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Abstract: Two linked gear wheels in a micromachine can be simultaneously rotated in opposite
directions by using a laser beam that has in its section areas the spin angular momentum (SAM) of
the opposite sign. However, for instance, a cylindrical vector beam has zero SAM in the focus. We
alter a cylindrical vector beam so as to generate areas in its focus where the SAM is of opposite signs.
The first alteration is adding to the cylindrical vector beam a linearly polarized beam. Thus, we study
superposition of two rotationally symmetric beams: those with cylindrical and linear polarization. We
obtain an expression for the SAM and prove two of its properties. The first property is that changing
superposition coefficients does not change the shape of the SAM density distribution, whereas the
intensity changes. The second property is that maximal SAM density is achieved when both beams in
the superposition have the same energy. The second perturbation is adding a spatial carrier frequency.
We study the SAM density of a cylindrical vector beam with a spatial carrier frequency. Due to
periodic modulation, upon propagation in space, such a beam is split into two beams, having left
and right elliptic polarization. Thus, in the beam transverse section, areas with the spin of different
signs are separated in space, which is a manifestation of the spin Hall effect. We demonstrate that
such light beams can be generated by metasurfaces, with the transmittance depending periodically
on one coordinate.

Keywords: spin Hall effect; spin angular momentum; cylindrical vector beam; beam energy;
carrier frequency

1. Introduction

Elements of micromachines can be driven by light, including structured light with
phase and/or polarization singularities. Thus, of great interest are light fields with orbital
and spin angular momentum (OAM and SAM). The SAM causes particles to rotate around
their centers of mass [1], and engineering the SAM density can manipulate an ensemble
of particles simultaneously. For generating a light field with a specific distribution of the
SAM density, the initial field does not necessarily carry nonzero SAM. The optical spin Hall
effect is manifested when a zero-SAM beam with complete linear polarization acquires
non-zero SAM density as it propagates in space [2,3]. In addition to the spin Hall effect, the
optical Hall effect can also be orbital [4,5] or spin-orbital [6].

The spin Hall effect can be radial or angular. The radial spin Hall effect was described
in [7], where the authors showed that when a radially polarized optical vortex is focused, the
longitudinal component of the SAM density vector has different signs at different distances
from the optical axis in the focal plane. The angular spin Hall effect is demonstrated in
many of our recent works, for instance in [8], where a high-order cylindrical vector beam is
tightly focused and near the focal plane; areas with different signs of SAM density vector
reside at different polar angles. Separation of left and right circular polarization in the
tight focus was also shown for several other types of vector beams [9,10]. As was found
in [10], the spin Hall effect arises in the tight focus of a linearly polarized optical vortex.
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Such a beam can be easily generated without a metasurface [11] by employing a spatial
light modulator.

In our work [12,13], we have found that the spin Hall effect can also be achieved in
paraxial vector beams that are not tightly focused. The mechanism of the spin Hall effect is
much similar in paraxial light beams and in focus, but in paraxial beams, the orbital Hall
effect cannot arise since the longitudinal component of the electric field is negligibly small,
whereas in a focus it becomes significant and, thus, transverse energy flows are generated,
rotating in opposite directions (orbital Hall effect). In [12], we studied a Gaussian beam with
several polarization singularities residing on a ring with a center on the optical axis. Such a
beam can be constructed as a superposition of a radially polarized single-ringed Laguerre-
Gaussian (LG) beam with a linearly polarized Gaussian beam. In [13], we investigated a
coaxial superposition of two paraxial single-ringed LG beams with topological charges
(TC) n and −n and linearly polarized along the horizontal axis, and of two LG beams with
the TCs m and −m and linearly polarized along the vertical axis.

The work [12] shows that perturbation of a cylindrical vector beam by superposing
a Gaussian beam, or other types of perturbations, can give rise to the spin Hall effect.
The above-listed works do not consider the propagation of a paraxial vector beam with
one-dimensional periodical modulation, and the longitudinal component of the SAM vector
is not calculated for such a beam. In addition, these works do not study the generation
of two vortex Gaussian beams with left and right circular polarization from a vector field
with one-dimensional periodical modulation.

