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Abstract: The print head is one of the most critical components in an additive manufacturing (AM)
system. It can significantly affect the quality of printed parts. Recently, because continuous carbon
fiber-reinforced composites can have excellent mechanical properties, a relevant AM technique, fused
filament fabrication (FFF), has been attracting increasing attention. This has extended the require-
ments demanded of print heads. To this end, different FFF extrusion methods have been rapidly
developed based on various methods of impregnating fibers into the matrix for the corresponding
print heads. Generally, these extrusion methods are of three types: single extrusion, in situ extrusion,
and dual extrusion. All these methods face substantial challenges, such as the nozzle clogging and
damage to the continuous carbon fibers during extrusion. These common issues still need to be
fully addressed. This study’s aim is to summarize and discuss the different extrusion methods and
their FFF specific components in terms of their advantages and disadvantages for continuous carbon
fiber-reinforced composites.

Keywords: print head; fused filament fabrication; continuous carbon fiber-reinforced composites;
extrusion method; additive manufacturing

1. Introduction

Historically, the complexity of manufacturing parts has been a major factor driving cost.
Recently, advancements in additive technologies have led to a shift from rapid prototyping
to the production of actual end-use parts, considerably widening the design possibilities [1].
However, with the materials currently utilized in additive manufacturing, it is difficult
to fully exploit the technological potential of the process [2]. In comparison to polymers,
short carbon fiber-reinforced composites exhibit enhanced mechanical properties, including
improved stiffness, strength, and impact resistance, albeit with some anisotropic behaviors
due to the random fiber orientation [3]. In contrast, continuous carbon fiber composites
generally demonstrate superior mechanical properties relative to short fiber composites,
especially concerning strength and stiffness along the fiber direction [4]. Continuous car-
bon fibers are introduced in the fused filament fabrication (FFF) process to unlock the
limitation of mechanical properties, satisfying the operational conditions for aerospace
and transportation [5,6], as shown in Figure 1a. By employing the freeform path planning
technique of FFF technology, optimizing the printing directions for printing continuous
fiber composites is crucial for achieving superior mechanical properties, reducing defects,
enhancing efficiency, and customizing the functionality of the printed parts. By searching in
the Web of Science using fuse filament manufacturing and continuous carbon fiber compos-
ites, investigation into continuous carbon fiber-reinforced composites in FFF is attracting
increasing attention, as Figure 1b shows [7,8]. As shown in Figure 2, the main challenges
in the fused filament fabrication of continuous carbon fiber-reinforced composites are
attributed to factors such as print head clogging, the degree of impregnation [9,10], surface
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quality, process stability and consistency [11], etc. These issues predominantly depend on
the coordination of the additive manufacturing equipment and process parameters, as well
as the specific extrusion methods. However, the equipment suitable for manufacturing
continuous carbon fiber-reinforced composites is currently still in development, with a
strong emphasis on advancing the key print head technologies [12]. The structural design
of the print head is crucial for ensuring the precise and consistent deposition of continuous
carbon fiber-reinforced composites during the printing process [13].
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applications and (b) relevant publications based on Web of Science.

The fabrication of continuous carbon fiber composites in the FFF process involves a
series of intricate parameter settings closely associated with the structural design of the
print head. In practice, the print parameters, such as the print temperature, the width
and height of the print path, and the print speed, have a direct impact on the quality of
molding and the mechanical performance of the printed continuous carbon fiber composite
parts [14]. In other words, the molding accuracy and mechanical properties of the printed
part are directly influenced by the operational parameters and internal structure of the
print head.

It is well known that there is a considerable gap between the mechanical properties
of continuous carbon fiber-reinforced composites manufactured through FFF technology
and those produced using traditional processes [15,16]. This can be attributed to the low
volume fraction of continuous carbon fibers, poor wettability, a damaged reinforcement
phase, and pore defects at the adjacent printed filament [17]. To address these issues,
different extrusion methods (single extrusion, in situ co-extrusion, and dual extrusion) are
employed in the print head to optimize the printing process of such continuous carbon
fiber composites [18].



