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Abstract: A gyroscope-free strapdown inertial navigation system (GFSINS) solves the carrier atti-
tude through the reasonable spatial combination of accelerometers, with a particular focus on the
precision of angular velocity calculation. This paper conducts an analysis of a twelve-accelerometer
configuration scheme and proposes an angular velocity fusion algorithm based on the Kalman filter.
To address the sign misjudgment issue that may arise when calculating angular velocity using the
extraction algorithm, a sliding window correction method is introduced to enhance the accuracy of
angular velocity calculation. Additionally, the data from the integral algorithm and the data from the
improved extraction algorithm are fused using Kalman filtering to obtain the optimal estimation of
angular velocity. Simulation results demonstrate that this algorithm significantly reduces the maxi-
mum value and standard deviation of angular velocity error by one order of magnitude compared to
existing algorithms. Experimental results indicate that the algorithm’s calculated angle exhibits an
average difference of less than 0.5◦ compared to the angle measured by the laser tracker. This level of
accuracy meets the requirements for attitude measurement in the laser scanning projection system.

Keywords: attitude algorithm; accelerometer array; angular velocity calculation; Kalman filtering

1. Introduction

Laser scanning projection systems are widely used in advanced intelligent manu-
facturing. These systems utilize the 3D CAD model of parts and employ high-precision
dual-axis scanning galvanometers to rapidly deflect laser beams, projecting contour frames
onto the workpiece [1]. However, during practical applications, vibrations and shock loads
can cause the projection system’s attitude to deviate, resulting in inaccuracies in guiding
part installation and positioning. To ensure precise assembly, secondary calibration is
necessary. This involves re-establishing the coordinate transformation relationship between
the laser scanning projection system and the projected object. Accurately determining
the attitude change in the laser scanning projection system becomes a key challenge in
achieving high-precision guidance for mounting and positioning. Many studies have been
conducted to address the problem of attitude change in instruments subjected to vibration
and shock loads [2–7]. Jiao et al. have explored the use of accelerometer array testing
technology in vibration environments. This technology effectively measures the absolute
impact of coupling effects caused by multi-degree-of-freedom linear and angular vibra-
tions [8]. Accelerometer array technology not only possesses the autonomy characteristics
found in inertial navigation systems but also overcomes their complexity, high cost, and
maintenance difficulties.

Development efforts for accelerometer arrays have been going on for over 30 years.
The major motivation for the investigation of the GFSINS is that gyroscopes with high
precision and high reliability are usually costly, and a conventional inertial measurement
unit equipped with lower-cost gyroscopes often suffers from the drawbacks of gyroscopes,
such as large bias instability [9,10]. However, the use of an array composed of low-cost
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accelerometers can improve this. The current research mainly focuses on the accelerometer
configuration schemes in various application areas and the corresponding calculation
algorithms for angular velocity. One of the key issues in GFSINS research is improving the
accuracy of the angular velocity calculation. M.C. Algrain’s theoretical work established
that a minimum of six linear accelerometers is necessary to fully capture the motion of
a rigid body in an entirely independent GFSINS [11]. Building on this foundation, Chen
developed an innovative arrangement for these six accelerometers by positioning one
on each face of a cube, oriented towards the diagonals, with the measurement system’s
origin at the cube’s center [12]. This arrangement, known as the cubic configuration,
has become the standard for deploying six accelerometers. Despite its simplicity, this
approach for deducing angular velocity through the integration of diagonal accelerations
is prone to accumulating substantial errors. Jose adopted a cubic configuration based on
linear optomechanical accelerometers. The results show the precision when considering
the accelerometer’s thermal noise limit can be orders of magnitude better than MEMS
systems and comparable to fiber optical gyroscopes [13]. Ma initially proposed a redundant
configuration scheme involving nine accelerometers to correct angular velocity [14]. While
experimental evidence has shown that this approach effectively suppresses the divergence
of angular velocity errors, the design necessitates a high level of installation precision at
the centroid, making it challenging to implement in engineering applications.

