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Abstract: Nanotechnology has advanced the techniques for elucidating phenomena at the atomic,
molecular, and nano-level. As a post nanotechnology concept, nanoarchitectonics has emerged to
create functional materials from unit structures. Consider the material function when nanoarchitec-
tonics enables the design of materials whose internal structure is controlled at the nanometer level.
Material function is determined by two elements. These are the functional unit that forms the core of
the function and the environment (matrix) that surrounds it. This review paper discusses the nanoar-
chitectonics of confined space, which is a field for controlling functional materials and molecular
machines. The first few sections introduce some of the various dynamic functions in confined spaces,
considering molecular space, materials space, and biospace. In the latter two sections, examples of
research on the behavior of molecular machines, such as molecular motors, in confined spaces are
discussed. In particular, surface space and internal nanospace are taken up as typical examples of
confined space. What these examples show is that not only the central functional unit, but also the
surrounding spatial configuration is necessary for higher functional expression. Nanoarchitectonics
will play important roles in the architecture of such a total system.

Keywords: confined space; covalent organic framework; dynamic function; metal–organic framework;
molecular machine; nanoarchitectonics; nanospace; surface space

1. Introduction

Human development depends on the enrichment of functional materials. As our lives
become more diverse, more functions are required. Functional materials must be created
to meet these needs. These include generating energy [1–7], storing energy [8–13], detect-
ing and removing environmental hazards [14–19], carbon neutrality [20–23], purifying
water [24–28], detecting and handling viruses [29–33], delivering drugs [34–38], treating
illness and injury [39–44], developing devices for these functions [45–49], and information
conversion [50–54]. We must accomplish these targets with scientific development and
technological advancements to solve these problems. Here are some existing role models.
Various functional expressions, although not exactly the same, can be found in biological
systems such as advanced functions in photosynthesis [55,56] and signal transduction
systems [57,58]. The advanced functions of living organisms are due to the cleverness of
their structural organizations. Many kinds of functional units are rationally arranged to
achieve advanced functions. Biological systems have achieved such excellent functional
structures in the course of billions of years of evolution. We need to achieve this in a
few decades.

In order to create artificially precisely structured functional materials, it is neces-
sary, roughly speaking, to develop a system of studies that produces materials, stud-
ies that examine unit structures, and studies that create materials from the unit struc-
tures. The research field of creating and processing materials has developed rapidly since
around the 20th century and is still an active research field. Such fields include organic
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chemistry [59–63], inorganic chemistry [64–68], polymer chemistry [69–73], coordination
chemistry [74–78], supramolecular chemistry [79–83], other material sciences [84–88], and
biological sciences [89–93]. Detailed control of fine structure is also being carried out. The
breakthrough was the creation of nanotechnology. Nanotechnology has advanced the
techniques for elucidating phenomena at the atomic, molecular, and nano-level [94–98].
Since the late 20th century, nanotechnology has flourished. Nanotechnology is said to have
been initiated by Richard Feynman in the 20th century [99,100]. As a post nanotechnology
concept, nanoarchitectonics has emerged to create functional materials from unit structures
(Figure 1) [101]. The first nanoarchitectonics were proposed by Masakazu Aono in the early
21st century [102].
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with general materials science and other methods.

The goal of nanoarchitectonics is to architect functional material systems from atoms,
molecules, and nanomaterials by combining knowledge of nanotechnology with general
materials science and other methods [103]. Nanoarchitectonics can also be regarded as
an integrated concept that combines nanotechnology with other fields of science and
technology (chemical and physical fields that contribute to materials science, technical
fields such as microfabrication technology, and boundary fields such as bio-related sci-
ences) [104]. Various processes such as manipulation at the atomic/molecular level using
nano-units (atoms, molecules, nanomaterials), chemical/physical molecular/material trans-
formation, self-assembly/self-organization, control of these processes by external fields,
nano/microfabrication, and biological processes could contribute [105]. The functional
materials are constructed by selecting and combining such unit processes. Since multiple
processes are often combined in nanoarchitectonics approaches, they are suitable for fabri-
cating complex structures such as hierarchical, asymmetric, and irregular structures [106].
Processes such as self-assembly [107–110] and template synthesis [111–115] are combined
with thin-film processes such as Langmuir–Blodgett (LB) [116–120] and layer-by-layer
(LbL) assembly [121–125]. In this case, a hierarchical organization based on a layered
structure can be created [126–128]. These characteristics are advantages over self-assembly,
which is based on simple equilibrium. In addition, the underlying nano-level phenomena
include uncertainties such as thermal fluctuations, stochastic distributions, and quantum
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effects [129]. Therefore, the material architecture is not just a sum, but a harmonization of
many effects. The qualities of hierarchy and harmonization are common to the formation
of functional structures in biological systems [130]. Therefore, nanoarchitectonics will be a
key concept to fill the billions of years of evolution of life with artificial technology in a few
decades [131].

The above concepts are general ones that apply regardless of nano-units or materials.
Since all matter is originally composed of atoms and molecules, nanoarchitectonics, which
assembles matter from atoms and molecules, can be considered a method for the fabrication
of all materials. Corresponding to the theory of everything in physics [132], nanoarchi-
tectonics can be considered as a method for everything in material science [133,134]. In
fact, the research papers advocating nanoarchitectonics have a very wide range of ma-
terial processes and applications. In basic fields, nanoarchitectonics can be applied to
material synthesis [135–141], microstructure control [142–149], the elucidation of phys-
ical phenomena [150–155], and basic life science research [156–161]. In the application-
oriented fields, there are reports of applications in catalysis [162–167], sensors [168–172],
devices [173–178], energy generation [179–184], energy storage [185–190], environmental
purification [191–194], drug delivery [195–200], and medical-aiming fields [201–206].

Consider the material function when nanoarchitectonics enables the design of ma-
terials whose internal structure is controlled at the nanometer level. Material function
is determined by two elements. These are the functional unit that forms the core of the
function and the environment (matrix) that surrounds it. This review article deals with
the function when these two elements are constructed with nano-level precision. The
functional unit is made by assembling molecules, supramolecules, nanostructures, etc., that
have a function. In particular, those with dynamic functions, such as responding to external
stimuli or changing morphology, are of particular interest as having more advanced func-
tions [207–210]. The ultimate example would be a molecular machine in which molecules
and supramolecules work like machines [211–214]. Such a dynamic function would be
greatly influenced by the environment around its functional center. By assembling the
environment, it will be possible to intentionally perturb the dynamic function. It is also
envisioned that functional units incorporated into a regular environment would work in
tandem. Conversely, by isolating functional units in a closed-space environment, it will
be possible to evaluate the function of a single molecule or unit as an independent basic
physical property. In functional material architecture based on nanoarchitectonics, it is
important to design and construct not only functional units but also the surrounding space
(confined space). Such spaces include environments that are surrounded by nanopore
structures, as well as surface spaces that are strongly bounded from the surface. The design
of such spaces involves the use of mesoporous materials [215–218], metal–organic frame-
works (MOFs) [219–222], covalent organic frameworks (COFs) [223–226], self-assembled
monolayers (SAM) [227–230], Langmuir–Blodgett (LB) film [231–234], layer-by-layer (LbL)
assembly [235–238], etc.