Micromachines 2024, 15, 432 3 of 15

Micromachines 2024, 15, 432 3 of 15 
 

 

employed in the print head to optimize the printing process of such continuous carbon 
fiber composites [18].  

 
Figure 2. The main challenges in the fused filament fabrication of continuous carbon fiber-reinforced 
composites [9–11]. 

In addition, the rheological behaviors of melting polymers inside the print head are 
susceptible to fluid–structure coupling and thermo-mechanical coupling [19]. To over-
come these challenges, it is necessary to customize the design of components, such as the 
nozzle, chamber, heating block, guide pipe, and guide pulley, to ensure uniform temper-
ature distribution, efficient infiltration, and smooth flow inside the print head. Through 
empirical experimental techniques, it is feasible to acquire suitable processing parameters 
for the print head that proficiently tackle challenges during manufacturing.  

In this article, the relevant research, design, and progress of print heads for the FFF 
processing of continuous carbon fiber composites are systematically reviewed. A variety 
of internal structural designs, the functionalities of components, and the current limita-
tions of print heads are comprehensively discussed. Furthermore, a forward-looking per-
spective on the development of print heads is provided, with an aim to fabricate parts 
composed of continuous carbon fiber composites with superior mechanical performance. 

2. Print Heads with Different Extrusion Methods 
To improve the poor flowability of the matrix in pre-impregnated composites during 

the FFF process, various design proposals have been put forward for the print head—
single extrusion, in situ co-extrusion, and dual extrusion, as shown in Figure 3. The cross-
section of the print head in Figure 3 indicates that these designs primarily differ in the 
infiltration method utilized for the fiber and matrix. Whether the mixing process of con-
tinuous carbon fibers and melting resin occurs inside or outside the print head, the key 
premise is to ensure that the nozzles smoothly extrude the printing filaments. Here, the 

Figure 2. The main challenges in the fused filament fabrication of continuous carbon fiber-reinforced
composites [9–11].

In addition, the rheological behaviors of melting polymers inside the print head are
susceptible to fluid–structure coupling and thermo-mechanical coupling [19]. To overcome
these challenges, it is necessary to customize the design of components, such as the nozzle,
chamber, heating block, guide pipe, and guide pulley, to ensure uniform temperature
distribution, efficient infiltration, and smooth flow inside the print head. Through empirical
experimental techniques, it is feasible to acquire suitable processing parameters for the
print head that proficiently tackle challenges during manufacturing.

In this article, the relevant research, design, and progress of print heads for the FFF
processing of continuous carbon fiber composites are systematically reviewed. A variety of
internal structural designs, the functionalities of components, and the current limitations of
print heads are comprehensively discussed. Furthermore, a forward-looking perspective
on the development of print heads is provided, with an aim to fabricate parts composed of
continuous carbon fiber composites with superior mechanical performance.

2. Print Heads with Different Extrusion Methods

To improve the poor flowability of the matrix in pre-impregnated composites during
the FFF process, various design proposals have been put forward for the print head—single
extrusion, in situ co-extrusion, and dual extrusion, as shown in Figure 3. The cross-section
of the print head in Figure 3 indicates that these designs primarily differ in the infiltration
method utilized for the fiber and matrix. Whether the mixing process of continuous carbon
fibers and melting resin occurs inside or outside the print head, the key premise is to
ensure that the nozzles smoothly extrude the printing filaments. Here, the advantages and
disadvantages of the three discussed extrusion methods (single extrusion, in situ extrusion,
and dual extrusion) are described in Table 1. In the following sections, each extrusion
method is explained further.
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dual extrusion.

Table 1. The advantages and disadvantages of the three discussed extrusion methods: single extrusion,
in situ extrusion, and dual extrusion.

Extrusion Methods Pros Cons

Single extrusion
Simplicity, versatility, high

molding quality, high degree
of impregnation.

Limits the selection of constituent
materials, low volume fraction of

carbon fibers, low processing
efficiency.

In situ co-extrusion

High volume fraction of
carbon fibers, high molding

quality, enhanced flexibility in
the selection of constituent

materials.