In contrast to [10], generating light fields like those from [9,12,13] is more challenging
since it requires modulating not only the phase distribution but polarization as well. To
achieve this goal, metasurfaces can be employed. Separation of left-hand and right-hand
elliptically polarized components of a light field by using a metasurface was implemented
for the first time in work [14]. In this work, propagation of a near-infrared (1.2–1.7 µm)
light field was studied through a metasurface composed of periodic gold V-shape nanoan-
tennas. In the far field, the third component of the Stokes vector was measured. It was
demonstrated that two areas were generated at the edges of the light beam, where the
Stokes component had different signs. Thus, areas with left and right elliptic polarization
are present in the beam. In [15,16], a metalens was used to enhance the transverse shift of
beams with left and right circular polarizations. For example, in [16], for enhancing the
Hall effect, subwavelength diffraction grating was used. However, the beams with opposite
spin were shifted along grating lines. In [17], for the wavelength of 633 nm and by using a
q-plate, a vortex beam with linear polarization was split into a Gaussian beam with left
circular polarization and a vortex beam with right circular polarization. In works [18–23],
metasurface-based polarization converters were studied for millimeter-wave light. For
instance, in [20], a metasurface composed of metallic stripes is illuminated by linearly po-
larized millimeter-wave irradiation, and two beams with left and right circular polarization
are reflected by angles of 30 degrees. In [21], a reflective metasurface was computed for the
millimeter range, intended for converting a field with linear polarization into two fields
with left-hand and two fields with right-hand circular polarization. A similar metasur-
face, but for demonstrating the spin Hall effect at transmission, is considered in [22]. In
works [24,25], metasurfaces are investigated for converting the polarization of an infrared
radiance, whereas in [26–28]—for visible light. We note that the above-listed works do not
study the theoretical propagation of light after passing the metalenses.

The spin Hall effect in the above-mentioned works was investigated both in paraxial
beams and in the focus, but it manifested itself poorly, i.e., in the beam section, areas with
opposite-sign spins were generated, but the spin angular momentum density had a low
magnitude, i.e., the polarization ellipses in these areas are strongly elongated. Therefore,
a problem arises in finding such initial distributions of linear polarization that would
enhance the Hall effect and make the polarization ellipse more circular. Vector light fields
are usually generated by using SLM and q-plates, but it is more convenient to combine all
the elements into one implemented as a metasurface.
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In this paper, we investigate two perturbations of a cylindrical vector beam, i.e., we
induce two different asymmetries into this beam, that can raise the spin Hall effect. At
first, we study the superposition of general-shape cylindrically and linearly polarized
beams. Thus, the first constituent beam can have radial, azimuthal, saddle [29], or another
cylindrical polarization [30]. The second beam should have linear polarization in an
arbitrary direction, and both beams can have an arbitrary rotationally-symmetric shape,
i.e., they can be Laguerre-Gaussian [31], Bessel-Gaussian [32], Hypergeometric-Gaussian
beams [33], or some more exotic beams [34] with rotational symmetry. We prove that the
spin Hall effect is the strongest, i.e., the spin angular momentum density is maximal, when
both constituent beams in the superposition have the same energy. The second perturbation
of a paraxial cylindrical vector beam is adding a spatial carrier frequency. This frequency
splits the beam into two, and we implemented it with a metalens. An expression is obtained
for the longitudinal component of the spin angular momentum density at an arbitrary
distance from the waist plane. We also show that such a beam has linear inhomogeneous
polarization in the initial plane, but, after propagation in space, two beams are generated,
one with left circular polarization and another with right circular polarization, i.e., the spin
Hall effect manifests itself almost fully.

2. Spin Angular Momentum of a Superposition of Rotationally Symmetric Beams with
Cylindrical and Linear Polarization

We consider here the superpositions of two paraxial vector rotationally symmetric
light fields, one with cylindrical polarization and the other with linear polarization:

E(r, φ, z) = CCEC(r, φ, z) + CLEL(r, φ, z), (1)

with (r, φ, z) being the cylindrical coordinates, CC and CL being the superposition coeffi-
cients, defining the contributions of the cylindrically and linearly polarized beams.

In the initial plane z = 0, the complex amplitudes of both of these fields are given by

EC(r, φ, 0) = A(r)
[

cos(mφ + α)
cos(mφ + β)

]
, (2)

EL(r, φ, 0) = B(r)
[

cos γ
sin γ

]
. (3)

In Equations (2) and (3), A(r) and B(r) are real-valued functions, m is the order of cylin-
drical polarization, α and β define its azimuthal angle [30], and γ defines the orientation of
linear polarization.

Paraxial propagation in free space is described by the well-known Fresnel transform,
which in polar coordinates is given by

E(r, φ, z) =
−ik
2πz

∞∫
0

2π∫
0

E(ρ, θ, 0) exp
{

ik
2z

[
r2 + ρ2 − 2rρ cos(θ − φ)

]}
ρdρdθ. (4)

For a scalar vortex field in the form EV(ρ, θ, 0) = G(ρ)exp(imθ), the integral over the
angle θ is expressed via the Bessel function, and the Fresnel transform reads as

EV(r, φ, z) = (−i)m+1 k
z

exp
(

ikr2

2z
+ imφ

) ∞∫
0

G(ρ) exp
(

ikρ2

2z

)
Jm

(
krρ

z

)
ρdρ. (5)
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Decomposing the cylindrically polarized field (2) into two optical vortices of the orders
±m and using the auxiliary integral (5), we obtain the following complex amplitude of the
fields (2) and (3) at a distance z:

EC(r, φ, z) = (−i)m+1 k
z exp

(
ikr2

2z

)
×
[

∞∫
0

A(ρ) exp
(

ikρ2

2z

)
Jm

(
krρ
z

)
ρdρ

][
cos(mφ + α)
cos(mφ + β)

]
,

(6)

EL(r, φ, z) = −i
k
z

exp
(

ikr2

2z

) ∞∫
0

B(ρ) exp
(

ikρ2

2z

)
J0

(
krρ

z

)
ρdρ

[cos γ
sin γ

]
. (7)

In a paraxial light beam, only the longitudinal component of the spin angular momen-
tum vector is significant. In general, it is equal to

Sz = 2Im
{

E∗
x Ey
}

. (8)

For a sum of two fields, given by Equation (1), the SAM density is equal to

Sz = 2Im
{
(CCEC,x + CLEL,x)

∗(CCECy + CLELy
)}

= C2
CSC,z + C2

LSL,z + 2CCCLIm
{

E∗
C,xEL,y + E∗

L,xEC,y

}
,

(9)

where SC,z and SL,z are separate SAM densities of the cylindrically and of the elliptically
polarized beams. They are zero, and thus only the third term remains in Equation (9).
Substituting here the field components from Equations (6) and (7), we get

Sz = 2CCCL

(
k
z

)2
[sin γ cos(mφ + α)− cos γ cos(mφ + β)]

×Im

{
im

[
∞∫
0

A(ρ) exp
(
−ikρ2

2z

)
Jm

(
krρ
z

)
ρdρ

]

×
[

∞∫
0

B(σ) exp
(

ikσ2

2z

)
J0

(
krσ

z

)
σdσ

]}
.

(10)

It is seen that the SAM density is, in general, nonzero. It is also seen that the transverse
shape of the SAM density distribution depends on the shape of both constituent beams but
is independent of their weights in the superposition, i.e., changing the weights changes the
SAM density distribution only in magnitude but not in its shape. Equation (10) also reveals
that the SAM density becomes zero on rings when either the Ex or Ey component becomes
zero, or the expression in the second line of Equation (10) becomes real.

3. Energies of Cylindrically and Linearly Polarized Beams for Maximizing the Spin
Angular Momentum Density

Thus, it is seen that, despite neither the cylindrically nor linearly polarized fields
acquiring spin angular momentum upon propagation in free space, their superposition
does. We aim to find the weights of the constituent beams in the superposition that yield
the maximal SAM. It stands to reason that the SAM density in Equation (10) grows with
both the coefficients CC and CL. But it follows that the energy of beam (1) grows as well.
Thus, we should fix the energy at some value, e.g., W0. The energy of an arbitrary paraxial
vector field can be obtained as

W =

∞∫
0

2π∫
0

[
|Ex(r, φ, z)|2 +

∣∣Ey(r, φ, z)
∣∣2]rdrdφ. (11)
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The energy of the cylindrically polarized beam (2) equals

WC =

∞∫
0

A2(r)rdr
2π∫
0

[
cos2(mφ + α) + cos2(mφ + β)

]
dφ = 2π

∞∫
0

A2(r)rdr, (12)

whereas the energy of the linearly polarized beam (3) equals

WL = 2π

∞∫
0

B2(r)rdr. (13)

The fields (2) and (3) consist of independent OAM components of the orders ±m and
0. Thus, the full energy of the beam (1) can be obtained as the sum:

W = C2
CWC + C2

LWL. (14)

Since the SAM density is proportional to the product CCCL, it can be maximized at
an arbitrary point (r, φ, z) for all superpositions (1) with fixed energy W0 by solving the
following optimization problem:{

CCCL → max,
C2

CWC + C2
LWL = W0.

(15)

The Lagrangian function for this problem reads as

L(CC, CL) = CCCL + λ0

(
C2

CWC + C2
LWL − W0

)
, (16)

where λ0 is the Lagrange multiplier.
Differentiation by CC and CL yields two equations:{

CL + 2λ0CCWC = 0,
CC + 2λ0CLWL = 0.

(17)

Multiplying the first and second equations by CC and CL, respectively, yields

C2
CWC = C2

LWL = −CCCL

2λ0
. (18)

This means that the energies of both beams in the superposition should be equal
to each other and to W0/2. We note that we obtained a similar result (18) earlier for a
particular case [12] of a superposition of a cylindrically polarized single-ringed LG beam
with a linearly polarized Gaussian beam. In the current work, we generalize the results of
the work [12] for a similar superposition, but with arbitrary amplitudes A(r) and B(r) in
Equations (2) and (3).