With the above background, this review paper discusses the nanoarchitectonics of
confined space, which is a field for controlling functional materials and molecular machines.
The behavior of dynamical functions and molecular machines in such confined spaces will
be discussed by looking at recent examples. The first few sections will introduce some of
the various dynamic functions in confined spaces, considering molecular space, materials
space, and biospace in terms of their size and morphology. In the latter two sections,
examples of research on the behavior of molecular machines, such as molecular motors, in
confined spaces are discussed. In particular, surface space and internal nanospace are taken
up as typical examples of confined space. From these examples, it will be demonstrated that
in addition to the central nanoarchitectonics of the function of functional unit architecture,
the nanoarchitectonics of the confined space that creates its surroundings is important.
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2. Dynamic Functions in Confined Space

Of course, molecules and materials have various properties. Functions are often
expressed in response to external stimuli. The process involves dynamic changes in
properties, such as certain motions and changes in optoelectronic properties. The form
of functional expression differs greatly when the phenomenon occurs in open space and
when it occurs in confined space. Especially, dynamic functions are strongly perturbed
by the confined space. This is not only the case for dynamic functions of sophisticated
molecules such as in molecular machines, but also for various other conventional materials
functions. The following sections will illustrate some of the behaviors of various functions
in confined space, classifying confined space into molecular-level space and material-
level space. Another section also summarizes the functions in the space formed from
biomolecules as a well-designed space.

2.1. Molecular Space

Various molecules are susceptible to perturbation within a space of similar size to that
of the molecule. Such molecular spaces include caged molecules, so-called host molecules
such as cyclodextrins [239–243] and crown ethers [244–248], and supramolecularly formed
spaces [249–254]. Some examples of studies on the properties of various molecules in those
spaces are given below.

Hashikawa and Murata discuss in a recent review the C60 fullerene with a single water
molecule [255], The water molecule anchored in the C60 fullerene (H2O@C60) is the ultimate
form of water obtained by three-dimensional fractionation. Anomalous behaviors of water
molecules without hydrogen bonding have been discovered one after another. Water
confined in the sub-nanospace formed by carbon nanomaterials may exhibit fascinating
properties that cannot be observed in the bulk environment. The mechanically controllable
break junction technique (MCBJ) was applied under ultra-high vacuum conditions of
300 K (Figure 2A). In both junctions (with and without H2O in the C60 molecule), the
electronic conductance of a single molecule was 0.25 ± 0.05 G0 (G0: conductance quantum).
This means that the encapsulated H2O molecule was almost completely isolated from the
external electronic field. Under room temperature conditions, a more sensitive method
(STM-based break junction, STM-BJ) using a scanning tunneling microscope (STM) was
applied (Figure 2B). The conductance of H2O@C60 incorporating water was only slightly
increased relative to C60. On the other hand, a considerably larger conductance was
observed for Li+@C60 incorporating lithium ions. The energy levels of the conduction
orbitals are altered by the encapsulation of H2O (increase) and Li+ (decrease). The single
molecule conductance of C60 is modulated precisely by the doped internal entity.

The supramolecular complexes of carbon nanotubes and trapped fullerenes are called
peapods [256–258]. Matsuno and Isobe discuss peapod complexes that incorporate molecules
in an annular closed space (Figure 3) [259]. By trapping many molecules in such cylindrical
nanospaces, a variety of peapod structures are nanoarchitectonized. Especially, atomi-
cally precise structures can be created using molecular segments of carbon nanotubes.
Supramolecular chemistry of discrete molecular peapods is being investigated by such
nanoarchitectonic designs. Peapods are assembled by weak intermolecular interactions
such as van der Waals interactions and CH-π hydrogen bonds. Because of the presence of
multiple interactions, the aggregation forces are strong enough to result in surprisingly high
aggregation constants in solution. The multiple interactions allow for dynamic motion of
the trapped guest both in the solution phase and in the solid state. The latter dynamic mo-
tion of molecular peapods in the solid state is an interesting fact. This motion is particularly
unusual and can occur at very high rotational frequencies in the inertial regime.
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Confining transition metal complexes in molecular space allows one to control their
excited state dynamics and chemical reactivity. Masai incorporated transition metals into a
protective environment using permethylated α-cyclodextrin-based macrocyclic compounds
(Figure 4) [260]. Focusing on the characteristics of the incorporated platinum acetylide
complexes, their unique chemical reactivity and optical properties are discussed. The
protection of transition metal complexes into the molecular space prevents undesirable
conformational changes and chemical reactions and often enhances their functional proper-
ties. The stability of transition metal complexes can be precisely controlled by guiding the
desired electronic pathways and chemical reactions. Macrocyclic compounds shield excited
species from thermal fluctuations in solution and intermolecular interactions in the solid
state. Thereby, luminescence efficiency is improved by suppressing undesirable pathways.
The molecular space created by the macrocyclic compound dynamically stabilizes the
transition metal center against other chemical reagents and electrons via steric hindrance.
It will be useful not only for platinum acetylide complexes but also for various transition
metals and ligands, allowing precise control of the dynamics and reaction pathways of
various transition metal complexes. After kinetically stabilizing the reaction centers, novel
reactivity can be radically explored. Through such nanoarchitectonic design, transition
metal complexes with novel reactivity can be developed. For example, it would possibly
lead to the development of biomimetic sensors and solid-state light-emitting materials.
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Some host molecules can complex with alkanes through hydrophobic cavities. Size
selectivity can distinguish between the bulkiness of linear, branched, and cyclic alkanes.
However, distinguishing the length of n-alkanes remains a difficult task. In particular,
there are few examples of the length recognition of linear alkanes using optical aspects
such as chirality. The chirality of a well-designed host molecule can be reversed by the
guest molecule entering the host cavity. However, n-alkanes are neutral, achiral, linear
molecules, making specific interactions difficult to induce. Fa, Ogoshi, and co-workers have
demonstrated systems that exhibit different behavior with different lengths of n in n-alkanes
(Figure 5) [261]. The nanospaces of the chiral substituted pillar[5]arene are electron-rich and
can accommodate n-alkanes. The planar chiral isomers are sensitively inverted depending
on the length of the complexed n-alkane. In short alkane inclusions such as n-pentane and
n-hexane, the chiral substituted pillar[5]arene complexes assume a closed configuration. In
longer n-alkanes, they can take an open configuration. The inclusion of short n-alkanes
such as n-pentane tended to shift the chiral substituted pillar[5]arene to the pS form.
On the other hand, when long n-alkanes such as n-heptane were included, they tended
toward the pR form. Thus, the planar chirality of the chiral-substituted pillar[5]arenes
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converted in response to slightly varying length n-alkanes, and the CD spectra showed
different Cotton effects. The differences in isomeric stability that led to these results
were also evaluated by crystal structure and theoretical calculations. Furthermore, as the
temperature was varied, the diastereomeric ratio also changed with the inversion of the
planar chirality. For n-hexane, an intermediate length n-alkane, the pR form of the chiral
substituted pillar[5]arene was dominant at high temperatures, whereas the pS form was
dominant at low temperatures. This nanoarchitectonics using the molecular space of the
chiral-substituted pillar[5]arene provides an example of how a chiral substrate can change
its conformation in response to slight differences in an artificial supramolecular system.
This can be thought of as analogous to fine molecular discrimination in natural systems.
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One of promising nanoarchitectonic methods for creating molecular nanospaces with
precise structure is the fabrication of molecular capsules [262,263]. This is a molecular con-
fined space formed by creating a defined coordination structure of metal ions and organic
ligands. A variety of molecular spaces can be created by the combination of metal ions
and ligands. Domoto et al. reported the creation of molecular spaces using interconversion
triggered by the anion exchange of entangled (Ag3L2)n polyhedra (Figure 6) [264]. The
contribution of metal–acetylene interactions yields concave polyhedra in which the metal
is inserted into the main framework. The entangled (M3L2)n polyhedral complexes are
stabilized by conventional metal–pyridyl coordination and relatively weak metal–acetylene
interactions. Counteranion exchange of these complexes with nitric acid (NO3