Complex internal structural
configuration of the print head, low

degree of impregnation, low
processing efficiency.

Dual extrusion

High processing efficiency,
enhanced flexibility in the

selection of constituent
materials.

(Lack of relevant reports.)

2.1. Single Extrusion

The structural design of the single extrusion print head is straightforward; it uses
prepreg continuous carbon fiber composites as the printed filament. Zhuo et al. [20]
reported the preparation process of prepreg filament, in which a commingled fiber tow
was fed through a pultrusion die set at 250 ◦C, ensuring the melting of the thermoplastic
fibers to impregnate the carbon fibers. Subsequently, the impregnated filaments were
cooled and cured before being collected using an automated mechanism to consolidate the
mixed fibers. Based on the filament preparation, Zhi et al. [21] developed a print head to
print continuous carbon fiber-reinforced thermoplastic nylon polyamide-6 (PA6) polymers
to improve the electromagnetic loss capacity of the printed sample. Generally, higher
temperatures can result in nozzle clogging due to the accumulation of excess melted epoxy
resin in the nozzle. Zhang et al. [22] successfully employed a Prusa i3 printer with a filleted
brass nozzle to print carbon fiber-reinforced thermosetting epoxy resin at a temperature of
90 ◦C and a printing speed of 300 mm/min, as shown in Figure 4a. For a similar purpose,
Ming et al. [23] designed a small molten resin tank inside the print head to impregnate the
printed filament again, as seen in Figure 4b. Both thermosetting and thermoplastic resins
are prone to nozzle clogging, a phenomenon associated with the rheological behavior of the
molten resin within the print head. Excessive resin fluidity can have a negative impact on
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the molding quality of the composites, while inadequate fluidity can lead to the formation
of more internal void defects within the composites.

A microscopic characterization test demonstrated that the design of the print head can
lead to a significant reduction in the internal defects of the printed part [24]. In an effort to
prevent clogging and filament breakage, Hu et al. [25] opted for a larger diameter nozzle of
1.5 mm during the printing process, as depicted in Figure 4c. To reduce friction between
the printed filament and the tube wall in the print head, Sugiyama et al. [26] designed a
polytetrafluoroethylene (PTFE) tube to pass through the extruder head from the entrance
of the guide pipe to the end of the nozzle.

The input speed of the filament is less than the speed of the molten material flowing
out of the nozzle, leading to potential manufacturing issues, such as improper feeding, fiber
damage, and breakage. To this end, Akhoundi et al. [27] applied a single-extrusion print
head to explore the motion of the fibers being influenced by the feed rate of the filament.
Localized tension and potential damage of the continuous carbon fiber filament may be
susceptible to localized friction and uneven feeding in the feed path, underscoring the
importance of maintaining a consistent feed flow from the inlet to the outlet.

In commercially available additive manufacturing machines of continuous carbon
fiber composites, the single-extrusion design is widely used in commercial printers, such
as Markforged’s MarkTwo printer [28], as shown in Figure 4d. Chen et al. [29] found
that the commercial filament used as “continuous fiber reinforcement” in the Markforged
printer itself contains a fiber volume fraction of 34.5%. Therefore, the low-volume fraction
of continuous carbon fibers used in fused filament fabrication is a critical constraint for
high-performance composites. Adumitroaie et al. [30] demonstrated that the tensile elastic
modulus and tensile strength of printed samples are 57.1 GPa and 528 MPa, respectively,
at a fiber volume fraction of 35%. This print head, in conjunction with Markforged’s self-
developed continuous carbon fiber-reinforced nylon composites, enables the creation of
high-strength structural parts through the extrusion of a continuous carbon fiber bundle
via a separate nozzle.
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Figure 4. Self-developed print head for single extrusion method: (a) the modified Prusa i3 print
head [22]; (b) the design of a small molten resin tank inside the print head [23]; (c) the choice of a
larger nozzle [25]; (d) the print head and nozzle of a MarkTwo printer [28].