4. Intensity and Spin Density of a Gaussian Vector Field with One-Dimensional
Periodical Modulation

In this section, we analyze the propagation of a paraxial Gaussian vector beam with
the following initial Jones vector:

E(x, y) =
(

cos(αx)
sin(αx)

)
exp

(
− x2 + y2

w2

)
, (19)

where (x,y) are the Cartesian coordinates in the beam cross-section, w is the waist radius
of the Gaussian beam, α = 2π/d is the inverse period or spatial frequency of the field
amplitude, and d is the period. The light field can be called the vector field with one-
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dimensional periodic modulation. The field (19) can be represented as the superposition of
a left circularly polarized wave and a right circularly polarized wave:(

cos(αx)
sin(αx)

)
e−(r/w)2

=
1
2

[
eiαx
(

1
−i

)
+ e−iαx

(
1
i

)]
e−(r/w)2

, (20)

with r2 = x2 + y2. In the initial plane, the intensity of light field (19) is described by that of
the Gaussian beam:

I0 = |Ex|2 +
∣∣Ey
∣∣2 = exp

(
−2

x2 + y2

w2

)
. (21)

The Jones vector of field (19) at an arbitrary propagation distance z from the initial
plane is given by

E(x, y, z) = −i
(

z0
2zq(z)

)
exp

(
ik r2

2z −
( z0y

zw
)2 1

q(z)

)
×[

exp
(
− 1

q(z)

( z0x
zw − αw

2
)2
)( 1

−i

)
+ exp

(
− 1

q(z)

( z0x
zw + αw

2
)2
)( 1

i

)]
,

(22)

where q(z) = 1 − iz0/z and z0 = kw2/2 is the Rayleigh distance and k is the wavenumber
of light. As seen from Equation (22), upon free-space propagation, the Gaussian beam (21)
consists of two Gaussian beams, shifted along the x-axis and having left and right circular
polarization. The centers of both beams are shifted from the optical axis, being located at
points x± = ±(αz/k). If the shift is much larger than the diameter of the beams, then the
intensity of vector field (22) is as follows:

I(x, y, z) =
(

z0

z|q(z)|

)2
exp

−2
(

z0r
zw|q(z)|

)2
−
(

αw√
2|q(z)|

)2
 cosh

(
2αxz0

z|q(z)|2

)
. (23)

For a paraxial field, the SAM density has no transverse components. Thus, the
longitudinal component of the spin angular momentum (SAM) [35] of field (22) can be
derived in the form

Sz = 2Im
(
E∗

x Ey
)
= −

(
z0

z|q(z)|

)2
exp

(
−2
(

z0r
zw|q(z)|

)2
− 1

2

(
αw

|q(z)|

)2
)

sinh

(
2αxz0

z|q(z)|2

)
. (24)

The spin density normalized by the intensity is given by

Sz/I = −tanh

(
2αxz0

z|q(z)|2

)
. (25)

This indicates that the spin of the initial plane, field (19), is zero (Sz = 0), but as light
field (22) propagates in free space, two areas of opposite-sign spin are generated, where
the normalized spin density is given by (25). This is the simplest way to demonstrate the
spin Hall effect and to obtain two opposite-handed circularly polarized focal regions from
linearly polarized light.

Circular polarization is at points x where the condition Sz = ±I is fulfilled. This,
however, can occur only when the argument of the hyperbolic tangent in Equation (25)
tends to plus or minus infinity. With the normalized spin density in (25) depending
on the propagation distance z from the waist, its maximum is achieved at the Rayleigh
distance z = z0.
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For generating the initial light field (19), a metasurface can be used, which is described
by a polarization transformation matrix that rotates the linear polarization vector of the
incident field by an angle of θ = αx, since the following identity takes place:(

cos(αx) − sin(αx)
sin(αx) cos(αx)

)(
1
0

)
=

(
cos(αx)
sin(αx)

)
. (26)

As seen from (26), such a metasurface rotates the linear polarization of the incident
beam by an angle periodically depending on the horizontal coordinate x.

5. Cylindrical Vector Beam with Spatial Carrier Frequency

The light field (19) can be generalized so that upon propagation in free space, it would
generate not only the spin Hall effect but also the orbital one. To do this, we consider the
initial field with the following Jones vector:

En(x, y) =
(

cos(nφ + αx)
sin(nφ + αx)

)
exp

(
− x2 + y2

w2

)
, (27)

where φ is the azimuthal angle in the beam transverse section, tan(φ) = y/x, and n is an
integer number defining the order of the vector field. The field of (27) can be represented
as a sum of two fields with right- and left-handed circular polarizations:(

cos(nφ + αx)
sin(nφ + αx)

)
e−(r/w)2

=
1
2

[
ei(nφ+αx)

(
1
−i

)
+ e−i(nφ+αx)

(
1
i

)]
e−(r/w)2

. (28)

At α = 0, the field of (28) reduces to an nth-order cylindrical vector field [30]. Therefore,
for a nonzero value of α, the field of (28) can be called a cylindrical vector field (beam) with
a spatial carrier frequency. At an arbitrary propagation distance z from the waist plane, the
field of (27) is given by

En = En−

(
1
−i

)
+ En+

(
1
i

)
,

En±(x, y, z) = − in+1

2

(
z0

zq(z)

)√
πQ±

2 exp
(
∓inψ± + i kr2

2z − Q±
)
×

×
[

I(n−1)/2(Q±)− I(n+1)/2(Q±)
]
,

q(z) = 1 − i z0
z , tan ψ± = y

x± αz
k

,

Q± = (αw)2

8q(z) +
(

z0r√
2zw

)2 1
q(z) ±

αz0x
2zq(z) .