Researchers have discovered that employing a twelve-accelerometer configuration not
only increases redundancy but also allows for the acquisition of the quadratic form of an-
gular velocity, offering a new perspective for angular velocity computation [15]. Influenced
by the six-accelerometer cubic configuration, early versions of the twelve-accelerometer
configurations were all based on the cubic model. Xiao and her team innovated by merging
two six-accelerometer systems to create an advanced twelve-accelerometer cube config-
uration [16]. Buhmann suggested organizing the twelve accelerometers into four triads,
each positioned at the cube’s corners, designed to be responsive to three-dimensional force
information [17]. Park proposed alternative twelve-accelerometer setups, including one
with two accelerometers on each cube face and another with three accelerometers at four
specific vertices [18]. In parallel with the cube configuration, various types of configu-
ration schemes have emerged, notably one involving all twelve accelerometers aligned
along the carrier’s axes, segmented into four triads. One triad is directly connected to the
carrier’s centroid, while the other three are aligned along the positive axes, making each
triad sensitive to three-dimensional force information [19]. This configuration can directly
measure force at the carrier’s centroid and provide all the relevant quantities related to
angular velocity, significantly improving the accuracy of angular velocity calculations.
However, the primary challenge associated with the 12-accelerometer configuration scheme
is that the angular velocity appears in a quadratic form within the system equations. In the
presence of accelerometer noise, relying solely on the quadratic form of angular velocity
is inadequate for determining its direction, necessitating the use of additional methods to
address this issue. Wang et al. designed a twelve-accelerometer configuration scheme on a
bullet’s body, derived the square term of angular velocity, used the integral algorithm of
angular acceleration to determine positive and negative signs, extracted the square term,
and combined it with specific filtering links to obtain the output of angular velocity [20]. A
method proposed in [21] uses redundant information to obtain the residual error equation,
followed by numerical iteration to enhance accuracy, but this method is only suitable for
short-term attitude calculation. Wang suggested a fusion algorithm that integrates the
integral algorithm and extraction algorithm to calculate angular velocity based on a nine-
accelerometer configuration scheme; however, this approach fails to address the extraction
algorithm’s sign misjudgment problem fundamentally [22].

Based on the aforementioned research findings, this paper introduces a new algorithm
for calculating angular velocity using Kalman filtering, aiming to enhance accuracy. The
proposed method effectively addresses the issue of sign misjudgment in the extraction
algorithm by incorporating the sliding window technique, thereby improving the accuracy
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of the collected data. In this approach, the angular velocity obtained through the integral
algorithm is considered as the state variable, while the angular velocity derived from the
improved extraction algorithm is used as the observation value. These two sets of angular
velocity data are then combined using Kalman filtering. Finally, the fused data are fed into
quaternionic equations to determine the instrument’s attitude change. This comprehensive
approach significantly contributes to the enhancement of angle calculation accuracy.

2. Fundamentals
2.1. GFSINS Principles

The full accelerometer inertial guidance system, commonly referred to as gyro-free
inertial navigation system (GFSINS), utilizes accelerometers placed at the non-center of
mass of the carrier to detect the angular motion of the body. This process enables the
calculation of the specific force and angular velocity at the center of mass of the body using
the output of the accelerometers. The inertial frame is defined as Oi-XiYiZi, while the
body frame, where the accelerometer array is arranged, is denoted as Ob-XbYbZb (see
Figure 1). R is a position vector from the center of the inertial frame to the center of the
body frame and r is a position vector from the center of the body frame to any point P on
the body. Consequently, the position vector R1, representing the distance from the center of
the inertial frame to the non-center of mass of the body, is expressed in the following figure.

R1 = R + r (1)
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The formula to calculate the absolute acceleration of any point P on the body frame is
as follows:

d2
i Ri
dt2 =

d2
i R

dt2 +
.