2.2. In Situ Co-Extrusion

The in situ co-extrusion technique is incorporated into the design of a single nozzle–
double feed path, where continuous carbon fiber prepreg and matrix are simultaneously
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fed into the print head. Upon heating by the heat modulus, the matrix is soft and elastic,
while the prepreg fibers turn sticky and lose some of their rigidity. The blend is extruded as
a single composite, allowing it to bond with various kinds of thermoplastics and ensuring
the high-quality formation of the printed filament. Kuschmitz et al. [31] developed a print
head for processing continuous carbon fiber-reinforced polymers, where the fiber is guided
through the molten flow of the polymer. In this case, three synchronously fed filaments
are directed into the print head at an angle of 30◦, as demonstrated in Figure 5a. E3D-V6
heat sinks are implemented to confine the filament melting process within the designated
melting zone. The standard nozzle geometry has an inner diameter of 1.0 mm, with the
inner edge rounded to prevent damage to the printed filaments.

To preserve the quality of the feeding prepregs, Rarani et al. [32] incorporated feeder
wheels to guide the prepreg filament into the print head, supporting control of the feed
speed and ensuring that the proper stretching force is applied to the carbon fiber prepreg
during the printing process, as depicted in Figure 5b. In addition, Wang et al. [33] observed
that through precise control of the relationship between the prepreg diameter and the
nozzle diameter, higher pressure can be achieved in the melt zone to effectively inhibit
pores between adjacent printing filaments, as seen in Figure 5c.

In response to the low-volume fraction of continuous carbon fiber, Zhang et al. [34]
adopted the co-extrusion scheme to achieve a continuous carbon fiber volume fraction
above 20%. The Anisoprint commercial print head [35] utilizes a dual-feed print nozzle
system, enabling the separate entry of the prepreg carbon fiber through corresponding feed
paths, as shown in Figure 5d. This innovative technology allows for the use of thermosetting
resin prepreg continuous fibers, coated with a layer of thermoplastic polymers as a binder.
It can be seamlessly blended and extruded with various types of thermoplastic resin
substrates. In comparison, the interfacial properties between the fibers and the matrix
inside the prepreg are minimally affected. Adumitroaie et al. [36] demonstrated that
the tensile elastic modulus and tensile strength of the printed sample are 60 GPa and
750 MPa, respectively, at a fiber volume fraction of 46%. The device is reported to enable
the additive manufacturing of parts with a continuous fiber volume content of over 50%,
and it is suitable for the 3D printing of high-performance aerospace-grade structural
components [37].

Due to a lack of sufficient pressure and time during in situ impregnation, it has been
difficult to satisfy the engineering requirements for the surface quality and mechanical
properties of the printed parts. Kaczmarek et al. [38] used dry carbon fibers to complete
in situ impregnation in the print head, but the quality of the printed part was poor. In
general, an effective solution is provided by the in situ co-extrusion of the print head to
overcome the limitations associated with the volume fraction of continuous carbon fibers
in the additive manufacturing process. However, this imposes restrictions on the printing
speed in order to guarantee molding quality and adequate blending within the print head,
resulting in lower manufacturing efficiency [39].

2.3. Dual Extrusion

For a print head with dual extrusion, the continuous carbon fiber prepreg is directed
by a guide tube positioned close to the nozzle, as shown in Figure 6. Since the prepreg
filaments are processed with less additional heating, the interface bonding between the
fibers and the matrix can be preserved during the deposition of the primary prepreg
filament. Further assurance of the bonding effect and printing efficiency between adjacent
fused printing filaments is achieved through precise control of the printing temperature
and speed.
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Saari et al. [40] introduced a new 3D printing technology where the fibers were
aligned with the extrusion nozzle from the molten matrix, forming a composite print
ribbon. This ensures coordination between the fiber supply speed and the extrusion nozzle
speed, encapsulating the prepreg filaments directly into a flow of molten polymer, as
seen in Figure 6a. The printed filament solidifies into a predetermined shape due to the
toolpath. It hardens quickly, resulting in the fiber being trapped inside the extrudate and
forming a ‘coaxial composite’. This process allows for simultaneous fiber encapsulation
during polymer deposition, eliminating the need for any additional processing or post-
processing time.