(29)

The functions Iv(x) in Equation (29) are modified Bessel functions. According to
Equation (29), the paraxial vector field is composed of two off-axis vortex beams with right-
and left-handed circular polarizations, with centers of phase singularities (vortex centers)
found at points x± = ±(αz/k). The phase singularity points and the intensity nulls of field
(29) coincide. Optical vortices near these points have the opposite-sign topological charges,
n and −n. Near the intensity nulls, each component of the light field is, respectively,
defined by the amplitude (x + α − iy)n and (x − α + iy)n. We note that if n = 0, then field
(29) reduces exactly to field (22). In the initial plane, field (27) has neither orbital angular
momentum (OAM) nor spin density. However, upon free-space propagation, the single
field splits into two fields, both having the opposite-sign longitudinal SAM and the OAM.
In the areas of negative spin (left-handed circular polarization), both the topological charge
and the OAM are positive, and vice versa, where the spin is positive (right-handed circular
polarization), both the OAM and the topological charge are negative. The total spin and
OAM of the whole field remain equal to zero, as is the case for the initial field (27).

Figure 1 illustrates the intensity distribution (white-yellow rings) (Figure 1a) and
phase distribution of the Ex component (Figure 1b) of beam (27) with w = 1 mm, n = 3,
and α = 0.001k at distance z0 from the waist plane. All distributions are obtained by using
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a Fresnel transform for the wavelength 532 nm. The polarization distribution pattern in
Figure 1a is shown by pink (Sz > 0) and cyan (Sz < 0) ellipses. As seen in Figure 1a, the
intensity distribution contains two bright rings, with near-circular polarization inside these
rings. Besides, the left and right patterns show opposite-sign polarization (right-handed
circular polarization near the left ring and left-handed circular polarization near the right
ring). On the right of Figure 1b, three screw dislocations are seen, confirming that the
topological charge of the right ring in the field Ex is equal to n = 3. On the left of Figure 1b,
the phase distribution contains three screw dislocations of opposite sign, confirming that
the left ring of the field Ex has a topological charge of n = −3.
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Figure 1. Intensity distribution of beam (27) with w = 1 mm, n = 3, and α = 0.001k at a distance of z0

from the waist plane, shown by white-yellow rings (a), and polarization distribution over the beam
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ellipses denote left-handed polarization Sz < 0); phase distribution of one transverse component of
the light field Ex (b). The size of both figures is 30 × 30 mm.

6. Numerical Simulation of Superpositions of Rotationally Symmetric Beams with
Cylindrical and Linear Polarization

The case when the cylindrically and linearly polarized beams are, respectively, a single-
ringed Laguerre-Gaussian beam and a Gaussian beam has been investigated [12]. Thus, here
we may consider some other paraxial beams. For instance, we can construct a cylindrically
polarized beam with several light rings as the superposition of two Laguerre-Gaussian
beams of opposite orders with nonzero radial index and opposite circular polarizations,
combining them with a linearly polarized Gaussian beam of different waist radius. The
complex amplitude of the cylindrically polarized Laguerre-Gaussian beam in the initial
plane is given by

EC(r, φ, z = 0) = W−1/2
LG

(
r

w0

)m
Lm

p

(
2r2

w2
0

)
exp

(
− r2

w2
0

)[
cos(mφ)
sin(mφ)

]
, (30)

where w0 is the waist radius, m and p are, respectively, the azimuthal and radial indices
defining the topological charge and the number of rings, Lm

p (x) is the Laguerre polynomial,
and WLG is the normalizing factor equal to the energy of the Laguerre-Gaussian beam and
introduced to ensure that the energy of beam (30) is unit:

WLG =
πw2

0
2m+1

(m + p)!
p!

. (31)
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We suppose that the linearly polarized Gaussian beam is horizontally polarized, and
thus, it has the following complex amplitude:

EL(r, φ, z = 0) = W−1/2
G exp

(
− r2

w2
1

)[
1
0

]
, (32)

where w1 is the waist radius that should be greater than w0 so that the Gaussian beam
overlaps the Laguerre-Gaussian beam, and WG is the normalizing factor for reducing the
energy of beam (32) to a unit value:

WLG =
πw2

1
2

. (33)