−) ions results
in metal insertion between the metal centers. A heterogeneous ternary coordination scheme
of acetylene, pyridyl, and nitric acid donor is then formed on the metal center. This results
in a localized cleavage of the highly entangled three-branched topology and the creation of
an extended and complex three-dimensional structural framework. This transformation is
accompanied by a change in the cooperative coordination mode from a binary mode to a
ternary mode. Heteroleptic cooperative coordination incorporating two or more coordina-
tion elements is a useful strategy for achieving molecular complexity in nanostructures and
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molecular space. Furthermore, it is expected to lead to the construction of nanomaterials
with a higher-order molecular order and their precise structural manipulation.

Micromachines 2024, 15, x FOR PEER REVIEW 8 of 42 
 

 

mode from a binary mode to a ternary mode. Heteroleptic cooperative coordination in-
corporating two or more coordination elements is a useful strategy for achieving molecu-
lar complexity in nanostructures and molecular space. Furthermore, it is expected to lead 
to the construction of nanomaterials with a higher-order molecular order and their precise 
structural manipulation. 

 
Figure 6. Molecular spaces using interconversion triggered by anion exchange of entangled (Ag3L2)n 
polyhedra with conventional metal–pyridyl coordination and relatively weak metal–acetylene in-
teractions. Reprinted with permission from Reference [264]. Copyright 2023 Wiley-VCH. 

Controlling the properties of metal members immobilized in the molecular space has 
also been well explored. Mieda, Shinoda, and co-workers synthesized a hexadentate che-
late ligand based on ethylenediaminetetraacetic acid with four cholesteryl groups as a 
molecular space material (Figure 7) [265]. This hexadentate chelate ligand forms sTable 
1:1 complexes with lanthanide ions. The resulting L2-lanthanide complex formed stable 
self-assemblies with an average particle size of about 50 nm in ethanol solution. The hex-
adentate chelate lanthanide complex showed amphiphilic properties and long-lived emis-
sion. When sodium 2-naphthoate was added as a guest anion, it formed a 1:2 complex 
with the lanthanide complex. The sensitized luminescence intensity of the complex is en-
hanced because the large vacancy site of the hexadentate chelate ligand allows the guest 
molecule to coordinate near the metal center. When 4-alkylbenzoates were used as guest 
anions, the intensity of sensitized luminescence was strongly dependent on the length of 
the alkyl chains of the guest molecules. A marked enhancement of luminescence was ob-
served for the most hydrophobic of these guest molecules. Exciton-bound circular dichro-
ism spectra were also obtained. This Cotton effect is due to the chirality of the cholesteryl 
moiety in the host lanthanide complex. Lanthanide complex nanoarchitectonics using this 
molecular space could be a platform for nanomaterials that emit light in aqueous solution. 

The dynamic function of the binding of metal ions to molecular spaces and the sub-
sequent conformational changes have also been investigated. Okamoto et al. nanoarchi-
tectonized cyclic compounds by combining cage silsesquioxane with oligo(dimethylsilox-
ane) (Figure 8) [266]. Specifically, side-chain ring-opened cagesilsesquioxane was fused 
with oligo(dimethylsiloxane) to synthesize cyclic molecules based on an inorganic back-
bone. The nanoarchitectonically synthesized cyclic compounds served as hosts for alkali 
metal cations (Li+, Na+, K+). Furthermore, in the presence of guest cations, ring transfor-
mation was observed to occur depending on the ring size. In addition, other host mole-
cules, including cagesilsesquioxane, and counter anions that can limit ring transformation 
are being investigated. 

Figure 6. Molecular spaces using interconversion triggered by anion exchange of entangled (Ag3L2)n
polyhedra with conventional metal–pyridyl coordination and relatively weak metal–acetylene inter-
actions. Reprinted with permission from Reference [264]. Copyright 2023 Wiley-VCH.