ω × r + ω × (ω × r). (2)

By installing n accelerometers on the body according to a specific configuration, where
the installation position of the ith accelerometer is Li and its sensitive direction is θi, the
expression for the accelerometer’s output in terms of specific force is as follows:

fi =
[
(ui × θi)

Tθi

]
×

[ .
ω
A

]
+ θT

i Ω2Li. (3)
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In (3), Ω =

 0 −ωz ωy
ωx 0 −ωz
−ωy ωx 0

,
.

ω =

 .
ωx.
ωy.
ωz

, A =

Ax
Ay
Az

. Ax, Ay, and Az represent

the acceleration of the body frame b with respect to the inertial frame i along the three axes
of the body frame.

2.2. Configuration Scheme

By incorporating six linear accelerometers in the body frame, it becomes possible to
derive the angular velocity of each axis within the system by solving the accelerometer
output. This information can then be utilized for attitude calculation. In this study, we
have employed a twelve-accelerometer configuration scheme consisting of four three-
axis accelerometers. This configuration scheme utilizes redundancy to compensate for
system errors, thereby enhancing the overall accuracy. Furthermore, it ensures that the
sensitive directions of the accelerometers mounted along the same axes are mutually
orthogonal, making it well suited for installation in narrow spaces [23]. The specific
arrangement of the twelve-accelerometer array is depicted in Figure 2, where M1~M4
represent the accelerometer mounting points, and A1x~A4z denote the mounting directions
of the corresponding sensitive axes. For more information on the specific mounting position
and sensitive directions of the twelve-accelerometer array, please refer to Table 1.
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Figure 2. Schematic diagram of twelve-accelerometer array configuration scheme.

Table 1. Twelve-accelerometer mounting positions and directions.

Accelerometer Serial
Number

Installation Position
L = [Lx, Ly, Lz]

Sensitive Direction
θ = [θx, θy, θz]

M1 (A1x, A1y, A1z) [l, 0, 0] [1 0 0; 0 1 0; 0 0 1]
M2 (A2x, A2y, A2z) [−l, 0, 0] [1 0 0; 0 1 0; 0 0 1]
M3 (A3x, A3y, A3z) [0, l, 0] [1 0 0; 0 1 0; 0 0 1]
M4 (A4x, A4y, A4z) [0, 0, l] [1 0 0; 0 1 0; 0 0 1]
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Let A1x, A1y, A1z, . . ., A4z represent the output acceleration values from the accelerom-
eters. By substituting L, θ into Equation (3), we can establish the relationship between the
motion parameters of the carrier and the measured acceleration value as follows:

..
Rx = (A1x + A2x)/2
..
Ry = (A1y + A2y)/2
..
Rz = (A1z + A2z)/2

, (4)


.

ωx =
(

A1y + A2y + 2A3z − A1z − A2z − 2A4y
)
/4l

.
ωy = (A2z + 2A4x − A1x − A1z − A2x)/4l
.

ωz =
(

A1x + A1y + A2x − A2y − 2A3x
)
/4l

, (5)


ω2

x =
(

A1x + A1y + A2y + A1z − A2x + A2z − 2A3y − 2A4z
)
/4l

ω2
y =

(
A2x + 2A3y + A1z + A2z − A1x − A1y − A2y − 2A4z

)
/4l

ω2
z =

(
A2x + A1y + A2y + 2A4z − A1x − 2A3y − A1z − A2z

)
/4l

. (6)

3. Attitude Algorithm
3.1. Angular Velocity Calculation

The primary approaches for calculating angular velocity based on the terms associated
with angular acceleration and angular velocity are primarily through the integral algorithm
and extraction algorithm [24]. These methods are outlined as follows:

• Integral algorithm:

Direct integration of Equation (5) yields an expression for the angular velocity of the
motion around the carrier coordinate axis as

ω(t + T) = ω(t) +
.

ω(t)T. (7)

Here, t represents the sampling instant, T denotes the sampling period, and ω(t + T)
signifies the angular velocity obtained through integration at the subsequent moment.

• Integral algorithm:

The absolute value of the angular velocity is obtained by extracting the square root of
the term in Equation (6) representing the squared angular velocity. The sign of the angular
velocity is then determined from the result obtained by integrating Equation (8).