With this aim, Olcun et al. [41] used an open-source printer (Prusa MK2 i3, Prusa
Research, Prague, Czech Republic), modified for printing with pre-coated pitch-based
carbon fiber filaments. A customized aluminum heating block was developed to allow
for dual-extrusion nozzles, extruding the pre-coated fibers from the left nozzle at a 45◦

angle to the bed and polymers from the right nozzle at a 90◦ angle, respectively. Here,
the fiber-to-polymer ratio and print quality can be controlled by the arrangement of dual
nozzles, as illustrated in Figure 6b. In fact, this print head is designed so that the process
of mixing the polymers with the continuous carbon fiber prepreg occurs outside of the
chamber. The imported prepreg can be fed through the nozzle, enabling the 3D printing of
continuous carbon fiber-reinforced composites with a high-volume fraction. Obviously, the
significant drawback of this method is that insufficient pressure and temperature may be
provided while encapsulating the fibers and polymers outside of the print head.
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3. Key Components of the Print Head

A print head for printing polymers typically consists of a nozzle, heating module,
cooling device, chamber, guide pipe, guide gully, and other components. When working
with continuous carbon fiber-reinforced composites, a cutting tool should be incorporated
into the print head to assist with the cutting of printed filaments. In addition, with the
introduction of continuous carbon fibers, the loss of these fibers’ mechanical properties and
the interaction between the polymers and the fibers are taken into account in the structural
design of components.

3.1. Nozzle

Nozzle clogging is the most common mechanical failure when printing continuous
carbon fiber-reinforced composites. The mechanical properties and forming quality of the
printed parts can be significantly influenced by the nozzles due to thermal factors and fluid–
structure coupling issues. Li et al. [42] emphasized the importance of the nozzle design in
preventing excessive stretching force on the filament during printing. To address this, the
inside of the nozzle tip is chamfered to facilitate smooth filament extrusion and to reduce
the risk of filament tearing, as shown in Figure 7a. Similarly, Markforged has developed a
specialized nozzle for the MarkTwo printer’s print head, designed for continuous carbon
fiber/nylon composite printing. This nozzle features a smooth edge that minimizes wear
between the fiber and sharp edges [43], as seen in Figure 7b.

To withstand the abrasive nature of carbon fiber and effectively ensure proper extru-
sion, hardened steel, brass with wear-resistant coatings (such as nickel or chromium), and
ruby-tipped nozzles are commonly used [44]. Todoroki et al. [45] observed that a conical
nozzle facilitates the even mixing of continuous carbon fibers with PLA resin in a molten
state. For printing carbon fiber-reinforced composites with a smooth surface, nozzles with
a flattened tip are often used. Compaction force is applied during printing by adjusting the
gap between the nozzle tip and the bed. Microscopic observation has validated that the
reduction of fiber waviness through applying compaction force is effective [46].

Pappas et al. [47] investigated the effect of the nozzle tilt angle (ranging from 0◦ to 35◦)
on fiber impregnation quality to minimize the potential scratching of continuous carbon
fiber, as illustrated in Figure 7c. However, the implementation of a print head design
with varying tilt angles involves additional complexities to the print system. Furthermore,
different nozzle diameters, materials, and print temperatures have been investigated, as
shown in Table 2.
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Table 2. Different extrusion methods and their respective diameters, nozzle materials, and print
temperatures.

Extrusion Methods Diameter of Nozzle Print
Temperature Material of Nozzle References

Single extrusion 0.601 mm 80–100 ◦C Brass Zhi et al. [21]
Single extrusion 0.5–0.6 mm 200–240 ◦C - Zhang et al. [22]
Single extrusion 0.6 mm 150 ◦C - Ming et al. [23]
Single extrusion 1.5 mm 200–230 ◦C Steel Hu et al. [25]
Single extrusion 0.4 mm – Steel Sugiyama et al. [26]
Single extrusion 0.9–1.0 mm 265–285 ◦C Brass Markforged printer [33]
Single extrusion 0.8–2 mm 240 ◦C - Akhoundi et al. [27]
Single extrusion 0.6 mm – Brass Li et al. [42]
Single extrusion 0.6 mm – Ruby orifice Olsson et al. [44]
Single extrusion 1.0 mm – Brass Todoroki et al. [45]
Single extrusion 1.5 mm 260 ◦C Brass Ichihara et al. [46]