Controlling the properties of metal members immobilized in the molecular space
has also been well explored. Mieda, Shinoda, and co-workers synthesized a hexadentate
chelate ligand based on ethylenediaminetetraacetic acid with four cholesteryl groups as
a molecular space material (Figure 7) [265]. This hexadentate chelate ligand forms stable
1:1 complexes with lanthanide ions. The resulting L2-lanthanide complex formed stable
self-assemblies with an average particle size of about 50 nm in ethanol solution. The
hexadentate chelate lanthanide complex showed amphiphilic properties and long-lived
emission. When sodium 2-naphthoate was added as a guest anion, it formed a 1:2 complex
with the lanthanide complex. The sensitized luminescence intensity of the complex is
enhanced because the large vacancy site of the hexadentate chelate ligand allows the guest
molecule to coordinate near the metal center. When 4-alkylbenzoates were used as guest
anions, the intensity of sensitized luminescence was strongly dependent on the length of the
alkyl chains of the guest molecules. A marked enhancement of luminescence was observed
for the most hydrophobic of these guest molecules. Exciton-bound circular dichroism
spectra were also obtained. This Cotton effect is due to the chirality of the cholesteryl
moiety in the host lanthanide complex. Lanthanide complex nanoarchitectonics using this
molecular space could be a platform for nanomaterials that emit light in aqueous solution.

The dynamic function of the binding of metal ions to molecular spaces and the subse-
quent conformational changes have also been investigated. Okamoto et al. nanoarchitec-
tonized cyclic compounds by combining cage silsesquioxane with oligo(dimethylsiloxane)
(Figure 8) [266]. Specifically, side-chain ring-opened cagesilsesquioxane was fused with
oligo(dimethylsiloxane) to synthesize cyclic molecules based on an inorganic backbone.
The nanoarchitectonically synthesized cyclic compounds served as hosts for alkali metal
cations (Li+, Na+, K+). Furthermore, in the presence of guest cations, ring transformation
was observed to occur depending on the ring size. In addition, other host molecules,
including cagesilsesquioxane, and counter anions that can limit ring transformation are
being investigated.

Molecular spaces range from those in which the molecules themselves, such as
fullerenes, form a space, to those in which the supramolecular structure constitutes a
space. The size of the space is at the molecular level, and the functions of the molecules and
ions trapped in it are dynamically perturbed. It is also possible to trap molecules such as
water, and research development in the field of basic physical chemistry is also expected.
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Figure 8. Cyclic compounds by combining cage silsesquioxane with oligo(dimethylsiloxane) as hosts
for alkali metal cations with ring transformation behaviors depending on the ring size. Reprinted
with permission from Reference [266]. Copyright 2023 Oxford University Press.

2.2. Materials Space

For dynamic functional control by confined space at the material level, materials
that encapsulate regular nanospaces are useful. For example, various mesoporous materi-
als [267–270], layered compounds [271–274], metal–organic frameworks (MOFs) [275–278],
covalent organic frameworks (COFs) [279–282], and related structures [283–286] are used
to provide nanospaces in material systems. Some recent examples of such research are
discussed below.

Tashiro, Ehara, Shionoya, and coworkers report the substrate-specific long-range
olefin transfer reaction of alkenyl alcohols catalyzed by a metal–macrocycle framework,
a porous supramolecular crystal, as a dynamic functional control in the material space
(Figure 9) [287]. The palladium centers precisely arranged in the metal–macrocycle frame-
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work are chemically activated by alkenyl alcohols of a certain chain length. In substrate-
specific long-range olefin transfer reactions, the metal–macrocycle framework acts as a
heterogeneous catalyst that discriminates slight differences in chemical structure, such
as chain length or branching structure, of the substrate. Substrate-specific conversion
of alkenyl alcohols to aldehydes or ketones is made possible by the metal–macrocycle
framework in catalytic amounts. Even slight differences in the framework structure of
the reacting substrates can be rigorously identified by the catalyst. For example, aromatic
olefins, which normally do not react with non-activated metal–macrocycle frameworks,
were converted to olefin migration products at high conversion rates even when reactive
substrates were used as additives. The degree of activation can be greatly modulated
by various chemical structure features of the additive (hydroxy groups, carboxy groups,
double bonds, and specific chain lengths). Activation of organometallic catalytic centers is
generally achieved by the removal of the coordinating solvent and ligands by heat treat-
ment or other means. On the other hand, few metal catalytic centers are controlled by the
substrate as in the above examples. This means that the activation of the metal catalytic
center is regulated by the substrate, product, and coenzyme of the reaction, as is the case
with enzymes. This could be a nanoarchitectonics design guideline to give organometallic
catalysts high substrate specificity like natural enzymes.
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Figure 9. The substrate-specific long-range olefin transfer reaction of alkenyl alcohols catalyzed by
a metal-macrocycle framework, a porous supramolecular crystal, as a dynamic functional control
in the material space. Reprinted with permission from Reference [287]. Copyright 2023 Oxford
University Press.

