtex UltraScale+ XCU250-
2LFIGD2104E FPGA (16 nm), and it has 1,728,000 LUTs, 2688 BRAMs, and 1280 URAMs. The platform of the
Xilinx AU200 board has a Virtex UltraScale+ XCU200-2FSGD2104E FPGA (16 nm), and it has 1,182,240 LUTs,
2160 BRAMs, and 960 URAMs.

Both our work and Menshen’s [20] perform actions to multiple containers parallelly
in PHV with VILW, which is more powerful and flexible in the actions, and both of them
have 100 Gbps throughput. However, our approach is more flexible especially in the match
tables. Although the key extractor of Menshen could extract a search key with variable
lengths, its match-action table is fixed in width and type. In each stage of Menshen’s
pipeline, there is only a small fixed EM table implemented by CAM, while in our pipeline,
each stage supports two independent match-action tables. There are a reconfigurable EM
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table and a reconfigurable TCAM table in each MAU, and the size of our tables is also
larger than Menshen’s. We replaced Menshen’s CAM IP module with our CAM block and
implemented both of them on the Xilinx AU200. A comparison of the single stage for the
two methods is shown in Table 7. In contrast, our work has more advantages in terms of
resource richness and flexibility of the match tables.

Table 7. Comparison the MAU in a single stage.

Work LUT FF RAM
D/B/U

Processing
Latency

Memory
Size MAT

Menshen [20] 11,566 24,275 536/0/0 8 cycles 205b × 16 TCAM A fixed TCAM-based EM table.
625b × 16 SRAM

Our work 23,676 25,775 1434/2/16 11 cycles 8 × (32b × 32) TCAM A reconfigurable TCAM table.
8 × (128b × 4K) SRAM A reconfigurable EM and its action data memory.
2 × (675b × 32) SRAM Two fixed VLIW memory.

128b × 256 SRAM A fixed TCAM action data memory.

D means distributed RAM, and it means LUTRAM here. B means block RAM. U means ultra RAM.

5. Conclusions

In this paper, we proposed a reconfigurable pipeline and successfully integrated and
implemented it with Corundum on the Xilinx Alveo U200 FPGA. All key modules of the
MAU in the pipeline could be reconfigured as defined, and the processing rules and action
instructions could be installed dynamically. The proposed reconfigurable pipeline has
high performance and flexibility and a 100 Gbps throughput for packet processing with
low latency.
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Appendix A

This appendix is used to further detail the ACL packet filtering experiment in Table 3.
After the pipeline configuration, we install the ACL rules and action instructions into

the TCAM tables. Some rules are shown in Table A1, and if the match succeeds, the Deny
Flag in the PHV would be modified to “1”. The IXIA tester generates data packets as shown
in Figure A1. The destination IP address list of the data packets includes [32’hd434_3434,
32’hd434_3432, 32’hd434_3434, and 32’hd434_3434]. Four packets with different DIP are
sent, and two packets are matched, and packets that match rules in the ACL match table
are filtered out.
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Table A1. Rules in the ACL table.

No. Match Field <SIPv4,DIPv4,Protcol,SPort,DPort>

1 <32’hd434_3334/24, 32’hd434_3332/24,8’d17,16’h0001,16’h0002>
2 <32’hd434_3334/24, 32’hd434_3334/28,8’d 6,16’h0011,16’h0202>
3 <32’hd434_3334/32, 32’hd434_3334/32,8’d17,16’h0001,16’h0002>

Figure A1. Packet configuration for testing with the IXIA tester.

As Figure A2 shows, before installing the ACL rules, packets with four different
headers can be received without loss. After the rules listed in Table A1 are installed, the
matched packets are discarded, and only two packets are forwarded out the pipeline in
Figure A3.

Figure A2. Test before installing ACL rules.

Figure A3. Test after installing ACL rules.
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