In situ co-extrusion 1.0 mm 205 ◦C Brass Kuschmitz et al. [31]
In situ co-extrusion 2.0 mm 170–180 ◦C Brass Rarani et al. [32]
In situ co-extrusion 0.8–1.0 mm <270 ◦C Steel Anisoprint printer [35]
In situ co-extrusion 1.75 mm 180–230 ◦C Brass Yang et al. [39]
In situ co-extrusion 0.5–1.8 mm 235 ◦C - Mosleh et al. [48]
In situ co-extrusion 4.0 mm 190 ◦C - Pappas et al. [47]

Dual extrusion 1.5 mm 200–235 ◦C Brass Olcun et al. [41]

3.2. Heating and Cooling Block

Heating modules play a crucial role in heating and melting the polymers, allowing
them to flow within the nozzle in a molten state for effective deposition and layer formation.
In addition, the cooling module is instrumental in maintaining uniform heat distribution
within the chamber, and this affects the temperature of the nozzle section, as demonstrated
in Table 2. Note that it is essential to maintain the nozzle temperature within the normal
range throughout the printing process. Zhang et al. [49] found that a temperature below
the normal range may result in insufficient softening of thermoplastic composites, leading
to poor bonding between adjacent fused filaments. Conversely, if the nozzle temperature
exceeds the normal range, it can cause over-softening of the composites before the nozzle,
resulting in adhesion issues. Heller et al. [50] employed the finite element method to
numerically simulate the Stokes flow in a two-dimensional plane flow field within a
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polymer deposition nozzle, confirming these observations. To avoid the premature melting
of the tow in the feed path, Li et al. [42] integrated a heat sink at the entrance of the
guide pipe to ensure the solid state of polymer filaments. Ye et al. [51] incorporated a fan
design to enhance thermal convection at the nozzle to maintain a reasonable temperature
distribution.

Furthermore, the precise temperature control of the heating module plays a direct role
in determining the flow viscosity of the molten resin and in influencing the curing behavior
of carbon fiber filaments. Because of the remelting of impregnated filaments, there is a
notable challenge in solely relying on the curing effect inside the print head to ensure the
highest-quality interface between the fiber and the matrix. Due to its directly influential
role in the bonding effect of the molten resin and the continuous carbon fibers, as well as the
uniformity of flow in the print head, in future work, a more detailed investigation is needed
in the thermal design of the print heads of continuous carbon fiber-reinforced composites.

3.3. Chamber

In contrast to composites manufactured by traditional molding methods, 3D-printed
composites have significantly more internal defects, estimated at around 10% [31,52] and
leading to lower mechanical properties. Consequently, the strength and modulus of 3D-
printed composites are usually significantly lower than theoretical predictions. In the
in situ immersion 3D printing process, no additional pressure is applied to enhance the
penetration and diffusion of the resin. As a result, it becomes challenging to effectively
remove bubbles within the fiber bundles.

Pappas et al. [47] used a novel single-screw extruder to ensure the deposition rate
and to control the pressure inside the melting cavity. However, an increase was observed
in void formation due to the decreased pressure applied to the extrudate, as shown in
Figure 8a. He et al. [53] designed a print head with an embedded piston chamber that
provides a deposition pressure of 0 to 100 psi through a digital pneumatic regulator,
enabling high-precision pressure control in the chamber and reducing the defects inside
the printed filament, as demonstrated in Figure 8b. There is no doubt that pressure control
of the print head is required to expand the internal space and achieve a complex structural
design within the chamber. Furthermore, the difference in pressure between the interior
and exterior of the print head during the deposition process affects the occurrence of
pore defects.