COFs are crystalline porous materials with tailor-made functionalities. However,
photocatalytic functionality in COFs leaves room for development due to the relatively
limited choice of constituent elements. Yang and co-workers have created a rigid ring
structure in a network of COFs with a nanoarchitectonics approach incorporating pillar
allenes. The formed rigid ring structures in a network of COFs produced advanced pho-
tocatalytic functionality (Figure 10) [288]. By varying the content of pillararenes, which
provide electron-rich cavities, a confined molecular space for exciton transfer and carrier
transport was generated. In addition, new interfaces can be created to interact with the
photogenerated charge carriers. These material designs produce catalysts that facilitate
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the efficient oxidation of amines to imines. Specifically, the COF is fabricated by the
co-condensation of 1,3,5-tricarbaldehyde, 2,5-dimethoxy terephthalohydrazide, and func-
tionalized pillar[5]arenes. To create COFs with different photophysical and photochemical
performances, a nanoarchitectonics strategy was used to incorporate different amounts of
methoxy groups into the pore walls. The presence of methoxy groups stabilizes interlayer
interactions by weakening the polarization of C-N bonds. This allows the crystallinity
of the framework to be tuned by the appropriate crystallinity and the presence of pil-
lar[5]arenes. The separation and transfer of photogenerated electron holes is also regulated.
The photocatalytic activity is controlled by the amount of pillar[5]arene present in the
linker portion, resulting in different imine conversion capacities. The structural factors of
reversible dynamic covalent bonding, interlayer interactions, and electron-rich pillar arenes
control the ability of the active site to separate and transport photogenerated electrons. The
COF of the pillar arene framework as well as various photocatalytic nanoarchitectonics
design hints. For example, it will also facilitate the development of green-light-responsive
COF catalysts.
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One-dimensional material nanospaces are used to fabricate defined polymer struc-
tures. For example, isolated double-stranded polymers are nanoarchitectonized in material
nanospace. Such double-stranded structures are common in biopolymers. However, a
general and versatile methodology for making double-stranded synthetic polymers has not
yet been developed. Uemura and co-workers proposed a new nanoarchitectonics method
to synthesize double-stranded polymers such as polystyrene and polymethyl methacrylate
(Figure 11) [289]. In the proposed method, crosslinking radical polymerization was carried
out in the pores of a MOF with one-dimensional channels with diameters similar to the
thickness of the two polymer chains. First, vinyl monomers were encapsulated and poly-
merized together with a cross-linking agent within the nanochannels of a one-dimensional
MOF. As a result, two chains of vinyl polymer were formed within the one-dimensional
nanospace. The conformation of the two polymers evolves by being effectively constrained
within the pores of the one-dimensional MOF. The cross-linking reaction between the two
polymer chains is highly controlled. Undesirable cross-linking between polymer chains in
different pores is also prevented. This methodology has been demonstrated with common
vinyl polymers such as polystyrene and polymethyl methacrylate. This guarantees the
versatility of the technique. As a further feature, the resulting double-stranded polymers
were soluble in many organic solvents even at high cross-linking rates, unlike conventional
cross-linked polymers. Extension to MOF of different sizes and shapes will contribute to
new polymer nanoarchitectonics, such as ladder polymers and polymer bundles consisting
of only a specific number of polymers. The development of a series of bundle topological
polymers would also be possible.
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Some studies have attempted to use the nanopores of the MOF not as a synthesis
site for macromolecules but as a space for macromolecular sorting. Hosono, Uemura, and
co-workers demonstrated a new macromolecular separation technique that can practically
and efficiently separate cyclic poly(ethylene glycol) from a chaotic mixture containing
linear impurities on a gram basis (Figure 12) [290]. The separation medium, MOF, was
[Zn2(1,4-ndc)2ted]n (ndc = naphthanlenedicarboxylate, ted = triethylenediamine). This
MOF has regular one-dimensional nanochannels with an aperture size of d = 5.7 Å in the
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c-axis direction. Creating a column packed with MOFs with these one-dimensional pores
enabled the analysis and preparative chromatographic separation of these topologically
different polyethyleneglycols. Gram-scale purification of cyclic polyethylene glycols is
also possible by removing linear impurities. These methodologies result in operationally
simple purification procedures. Therefore, they are also expected to be applied to further
automated multiscale fractionation techniques.
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The nanoarchitectonics of stationary phases in liquid chromatography is of great
importance to separation science. As demonstrated by Hosono, Uemura, and coworkers,
MOFs with material nanospaces open up new possibilities, such as a chromatography sta-
tionary phase creation nanoarchitectonics strategy using solid solutions of multiple MOFs
(Figure 13) [291]. In this study, MOFs were prepared using 1,4-benzenedicarboxylate, 1,4-
naphthalenedicarboxylate, and 9,10-anthracenedicarboxylate as ligands. Individual MOFs
and their mixed particles and solid solutions were prepared in packed columns packed with
stationary phases. The retention capacity of polyethylene glycol was investigated by liquid
chromatography. The packed columns of MOF packed with binary mixtures of different
MOF particles showed a retention capacity that could be estimated from their mixing ratio.
On the other hand, columns packed with a mixed linker solid solution MOF showed a large
multi-component effect in retention behavior. In some combinations, the mixed-linker solid
solution MOF showed a stronger retention than the pure component MOF stationary phase.
This specific retention mechanism is attributed to the unique nanostructure formed by the
multi-component solid solution MOF, which is thought to be influenced by the balance of
two factors: the adsorption interaction and kinetics of the substrates within the MOF pores.
The combined effect of both of these countervailing factors will determine the retention
of the solid solution column. The mixed MOF approach allows for a myriad of different
MOFs and combinations, and it may meet the versatile demands of liquid chromatography
stationary phases.

In a recent review, Horike discusses the liquid and glassy phases of MOFs
(Figure 14) [292]. In many cases, MOFs have been developed on the assumption that
they are crystalline. However, the study of systems that include disorder, such as liq-
uid and glassy states, will greatly contribute to the development of functions based on
physicochemical properties, such as a high internal degree of freedom, high formability,
and softness. In addition to the exploration of basic physical properties, a wide range of
material applications such as conductors, membranes, optics, and coatings would attract
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significant research interest. In one imidazole-based metal–organic framework, the pro-
tonated imidazole has a crystal structure in which the protonated imidazole is located
between tetrahedrally coordinated Zn2+ and an anion chain structure formed by phosphate
bridging. When heated to 80 ◦C, the imidazole exhibits rotational motion. This is the state
of the plastic crystal. On further heating, the plastic crystal melts and behaves as a liquid
that does not decompose up to a certain temperature. When it is cooled, this melt turns
into a glass. Analysis shows that this glass is a network glass consisting of one-dimensional
chain-like structures. Understanding the aggregate structure and spatio-temporal behavior
of disordered systems such as glasses and liquids is very difficult but also a great challenge.
In addition to structural analysis, it is important to explore electronic properties, porosity
control, thermal properties, and mechanical properties. In addition, it is also essential to
investigate properties that contribute to practical applications, such as stability, safety, and
mass synthesis techniques.
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This section above has presented several examples of dynamic functions that can be
controlled by nanospaces at the material level. Some of the features of functional control
are similar to those presented by molecular space. However, material nanospaces are
associated with large objects and linked to bulk functions. A typical example would be
the material separation function of liquid chromatography with MOFs. The properties of
nanospaces in disordered materials remain unexplored, and future research is expected to
expand on this topic.

2.3. Biospace

Functions in biological systems are often highly efficient and highly selective. More-
over, such functions are achieved under ambient conditions at room temperature and
in aqueous environments. These functions are mostly accomplished within specifically
designed nanospaces [293–296]. Mimicking biofunctional structures is significant for de-
veloping dynamic functions in confined space. The following sections will present some
examples of studies on nanostructures woven by biomolecules and specific structures in
the living organisms and their mimics.