To determine the absolute value of the angular velocity, we square the term in
Equation (6) representing the angular velocity squared. The sign of the angular veloc-
ity, on the other hand, is determined by Equation (7), and examining the resulting outcome:

ω(t) = sign(ω(t)) ·
∣∣∣∣√ω(t)2

∣∣∣∣. (8)

The output of the accelerometer is prone to errors caused by installation bias, scale
factor, zero bias, and random noise. When using the integral method for solving, these
errors are transferred to the calculation of angular velocity at subsequent moments. Over
time, as the test duration increases, these errors accumulate and result in a decrease in the
accuracy of the angular velocity solution. On the other hand, the extraction algorithm can
avoid integration errors. However, the reliability of the sign value obtained through the
integral method diminishes over time, leading to sign misclassification near zero values of
angular velocity. This misclassification of signs adversely affects the accuracy of the angular
velocity calculation. Through analysis, it has been observed that this sign miscalculation
manifests as the localized appearance of extreme values in the angular velocity curve,
with opposite signs of angular velocity between two adjacent data points at these extreme
value locations.
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3.2. Improved Extraction Algorithm

To effectively address the occurrence of extreme values and sign changes in eliminating
outliers from the traditional extraction algorithm’s calculated results, this study employs
the sliding window method to manipulate the data series. This approach is characterized
by its high computational efficiency while still maintaining the temporal characteristics of
the data [25–27]. The following are the specific processing steps:

• Determining the sliding window size.

To identify outliers accurately, it is crucial to select a suitable window size that includes
the outlier point and its adjacent points. Through several experiments conducted in this
study, it has been determined that an optimal window size of 3 effectively detects the
presence of outliers.

• Defining the Window Function.

In order to tackle the issue of anomalies frequently occurring within a narrow interval,
with neighboring points exhibiting opposite signs, we introduce a window characteris-
tic function:

Y = max{(ωt − ωt−1)(ωt+1 − ωt), ωt−1ωt+1}i. (9)

By utilizing this window function, anomalies within the data set can be identified
more efficiently, and noise can be eliminated. In this context, ωt−1, ωt, and ωt+1 represent
the three angular velocity values within the ith window. Whenever an anomaly exists
within the ith window, the value of the window’s characteristic function is negative.

• Detecting Anomalies.

The feature function is calculated for each window, and upon obtaining a negative
value for the characteristic function, the center point of the window can be identified as
an anomaly.

• Correcting Angular Velocity Sign.

The position of the anomaly is recorded, and the corresponding value’s sign is reversed
to obtain the angular velocity result after sliding window processing.

3.3. Kalman Filter Fusion Algorithm

Wang et al. conducted a study using Kalman filtering to analyze random signals in
vibration testing. The results demonstrated that compared to a single-calculation algorithm,
Kalman filtering significantly reduces the maximum value and standard deviation of errors
while also improving the accuracy of angular velocity amplitude and the smoothness of
curves [28,29]. Building upon this existing algorithm, this paper utilizes Kalman filtering
to fuse data from both the integral algorithm and the improved extraction algorithm.
Specifically, the angular velocity calculated by the integral algorithm is employed as the
state variable, while the angular velocity calculated by the improved extraction algorithm
serves as the observation value. The fusion process is illustrated in Figure 3.
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The Kalman filter-based angular velocity fusion algorithm is implemented as follows:

• Discretizing Equation (7), the system’s state prediction equation is obtained:

Xk = Xk + uk−1 + Wk, (10)

where Xk =
[
ωx ωy ωz

]T is the angular velocity of rotation around the three axes, Wk is
the noise of the unknown system, and its covariance matrix is Qk; uk−1 is the state transition
control term, expressed as

uk−1 =
[ .
ωx

.
ωy

.
ωz

]T
∣∣∣k−1 · T. (11)

• The observation equation for the system is established as follows:

Zk = HkXk + Vk, (12)

where HkXk is the improved extraction algorithm value and Vk is the observation noise
with covariance matrix R.