3.4. Auxiliary Parts
3.4.1. Guide Pipe

The protection of the printed filament is crucial for ensuring the quality of the printed
part, preventing mechanical damage and thermal issues. To address these concerns, a guide
pipe was introduced to feed the printed filament into the print head [48]. Rarani et al. [32]
implemented a Teflon PTFE insulation pipe to surround this metal pipe, thereby preventing
direct contact between the stainless steel pipe and the filaments. These researchers proposed
a numerical model to analyze the effect of thermal distribution on the print head. In
addition, Hu et al. [25] introduced a PTFE tube from the inlet of the guide pipe to the end
of the nozzle, which aids in ensuring consistent heating of the filament and in minimizing
the friction between the pipe and the nozzle. Zhang et al. [22] found that the low viscosity
of the epoxy resin in a molten state was difficult to transfer into the print head. As a
solution, they implemented a PTFE guide pipe to prevent the premature melting of the
printed filament of polymers. By taking these design considerations into account, the print
head is able to produce high-quality prints with minimal risk of mechanical damage or
thermal issues.
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3.4.2. Guide Pulley

To ensure precise control of the printing process, a guide pulley has been integrated
inside or outside the print head to evenly transfer continuous carbon fiber prepregs. Mat-
suzaki et al. [54] utilized transmission gears and a stepper motor to convey resin filaments
and continuous carbon fiber filaments in the print head, as shown in Figure 9. Additionally,
the reinforcing fibers are directly delivered to the nozzle, effectively reducing the tension
that may occur during the printing process and preventing damage to the printed filaments.
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4. Conclusions

In this article, detailed descriptions of various inlet–outlet designs for print heads
using fused filament fabrication have been provided. There are advantages and limitations
associated with different extrusion methods:

The design simplicity of the single-extrusion print head is evident. To ensure the
coordination of the fiber and matrix during extrusion, it is necessary to limit the volume
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fraction of carbon fibers to maintain resin fluidity. Therefore, when using a single-extrusion
print head, the primary challenge is to restrict the high-volume fraction of composites.
This constrains the production of high-performance composites with a single-extrusion
print head.

In situ co-extruded print heads have the potential to fabricate composites with a higher-
volume fraction. However, they are susceptible to poor impregnation effects, leading to
local pore defects and a reduction in mechanical properties. Additionally, the impregnation
process needs more pressure and time than the other two methods. This leads to lower
overall printing efficiency.

Dual-extrusion print heads provide high printing efficiency and volume fraction
for continuous carbon fibers. Nevertheless, the external blending process may lead to
insufficient pressure to eliminate internal pores between the fused resin and continuous
carbon fibers, thereby undermining the overall quality of the molding.

It is clear that there are obvious trade-offs inherent in each extrusion method, em-
phasizing the imperative for sustained research to address the identified limitations and
enhance the quality and efficiency of continuous carbon fiber composites.

Indeed, the majority of manufacturing errors and equipment failures can be attributed
to the structural design of the primary components of print heads. By optimizing the nozzle
structure, regulating the pressure within the chamber, and ensuring the even transfer of
filaments, it is possible to effectively minimize pore defects within the printing parts, ensure
the desired impregnation and prevent the creasing and breakage of fibers. Furthermore, the
choice of materials for nozzles and guide pipes plays a crucial role in enabling the heating
and cooling modules, so as to manage temperature distribution within the printing system.
This significantly influences the rheological properties of the molten resin and mitigates
the risk of nozzle clogging.

To date, structural enhancements to the components of print heads have demonstrated
a significant improvement in the molding quality of continuous carbon fiber composites.
However, the causes of many manufacturing issues remain unclear, including thermo-
mechanical coupling, fluid-solid coupling, and rheological behavior within print heads. In
light of the operational conditions within print heads, it is crucial to develop a theoretical
model to analyze the effect of process parameters on the coupling mechanism. Therefore,
more theoretical simulation techniques are required to support the design of the print
head to improve production efficiency and the mechanical properties of continuous carbon
fiber composite parts manufactured by FFF. In the future, researchers should focus on
overcoming these limitations of print heads and develop theoretical models to further
unlock the potential of fabricating continuous fiber-reinforced composites by FFF.
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