Biomaterials such as biopolymers are usually used in water. On their surfaces, hy-
drated water molecules of varying mobility are formed, including non-frozen water, in-
termediate water, and free water. Water molecules in the surface space of biomaterials
are known to influence biological reactions between biomaterials and biological fluids. In
a recent review, Nishimura and Tanaka discussed the design of functional biomaterials
based on the intermediate water concept [297]. In particular, they presented their latest
results involving synthesis, biological applications, and hydration analysis. The amount of
intermediate water is a key parameter in understanding the interactions and functions of
diverse biomaterials (Figure 15). Investigations into intermediate water are important not
only for basic properties such as biocompatibility, non-staining, and selective adsorption of
proteins, but also for applications such as cell adhesion, tissue engineering, and drug deliv-
ery systems. Alternatively, it is also useful in the development of multifunctional smart
biomaterials for flexible and stretchable electronic devices. The concept of intermediate
water has been applied to the development of inorganic biomaterials, as well as organic
biomaterials. Investigations into intermediate water will also pave the way for biomedical
materials and bio-related devices.
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Precise biospaces provide a venue for the precise synthesis of inorganic nanomaterials.
For example, metal nanoparticles and nanowires are nanomaterials with a wide range of
applications and are of great research interest. Using peptides/proteins as templates is a
promising strategy for the nanoarchitectonics of homogeneous metallic nanoparticles and
nanowires. Inaba, Matsuura, and co-workers reported a tactic to create silver nanoparti-
cles and silver nanowires using the internal space of microtubules of peptide assemblies
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(Figure 16) [298]. In this technique, silver nanoparticles are grown inside microtubules
using a tandem peptide consisting of a Tau-derived peptide and a silver-binding peptide.
Of these, silver-binding peptides were isolated by screening phage display libraries against
silver nanoparticles. It has the ability to interact with silver clusters and induce the growth
of silver nanoparticles. The tandem peptide was incorporated into microtubules and sta-
bilized by cross-linking with glutaraldehyde. By incubating the bionanospace with silver
ions and reducing agents, uniform silver nanoparticles were formed in the microtubules.
Nanosized materials such as gold nanoparticles, cobalt–platinum nanoparticles, and pro-
teins can also be encapsulated in the microtubules by the nanoarchitectonics method using
this bionanospace. The microtubules containing metallic nanostructures constructed in
this way have a defined size and morphology. The structural properties are expected to be
useful for applications in nanoelectronics and dynamic nanomaterials.
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A typical example of high functionality using nanospaces in living organisms is the
conversion of substances by enzymes [299–301]. In enzymes, there are nanospaces with
precisely defined size, shape, and functional groups, called enzyme pockets, which are
used to carry out highly efficient and substrate-selective reactions at room temperature.
Ueno, Mazumdar, and co-workers have developed a hybrid bionanocage with an irid-
ium complex immobilized on the internal vacancy of ferritin, a self-assembling protein
(Figure 17) [302]. The complex composed of organometallic iridium and pentamethylcy-
clopentadienyl incorporated into the internal cavity of the ferritin cage reduces substituted
acetophenones to the corresponding chiral alcohols with high turnover, free quenching,
and high enantioselectivity. Iridium-based catalysts are widely known as catalysts for the
transfer hydrogenation of carbonyl compounds to the corresponding alcohols. Enantiopure
alcohols created by the asymmetric reduction of carbonyl compounds are valuable in the
pharmaceutical, flavor, and fragrance industries. In particular, the properties of this bio-
nanospace were modulated by using mutants of ferritin nanocages. Certain mutants of the
hybrid bionanocage have increased uptake of iridium complexes and enhanced catalytic
activity. The presence of electron-withdrawing substituents increases the apparent rate of
reaction (turnover frequency). Based on the size and polarity of the substituted acetophe-
none in the substrate-binding nanospace, the orientation and binding of the substrate is
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controlled and the enantioselectivity of the catalytic reaction is tuned. The development of
novel mutants of ferritin that selectively incorporate specific guest compounds will likely
be extended to applications in a variety of reactions. In the future, it could be applied as a
viable catalyst for industrial applications.
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Functional modification of bionanospace by the modulation of proteins and peptides
has also been investigated in various ways. For example, the effects of various conditions
and mutations on the transpeptidase activity of the enzyme Sortase A were studied by Negi
et al. (Figure 18) [303], who examined the effects of alanine mutations in five amino acids
involved in Ca2+ coordination on enzyme activity. It was found that the effects of amino
acids were not equivalent and that the amino acid residues with the strongest influence
on enzyme activity were identified. In addition to steric effects, the Lewis basicity of the
amino acid side chains and electronic effects are closely related. When Ca2+ was examined
by replacing it with its homologous elements, Mg2+ and Sr2+, it was also found that small
changes in ionic radius can significantly affect reactivity. Such studies via modulation of
the enzyme nanospace are a powerful tool for the study of structure–function relationships.
It can also lead to bio-nanoarchitectonics, in which artificial enzymes with new functions
can be created by redesigning the coordination site.

Bionanospace can be a site for the precise evaluation of physicochemical phenomena.
Precise evaluation of Förster resonance energy transfer can provide insight into the dynam-
ics of biomolecules. For example, the analysis of nucleosomes based on Förster resonance
energy transfer is expected to bridge the gap between static structure and dynamic cel-
lular behavior. Hirashima et al. constructed nucleosomes containing nucleobase-Förster
resonance energy transfer pairs and used steady-state fluorescence spectroscopy and molec-
ular dynamics simulations (Figure 19) [304]. Nucleosomal DNA containing fluorescent
nucleosides that would be the Förster resonance energy transfer pair was synthesized, and
modified nucleosomes were reconstituted with it. The Förster resonance energy transfer
efficiency was calculated from the analysis of fluorescence spectra. The Förster resonance
energy transfer efficiencies of modified nucleosomes with different acceptor positions were
compared. Steady-state fluorescence spectrometry of nucleosomes showed different Förster
resonance energy transfer efficiencies depending on the donor and acceptor positions. The
correlation between the Förster resonance energy transfer efficiency and the position of the
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Förster resonance energy transfer pair was also verified by molecular dynamics simulations.
The Förster resonance energy transfer efficiency pairs used in this approach are located
within the helical structure of DNA and can be used without unwanted interactions of
fluorophores compared to conventional assays. In the future, the single-molecule Förster
resonance energy transfer analysis of nucleosomes is expected.
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Functional units, such as catalysts, may be incorporated into the bionanospace and
express biological-like functions. Kodera and co-workers found that a di-copper(II) complex
with p-cresol-2,6-bis(amide ether-dpa) ligands can cause bursts of DNA double-strand
breaks in an air atmosphere via reductive oxygen activation by ascorbic acid [305]. It was
found that the di-copper(II) complex with a 6-bis(amide ether-dpa) ligand causes DNA
double-strand breaks in bursts via reductive oxygen activation by sodium ascorbate in an
air atmosphere (Figure 20). Spectroscopic, electrochemical, and kinetic studies revealed
that the bicopper(II) complex is rapidly reduced by sodium ascorbate to Cu(I)Cu(II) and
Cu(I)Cu(I) species. These reduced species are involved in the rate-limiting three-electron
reduction of O2 to HO−, which is responsible for DNA cleavage. Although the di-copper(II)
complex is incorporated into the DNA nanospace, the mode of binding to DNA and the
rapid HO− formation are key factors that allow the bursting of DNA double-strand breaks.
The results obtained provide a new methodology for the development of DNA double-
strand break agents and could be developed into useful methods for gene editing and
therapeutic applications.
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DNA is useful as a method to form nanostructures due to the complementarity caused
by specific hydrogen bonds between bases. For example, the creation of specific structures
by DNA oligomers is a typical example. Murayama et al. in their recent review discuss the
function of acyclic xeno nucleic acids [306]. They envision the potential for the synthesis of
artificial genomes and construction of DNA nanostructures and nanomachines. Nanopore
sequencing technology for DNA sequencing at the single molecule level is also of interest
as an application of nanopore structures to DNA editing. An, Liang, and co-workers have
reported on short dsDNA elongation by ligation and PEAR (polymerase-endonuclease
amplification reaction) [307]. This method is expected to highlight the high-throughput
and accurate detection of mixtures of thousands of short dsDNAs by nanopore sequencing.