• Update the state variable estimates:

X̂k = X̂k/k−1 + Kk
[
Zk − HkX̂k/k−1

]
. (13)

• Predict the error covariance array:

Pk/k−1 = APk−1 AT + Qk. (14)

• Calculate the Kalman gain matrix:

Kk = Pk/k−1HT
k

[
HkPk/k−1HT

k + Rk

]−1
. (15)

• Update the error covariance array:

Pk = (I − Kk Hk)Pk/k−1. (16)

By continuously repeating the steps of prediction and updating, the optimal estimates
of the state variables at each moment can be computed in real time to obtain X̂k, which
represents the best estimate of the angular velocity.

3.4. Fuaternion Mean

Given the continuous changes in the carrier’s attitude angle, it is crucial to promptly
update the attitude matrix. The commonly used methods for updating include the Euler
angle method, direction cosine method, and quaternion method. However, the direction
cosine method requires a significant amount of computation, while the Euler angle method
involves heavy computation and is susceptible to backstepping issues [30–32]. Taking these
considerations into account, this paper adopts the quaternion method for updating the
attitude matrix. We define Q =

[
q0 q1 q2 q3

]T as the rotated quaternion representation
of the laser scanning projection system’s coordinate system at a particular sampling moment
relative to the previous sampling moment’s coordinate system. We can then obtain the
expression of the attitude matrix using this definition:

R =

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3

. (17)
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By applying the carrier coordinate system and the geographic coordinate system defi-
nitions, it is possible to derive quadratic differential equations that describe the correlation
between angular rate and angular position.

dQ
dt

=
1
2

Q · .
ω

b
Eb (18)

Expanding further, we have

dQ
dt = 1

2

(
q0 + q1 î + q2 ĵ + q3k̂

)
·
(

ωx î + ωy ĵ + ωz k̂
)

= 1
2


0 ωx −ωy −ωz

ωx 0 ωz −ωy
ωy −ωz 0 ωx
ωz ωy −ωx 0




q0
q1
q2
q3

 . (19)

By employing the first-order Lungkuta method to solve the aforementioned equation,
we obtain real-time updated expressions for quaternions and attitude angles:

q0
q1
q2
q3


t+∆t

=


q0
q1
q2
q3


t

+
∆t
2


−ωx · q1 − ωy · q2 − ωz · q3
ωx · q0 − ωy · q3 + ωz · q2
ωx · q3 + ωy · q0 − ωz · q1
−ωx · q2 + ωy · q1 + ωz · q0

. (20)

Here, the variables ϕ, θ, and ψ represent the roll, pitch, and heading angles of the laser
scanning projection system, respectively.ϕ

θ
ψ

 =

atan2(2(q0q1 + q2q3), 1 − 2(q2
1 + q2

2))
a sin(2(q0q2 − q3q1))

atan2(2(q0q3 + q1q2), 1 − 2(q2
2 + q2

3))

 (21)

4. Simulation

To validate the efficacy of the proposed method for solving angular velocity, simu-
lation experiments were conducted in this study using MATLAB R2020a. The following
mathematical model of angular velocity was utilized during the simulation process (where
ωm is 0.25 rad/s): 

ωx = 2ωm sin(10t)
ωy = 4ωm cos(20t)
ωz = ωm sin(t) + t2

. (22)

For a practical value of the accelerometer’s noise and constant value error, we consider
the specifications of the accelerometers manufactured by TDK Corporation. The simulation
parameters are set as follows: a sampling frequency of 500 Hz, a sampling time of 10 s,
constant value error of the accelerometer at 15 µg, mean square deviation of random noise
at 9 µg/

√
Hz, and an accelerometer mounting position at a distance of L = 0.04 m from the

center of the carrier coordinates.

4.1. Simulation of the Basic Algorithm

Figures 4 and 5 display the results of calculating the angular velocity using the integral
algorithm, extraction algorithm, and improved extraction algorithm, along with their
respective error.

From Figure 5, it is evident that the angular velocity error in the integral algorithm
gradually accumulates over time. The extraction algorithm exhibits a sign misclassifica-
tion phenomenon. However, the improved extraction algorithm effectively mitigates the
abnormal bulge near the zero value and results in a smoother curve.