Figure 2 illustrates the intensity and SAM density distributions of several superposi-
tions of light beams (30) and (32) with different weight coefficients.
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Figure 2. Intensity (a–e) and SAM density (f–j) distributions of several superpositions of the cylin-
drically polarized Laguerre-Gaussian beams (30) and linearly polarized Gaussian beams (32) with
different weight coefficients for the following parameters: wavelength λ = 532 nm, Gaussian beam
waist radii w0 = 1 mm and w1 = 5 mm, radial and azimuthal orders of the cylindrically polarized
Laguerre-Gaussian beam p = 2 and m = 3, propagation distance from the initial plane z = z0, super-
position coefficients CC

2 = 0.95, CL
2 = 0.05 (a,f), CC

2 = 0.70, CL
2 = 0.30 (b,g), CC

2 = CL
2 = 0.50 (c,h),

CC
2 = 0.30, CL

2 = 0.70 (d,i), and CC
2 = 0.01, CL

2 = 0.99 (e,j). The numbers near the color scales denote
the minimal and maximal values.

Figure 2 confirms that the maximal SAM density is achieved when the energies of
both constituent beams are the same, i.e., CC = CL. It also confirms that the SAM density
changes with the weight coefficients only by magnitude rather than shape.

Another example of the composite light field in (1) is when a cylindrically polarized
beam is constructed as the superposition of two Bessel-Gaussian beams [32] of the orders
±m and combined with a ring-shaped non-vortex beam. The complex amplitude of the
cylindrically polarized Bessel-Gaussian beam in the initial plane is given by

EC(r, φ, z = 0) = W−1/2
BG Jm(α0r) exp

(
− r2

w2
0

)[
cos(mφ)
sin(mφ)

]
, (34)

where w0 is the waist radius, m is the order of cylindrical polarization, α0 is the scaling
factor of the Bessel-Gaussian beam defining the radius of the light ring, Jm(x) is the mth-
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order Bessel function of the first kind, and WBG is the normalizing factor for reducing the
energy of beam (34) to a unit value:

WBG =
πw2

0
2

exp
[
−
(α0w0

2

)2
]

Im

[(α0w0

2

)2
]

, (35)

with Im(ξ) being the modified mth-order Bessel function.
In order to construct a non-vortex single-ringed light beam, we can subtract two

Gaussian beams with different waist radii w01 and w02:

EL(r, φ, z = 0) = W−1/2
DG

[
exp

(
− r2

w2
01

)
− χ exp

(
− r2

w2
02

)][
1
0

]
, (36)

where the coefficient χ is chosen so that the field has zero intensity on the optical axis at
some distance z: χ = q2/q1 with qi = 1 + iλz/(πw2

0i), i = 1, 2, and WBG is the normalizing
factor for reducing the energy of beam (36) to a unit value:

WDG =
πw2

01
2

+
πw2

02
2

|χ|2 − 2
πw2

01w2
02

w2
01 + w2

02
Reχ. (37)

Figure 3 depicts the intensity and SAM density distributions of several superpositions
of light beams (34) and (36) with different weight coefficients.
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Figure 3 also confirms that in this case, when both beams in superposition (1) are 
different from those in Figure 2, the maximal SAM density is still achieved when the en-
ergies of both constituent beams are the same, i.e., CC = CL. As shown in Figure 2, the SAM 
density changes with the weight coefficients only by magnitude rather than shape. 

Figure 3. Intensity (a–e) and SAM density (f–j) distributions of several superpositions of the cylindri-
cally polarized Bessel-Gaussian beams (34) and linearly polarized difference of two Gaussian beams
(36) with different weight coefficients for the following parameters: wavelength λ = 532 nm, waist
radius of the Gaussian envelope of the Bessel-Gaussian beam w0 = 1 mm, scaling factor α0 = k/1000,
order of cylindrical polarization m = 5, waist radii of the subtracted linearly polarized Gaussian beams
w01 = 5 mm and w02 = 7 mm (at these radii the light ring of the difference beam has the same radius
as that of the Bessel-Gaussian beam), propagation distance from the initial plane z = z0, superposition
coefficients CC

2 = 0.95, CL
2 = 0.05 (a,f), CC

2 = 0.70, CL
2 = 0.30 (b,g), CC

2 = CL
2 = 0.50 (c,h), CC

2 = 0.30,
CL

2 = 0.70 (d,i), and CC
2 = 0.01, CL

2 = 0.99 (e,j). The numbers near the color scales denote the minimal
and maximal values.

Figure 3 also confirms that in this case, when both beams in superposition (1) are
different from those in Figure 2, the maximal SAM density is still achieved when the
energies of both constituent beams are the same, i.e., CC = CL. As shown in Figure 2, the
SAM density changes with the weight coefficients only by magnitude rather than shape.
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7. Designing a Metalens for Generating Two Beams with the Opposite-Sign Spins

In this section, we demonstrate how the vector beams (19) and (27) can be generated
by using only one optical element. We designed this element using a method described
earlier in [11]. Such a metasurface [11] is composed of subwavelength binary gratings,
each of which rotates the polarization vector by a given angle. We note that the spin
Hall effect was observed in work [17] by generating a beam using an SLM and q-plates.
Such a setup requires an exact adjustment. In addition, the opposite-sign spin in [17] was
generated in the focus and in the ring that surrounds it. In the current work, we generate
the opposite-sign spin in two similar off-axis foci or in two similar off-axis rings. This is
more convenient for separate use of the generated beams.