Bionanospace can be controlled by various methodologies, such as specific water
structures in biomembrane surface space, functional modification through nanospace
modulation by peptides/proteins such as modification of enzyme pockets, and the creation
of various functional spaces and functional structures by DNA. By modifying biomolecular
systems that originally possess such functions and expressing functions through confined
space, it is possible to modify functions at a higher level. The examples introduced above
are only a small part of the possibilities, and there is a great potential for the development
of functions using bionanospace.

3. Molecular Machine in Surface Space

Among various dynamic functions, molecular machines in which molecules and
supramolecules work like machines are considered to be the ultimate functional systems.
In the following two sections, we discuss applications of molecular machines, such as molec-
ular motors, in confined space, where surface space systems, which are three-dimensionally
open but bounded by interfacial phenomena, and nanospace systems, which are spatially
confined, are considered as fields.

Molecular machine control in the surface space involves a choice of interfaces: liquid
interfaces and solid interfaces. A typical example of a liquid interface is the air–water inter-
face. When molecular machines are arranged in a monolayer at the air–water interface, they
are constrained to the interfacial space. However, the freedom of motion with respect to the
lateral direction is high. In addition, the interface itself can freely expand and compressed.
Therefore, the system can be deformed macroscopically in the interfacial lateral direction.
While some freedom of molecular motion is maintained, there is no large three-dimensional
diffusion, and molecular deformation is constrained to the two-dimensional plane. Taking
advantage of this environment, macroscopic interfacial transverse mechanical deformation
and nanoscopic molecular changes in the molecular machine can be linked [308]. For
example, the workings of a molecular machine can be controlled by large mechanical
motions, such as hand movements, i.e., molecular machines can be controlled by simple
movements like manual operation [309]. On the other hand, even at solid interfaces, there
is freedom of motion in a two-dimensional plane due to surface diffusion and other factors,
but the binding of molecular machines is much higher at solid interfaces than at liquid
interfaces. Taking advantage of this characteristic, the advanced observation of molecular
machines becomes possible [310–312]. In a way that is difficult to achieve in solution or at
a liquid interface, the morphology of molecular machines can be observed at the molecular
(atomic) level of precision at the solid interface. As a result, the rotation of molecular
motors can be observed realistically. It is the latter type of molecular machine control at
solid surfaces that more strongly reflects the effect of confined space at the nano-level. In
the following, I would like to discuss some recent research examples, focusing mainly on
molecular machine control at solid interfaces.

For example, unidirectional, repetitive, GHz-frequency rotation can be expected for
molecular motors, driven by a fast rotating electric field. The basic behavior must be inves-
tigated on a gas-phase solid substrate before it can be applied as a nanostirrer in solution
systems. In particular, considerations of factors such as internal charge flow, thermal noise,
and molecular flexibility are critical to selecting and predicting the appropriate frequency



Micromachines 2024, 15, 282 21 of 43

of the rotating electric field to drive the unidirectional rotation of the molecular motor. The-
oretical analysis of two surface-mounted dipole rotors was performed using a combination
of quantum mechanical calculations and torque analysis as reported by Zhao, Zhang, Hove,
and co-workers [313]. The driving force for the unidirectional rotation of the rotor can be
quantified and considered in terms of a torque vector acting on the rotor projected onto the
axis of rotation. This torque vector is sensitive to the angle between the dipole arm and
the electron field. This is due to the redistribution of atomic charges under the influence
of an external electron field. Most of the torques cancel each other out between functional
groups, but only the remaining net torque leads to collective intramolecular cooperation.
Torque analysis at each rotational step reveals that this promotes unidirectional rotation.
Furthermore, for the practical application of a fast-rotating electric-field-driven rotor as a
nanostirrer in a fluid, it is necessary to model the rotor assuming a solvent environment
under a fast-rotating electric field. It is necessary to determine the shielding of the fast-
rotating electric field by the solvent/ion and the effect of the fast-rotating electric field on
the orientation of the solvent/ion and its interaction with the rotor molecules.