Micromachines 2024, 15, 346 9 of 15

Micromachines 2024, 15, x FOR PEER REVIEW 9 of 16 
 

 

2 2
0 1 2 3 1 2

0 2 3 1
2 2

0 3 1 2 2 3

atan 2(2( ),1 2( ))
sin(2( ))

atan 2(2( ),1 2( ))

q q q q q q
a q q q q
q q q q q q

φ
θ
ψ

 + − + 
   = −  
   + − +   

 (21) 

4. Simulation 
To validate the efficacy of the proposed method for solving angular velocity, simula-

tion experiments were conducted in this study using MATLAB R2020a. The following 
mathematical model of angular velocity was utilized during the simulation process 
(where mω  is 0.25 rad/s): 

2

2 sin(10 )
4 cos(20 )

sin( )

x m

y m

z m

t
t

t t

ω ω
ω ω
ω ω

=
 =
 = +

. (22) 

For a practical value of the accelerometer’s noise and constant value error, we con-
sider the specifications of the accelerometers manufactured by TDK Corporation. The sim-
ulation parameters are set as follows: a sampling frequency of 500 Hz, a sampling time of 
10 s, constant value error of the accelerometer at 15 µg, mean square deviation of random 
noise at 9 µg/√Hz, and an accelerometer mounting position at a distance of L = 0.04 m 
from the center of the carrier coordinates. 

4.1. Simulation of the Basic Algorithm 
Figures 4 and 5 display the results of calculating the angular velocity using the inte-

gral algorithm, extraction algorithm, and improved extraction algorithm, along with their 
respective error. 

 
Figure 4. Angular velocity calculation results: (a) integral algorithm; (b) extraction algorithm; (c) 
improved extraction algorithm. 

0 1 2 3 4 5 6 7 8 9 10
t (s)

-2

0

2

4

(a)

0 1 2 3 4 5 6 7 8 9 10
t (s)

-2

0

2

4

(b)

0 1 2 3 4 5 6 7 8 9 10
t (s)

-2

0

2

4

(c)

Figure 4. Angular velocity calculation results: (a) integral algorithm; (b) extraction algorithm;
(c) improved extraction algorithm.
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Figure 5. Angular velocity calculation error: (a) integral algorithm; (b) extraction algorithm; (c) im-
proved extraction algorithm.

4.2. The Fusion Algorithm

The existing algorithm involves fusing data from the integral algorithm and the
extraction algorithm. This section presents a comparative analysis of the results between
the proposed algorithm and the existing algorithm, demonstrating the computational errors
as shown in Figure 6.
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Figure 6. Angular velocity calculation error: (a) existing algorithm; (b) our algorithm.

Subsequently, the results obtained from the two aforementioned algorithms are input
into the quaternion equation for calculation, and the resulting angular calculation error is
presented in Figure 7. Notably, the algorithm proposed in this paper exhibits significantly
higher solution accuracy compared to the existing algorithm. This improvement can be
attributed to the utilization of the sliding window method, which effectively eliminates
anomalies near the zero value.
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To provide a more precise depiction of the superiority of the algorithm proposed
in this paper, statistical data on the parameter error of the two algorithms are presented
in Table 2. It is evident from Table 2 that the accuracy of attitude calculation achieved
by the fused integral algorithm and the improved extraction algorithm proposed in this
paper surpasses that of the existing algorithm, with a reduction in accuracy of one order
of magnitude for both the maximum error and standard deviation. Therefore, it can be
assumed that this algorithm is capable of accurately solving attitude-related problems for
relevant instruments even under vibration conditions.

Table 2. Statistics of the angular calculation errors.