As we earlier noted, field (19) can be generated by using a metasurface in (26). The
metasurface should have the following matrix describing the polarization transformation
of the incident vector field:

R̂(x) =
(

cos αx − sin αx
sin αx cos αx

)
, (38)

where α is inversely proportional to the metasurface structure period along the x-axis. If
the incident field is a plane wave linearly polarized along the x-axis, then the polarization
direction of the outgoing beam depends on the coordinate x (26).

Shown in Figure 4 is the polarization of the beam (19) at α = π/2 (in inverse microns,
since x is measured in µm).
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Figure 5 depicts a metasurface relief for implementing the transformation matrix R̂(x)
of (26) at α = π/2 (in inverse microns).

The metasurface in Figure 5 has a period of 4 µm. The size of the whole metasurface
chosen was 8 × 8 µm. It was computed for the wavelength of the incident light, λ = 633 nm.
The metasurface is composed of stripes with diffraction gratings with a subwavelength
period of 220 nm (the groove width of 110 nm and the step width of 110 nm), rotated by the
angle xα/2 + π/2 with respect to the axis x. Each period is split into 8 stripes, where the
angle of the diffraction gratings is constant. The polarization vector of the light field rotates
by an angle equal to the doubled angle of rotation of grating lines, which is seen from the
comparison of Figures 4 and 5. The relief height is 140 nm, and the refractive index of the
gratings is n = 4.352 + 0.486i (amorphous silicon).
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Figure 5. Binary metasurface relief.

For the simulation, we used the FDTD method and the Rayleigh-Somerfield transform.
At first, we computed by the FDTD method how the light field propagates through the
metasurface and obtained the fields Ex and Ey at a distance λ from the metasurface. This
field was then the input field of the Rayleigh-Somerfield transform. Using this transform,
the resulting light field at a distance of 50 µm was computed. Simulation by only the
FDTD method at such a distance (nearly 50 µm) is impossible in 3D due to excessive
computational complexity. Shown in Figure 6 is the intensity of the field, obtained at the
distance λ beyond the metasurface.
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Figure 6. Intensity (a) and polarization distribution (b) of the electric field at the distance λ from
the metasurface.

It is seen that after passing through the diffraction gratings, the field has some inho-
mogeneity, but nevertheless, the polarization direction is consistent with the distribution
obtained by Equation (19) (Figure 4). Figure 7 illustrates the beam intensity at a distance of
50.633 µm from the metasurface, computed by the Rayleigh-Sommerfeld transform.
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Figure 7. Intensity of light at a distance of 50.633 µm from the metasurface as well as the polarization
distribution. Arrows with circles indicate polarization direction in the center of each circle, and the
arrow shows the rotation direction of the vector electric field with time.

As seen in Figure 7, at a distance of 50.633 µm from the metasurface, two intensity
maxima are generated on the axis x, with the distance between their centers being equal to
15.86 µm. In the left intensity maximum, dominating polarization is right-hand circular,
while in the right maximum, it is left-hand circular. The distance between the maxima is
defined by the period of the metasurface structure (Figure 5. When the metasurface period
(Figure 5) doubles, up to 8 µm, the distance between the maxima decreases nearly two
times, up to 7.64 µm. From the total energy of the beam coming out of the metasurface,
nearly 78.5% goes to both intensity maxima.

Shown in Figure 8a is the metalens that generates the light field (27) with parameters
α = π/2 µm−1 and n = 1. In addition to the spatial frequency, which is present in the
metasurface from Figure 5, the topological charge is added here. Therefore, instead of
the grating (Figure 5), fork grating was obtained, although only 2 periods were fitted in
Figure 8a of such a fork grating (with an edge dislocation). In total, the metasurface with a
size of 8 × 8 µm was split into 14 × 14 blocks, each 26 × 26 pixels (0.571 µm).
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Shown in Figure 8b is the distribution of linear polarization immediately beyond the
metasurface. It is seen that, due to the edge dislocation in the center of the pattern shown
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in Figure 8b, the polarization singularity, or V-point, appears where linear polarization
is indefinite.

Figure 9 illustrates the simulation results of light propagation through the metasurface
from Figure 8 at a distance of 150 µm from it. In this case, we also first computed the
field at a distance of one wavelength from the metasurface by the FDTD method for an
exact evaluation of the metasurface contribution. Then, using the Rayleigh-Sommerfeld
integral, the field in the far diffraction zone was computed. Since in this case light rings
are generated, the propagation distance, where both rings are generated and separated, is
larger than in the case shown in Figure 7.
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larger than in the case shown in Figure 7. 
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Figure 9. Intensity of the cylindrical vector beam with the carrier frequency, generated by the 
metalens, and polarization of this beam, depicted as ellipses with arrows (a), as well as the phase of 
the Ey field component (b). Each ellipse (a) describes rotation of the electric field vector with time. 

Shown in Figure 9a is an intensity distribution at a 150-µm distance behind the 
metalens of Figure 8a. It is seen that three light beams are generated: a central one and 
two light rings to the left and right of the central beam. The intensity of the ring beams is 
uneven since the metasurface is designed for only two diffraction orders of the grating. 
Figure 9a also depicts the distribution of the polarization ellipses at a 150-µm distance 
from the metasurface of Figure 8a. Both rings generated in the far field (Figure 9a) have 
elliptic and circular polarization—light with right-hand circular polarization generates a 
ring in the negative part of the x-axis (i.e., to the left), whereas light with left-hand circular 
polarization generates the right ring. In the phase distribution in Figure 9b, forks can be 

Figure 9. Intensity of the cylindrical vector beam with the carrier frequency, generated by the
metalens, and polarization of this beam, depicted as ellipses with arrows (a), as well as the phase of
the Ey field component (b). Each ellipse (a) describes rotation of the electric field vector with time.

Shown in Figure 9a is an intensity distribution at a 150-µm distance behind the
metalens of Figure 8a. It is seen that three light beams are generated: a central one and
two light rings to the left and right of the central beam. The intensity of the ring beams
is uneven since the metasurface is designed for only two diffraction orders of the grating.
Figure 9a also depicts the distribution of the polarization ellipses at a 150-µm distance from
the metasurface of Figure 8a. Both rings generated in the far field (Figure 9a) have elliptic
and circular polarization—light with right-hand circular polarization generates a ring in the
negative part of the x-axis (i.e., to the left), whereas light with left-hand circular polarization
generates the right ring. In the phase distribution in Figure 9b, forks can be seen near the
intensity minima of the two rings. These are optical vortices (screw dislocations) with the
topological charges −1 (to the left) and +1 (to the right).
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8. Conclusions

We have considered two perturbations of a cylindrical vector beam that generate
a spin Hall effect, i.e., areas with a nonzero spin angular momentum density occur on
propagation, despite a zero spin angular momentum in the initial plane.

The first perturbation was introduced by adding a linearly polarized beam. Thus,
we have analyzed the superposition of two rotationally symmetric paraxial vectorial light
fields without a spin angular momentum, with one field being cylindrically polarized and
the other linearly polarized. The radial distribution of these fields can be arbitrary. Upon
separate propagation in free space, these fields do not acquire spin angular momentum and
conserve their polarization. The superposition of these fields has inhomogeneous linear
polarization in the initial plane, but on propagation in space, polarization becomes elliptic,
and thus a nonzero spin angular momentum is generated. The distribution pattern of the
spin angular momentum density consists of alternating spots with left- and right-handed
elliptic polarization. Such a separation of the light field into areas with opposite-sign spin
angular momentum is a manifestation of the optical spin Hall effect. In this work, we
discovered and proved two properties of this phenomenon.

The first property is that the transverse shape of the spin angular momentum density
distribution does not depend on the weight coefficients of the superposition. The weights
define only the magnitude of the spin angular momentum but not the distribution shape.

The second property is that if each such superposition is normalized by its energy,
then the greatest values of the spin angular momentum are achieved when both constituent
beams have the same energy, i.e., one half of the whole beam energy is the energy of the
cylindrically polarized field and the other half is the energy of the linearly polarized field.

The second perturbation of a cylindrical vector beam was introduced by adding a
spatial carrier frequency. Upon free-space propagation, such a beam has been shown to split
into two shifted off-axis vortex beams, one with right-hand and the other with left-hand
circular polarization. This is also a manifestation of the spin Hall effect.

Such a field has been generated by using a metasurface implemented in a thin
amorphous-silicon film designed for a wavelength of 633 nm. The metasurface is composed
of 14 × 14 blocks of binary subwavelength gratings with a period of 220 nm, which period-
ically change their direction. A linearly polarized light field incident onto the metasurface
was converted into two vortex beams diverging at a certain angle, with one beam being
left-handed elliptically polarized and the other right-handed elliptically polarized. The
diffractive efficiency of such a grating was found to be almost 80%. These are the simplest
metasurfaces for efficiently generating the spin Hall effect in paraxial laser beams. A simi-
lar splitting of light beams with opposite-sign spins was implemented by a polarization
converter [36].

The discovered properties can be used to enhance the spin angular momentum of
light fields. In optical trapping, their use should increase the efficiency of making trapped
particles rotate around their centers of mass [37,38]. In optical data transmission, the results
obtained can increase the signal power when the data are encoded in light beams by their
polarization, and then the incoming beams are identified by polarizers [39,40]. In addition,
the obtained results can be used for processing polarization-sensitive materials [41].
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