Method Maximum Absolute Error Average Relative Error Standard Deviation

Existing algorithm 7.8823 3.4295 1.8103
Our algorithm 1.1435 0.5534 0.2978

5. Experiment

To validate the feasibility of the proposed algorithm, an experimental board with four
three-axis accelerometers was placed on an optical platform. The installation positions of
the accelerometers, labeled as M1 to M4, are illustrated in Figure 8. External jitters and
impacts were manually applied to test the board. The accelerometer utilizes the AXO301
accelerometer produced by TDK Corporation. The primary specifications are shown in
Table 3.
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Table 3. The primary parameters of AXO301 accelerometer.

Parameter
(Unit)

Input Range
(g)

Digital Resolution
(µg/LSB)

Noise Density
(µg/

√
Hz)

Bias Instability
(µg)

Constant Bias
(mg)

Value ±1 1 9 3 0.5

Throughout the experiment, a sampling frequency of 100 Hz was utilized, and a total
of 12 sets of accelerometer data were collected. The proposed algorithm as well as the
existing algorithm were both applied to calculate the angular velocity, taking the Z-axis as
an example. The outcomes are depicted in Figure 9.

To facilitate a more intuitive comparison of the accuracy among the aforementioned
algorithm, the angular velocity results were input into the quaternion equation to calculate
the angular change, as shown in Figure 10. The accuracy of the accelerometer array attitude
calculation was then verified using a laser tracker (see Figure 11).
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Figure 10. Angle calculation results.

Figure 10 clearly demonstrates that the existing algorithm yields an inaccurate estimate,
which is subsequently used as input in the quaternion equation. This inaccuracy becomes
more pronounced when observing the magnitude of the angular curve, mainly due to
the unresolved sign misclassification problem associated with the extraction algorithm.
However, when combining the integral algorithm and the improved extraction algorithm,
the resulting angle solution curve appears smoother.

Table 4 presents the corresponding rotation matrices and angle changes for both methods.

Table 4. Rotation matrix and angle change value.

Method Rotation Matrix Angle Change/(◦)

Existing algorithm

 0.9941 −0.1080 0.0067
0.1079 0.9941 −0.0142
−0.0082 −0.0134 0.9999

 [
−0.9648 0.5197 7.6893

]
Our algorithm

 0.9861 −0.1655 0.0102
0.1656 0.9861 −0.0054
−0.0091 0.0070 0.9999

 [
0.2118 0.0057 9.6705

]
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The experiment was conducted five times to compare the results of the accelerometer
array attitude solving with the laser tracker solving. The comparison is presented below,
using the Z-axis as an example.

Table 5 illustrates that the Kalman filter-based angular velocity fusion algorithm
proposed in this paper yields highly accurate results. The proposed algorithm reduces the
error by one order of magnitude when compared to existing methods, with an average
difference between the solution angle and the angle measured by the laser tracker of less
than 0.5◦. This level of accuracy meets the necessary requirements for measuring attitude
change in the laser scanning projection system.

Table 5. Angle error values measured by two algorithms.

Experiment Number Angle Measured by
Laser Tracker Existing Algorithm Our Algorithm Minimum Absolute

Error

1 10.1317 7.6893 9.6705 0.4612
2 7.4615 8.1204 7.1427 0.3188
3 11.0265 8.6521 10.5531 0.4734
4 −4.3621 −6.2212 −4.0082 0.3539
5 −7.4342 −6.1290 −6.9908 0.4434

6. Conclusions

The present study introduces an angular velocity fusion algorithm based on Kalman
filtering. To address the issue of sign misjudgment in the open method for solving angular
velocity, we propose a sliding window correction method that enhances the accuracy of this
approach. By combining data from the integral method and the improved open method, we
leverage Kalman filtering to obtain the optimal estimate of angular velocity. Simulation ex-
periments validate the feasibility and effectiveness of our proposed algorithm. Specifically,
the results demonstrate that the maximum value and standard deviation of angular velocity
error can be reduced by one order of magnitude compared to existing algorithms while
also improving accuracy and curve smoothness. Furthermore, experiments confirm that
our algorithm exhibits superior attitude-solving accuracy relative to existing approaches.
Overall, this study presents a practical, accurate, and straightforward solution for detecting
instrument attitude under actual working conditions, with significant application value.
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