Molecular motors have a chemistry that allows for unidirectional motion. Prezzi, Tour,
Grill, and co-workers used a low-temperature scanning tunneling microscope (STM) to
study the dynamics of a single molecular motor on a Cu(111) surface (Figure 21) [314].
Dynamics were studied, excited upon excitation by voltage pulses from an STM chip, and
rotated around a fixed pivot point. The motor molecules yielded (S) and (R) enantiomers,
depending on the result of chemical synthesis. STM observations correlated the dynamics
of each molecule with its chirality. The chirality was found to play an important role in
the function of the molecular motor. The direction of rotation of independent individual
molecules depended on their chirality, which could be determined from STM images. The
(S) and (R) enantiomers exhibit different helical structures, (M) and (P). Helix inversion,
the thermal relaxation of the helical structure, is an important step in the motor behavior.
This occurs in only one direction depending on the chirality. As a consequence of the chiral
properties of the motor, different enantiomers of the molecular motor would be expected
to rotate in opposite directions. Various results indicate that unidirectional rotation may
not be directly related to the motor properties of the molecule. It seems that the molecules
are vibrationally excited, resulting in unidirectional rotation in an asymmetric potential
energy landscape. Motor structures such as propellers require a higher energy than simply
rotating molecules as rigid bodies. Aromatic systems on metals exhibit considerably
higher adsorption energies, sticking to the surface and making motor rotation difficult.
Correspondingly, they will follow a path with a lower barrier. This is thought to cause
rotation in one direction, depending on the chirality of the motor.
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Cu(111) surface, where the direction of rotation of independent individual molecules depended on
their chiralitys. Reproduced under the terms of the CC-BY license [314]. Copyright 2023 American
Chemical Society.
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The excitation of single molecules by electrons tunneling between the sharp metal tip
of the STM and the metal surface can control the dynamics of molecules on the surface.
Phenomena such as hopping, rotation, molecular switching, and chemical reactions can
be induced by electron tunneling. Feringa, Ernst, and co-workers have investigated the
motion of two-rotor motor molecules with inelastic tunneling electrons on a Cu(111) sur-
face in an ultrahigh vacuum at 5 K (Figure 22) [315]. The motor molecules used are based
on motors characterized by two sterically overcrowded alkenes. They exist in different
helical structures. Thus, the two molecular helical structures generate local asymmetries on
both sides of the molecule. Vibrational excitation is observed to cause switching between
different molecular conformations, including conversion of the enantiomeric state of the
chiral conformation. Vibrational inelastic electron tunneling excitation caused conforma-
tional switching, and electronic excitation resulted in E-Z isomerization. This results in the
rotation of one of the two rotor units. This process causes the molecules to move across the
copper surface.
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The electrons that penetrate a chiral molecule depend on the spin of the electrons. This
phenomenon is called chiral-induced spin selectivity. It has been observed in many sys-
tems, including chiral molecules, supramolecular structures, polymers, and organometallic
thin films. There is potential for applying this phenomenon to molecular motors with
controllable chirality and helix states as described above. Cohen, Feringa, Naaman, and
co-workers have demonstrated multi-state spin selectivity in electron transfer through
motors based on four different helical configurations switching, as measured by magneto-
conductive atomic force microscopy (AFM) (Figure 23) [316]. Molecular motors based on
sterically overcrowded alkenes exhibit multiple inversions of helical chirality upon pho-
toirradiation and thermal relaxation. Four states with different helical arrangements can
be non-invasively interconverted in a specific order. In particular, a surprisingly high spin
selectivity compared to the initial structure is observed in the photo-steady-state mixture of
isomers obtained by photoisomerization. This opens up the possibility of tuning the spin
selectivity on demand with high spatio-temporal precision in a system of molecular motors
immobilized in surface nanospaces. These molecular motors can serve as spin filters that
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can invert the chiral-induced spin selectivity effect at each isomerization step. This could
be a guideline for nanoarchitectonics of highly efficient molecular spin filters.
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The best molecular machines are often found in biological systems. They are called
biomolecular machines [317,318]. For example, the contractile proteins actin and myosin
are very attractive targets for nanotechnology [319,320]. It would be desirable to be able
to temporarily turn motor functions on and off in some nanostructured devices. Månsson
and co-workers took the tactic of replacing the wild-type myosin II motor fragment with
an artificial myosin motor that could be turned on and off locally by changes in illumina-
tion [321]. They examined how their biomolecular machine could move in nanochannel
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space (Figure 24). The artificial motor used can be regarded as a light-sensitive motor. In
the absence of blue light, the actin filament powered by the light-sensitive motor moves
quite slowly. Conversely, when blue light (470–490 nm) is turned “on”, the actin propulsion
velocity increases significantly within seconds. The feasibility of artificial myosin motor
motility in nanochannels with different surface modifications was compared. For example,
good motility was achieved in Au/SiO2-based nanodevices, making the use of photoswitch-
able motors feasible. However, the reproducibility of the Au/SiO2-PEG-based nanodevices
was not so good. Further nanospace nanoarchitectonics will help the trapped artificial
motors to achieve a high kinetic contrast between “on” and “off” with high motility, which
will be useful for effective switching device development.
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The design of DNA sequences and the creation of specific complementary pairs can
form precise nanostructures. These include objects like molecular machines that move
autonomously. In particular, DNA structures that move as if they were walking are
called DNA molecular walkers [322–324]. Integration of DNA molecular machines such
as DNA molecular walkers with DNA origami platforms is a useful approach to the
development of advanced nano-robotics with diverse functions. DNA molecular machines
provide automated mobility with nanometer resolution. DNA origami technology also
provides a sub-microscale platform to guide their locomotion. Wang and co-workers have
demonstrated that by driving an advanced light-powered DNA bipedal walker on a rod-
shaped DNA origami platform approximately 170 nm in length [325]. Clever use of the
fluorescent method allowed the researchers to analyze the self-directed, processual motion
of the DNA molecular walker, which, although somewhat more complex on the surface
of the DNA oligomers, essentially exhibits the motion of a translational molecular motor.
This motion is completely dependent on purely mechanical effects. In other words, if DNA
molecular walkers and DNA origami are reasonably optimally matched, functions such
as molecular robotics could be achieved. Such a nanoarchitectonics approach would be
promising for the development of light-powered DNA nanorobots, automated chemical
synthesis by DNA molecular machines, and biomimetic nanomuscles. In particular, light-
powered nanomuscles could be powered by rationally designed translational molecular
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motors. This would serve as the driving element for many nano/micro robots. These could
be assembled into even larger functional materials via such DNA nanoarchitectonics.

The immobilization of functional materials on surfaces or their binding to surface
nanospaces allows for high-resolution analysis. Such advantages can be recognized in
many cases of molecular machines. The details of multi-step or sequential dynamic changes,
such as in molecular machines, can be analyzed at high resolution on the surface. This will
reveal more detailed mechanisms of molecular machine operation. In addition, dynamic
molecular machine motions can become intentional and rational behaviors when coupled
with guiding structures such as nanochannels and DNA origami structures. Thus, the
immobilization of molecular machines in surface space will pave the way for the advanced
analysis of machine behavior and the construction of useful devices.

4. Molecular Machine within Nanospace

Material nanospaces can also be envisioned as a binding field for molecular machines.
Molecular machines incorporated into molecular assemblies or porous structures are ex-
pected to exhibit specific behaviors. In addition, the conjugation of molecular machines
and material functions may become possible by confining them in such spaces and endow-
ing them with materials. Below are some examples of studies incorporating molecular
machines into nanospaces.

Soft and oriented liquid crystal structures provide soft nanospaces. By incorporating
molecular functions into the liquid crystal nanospace, macroscopic motion can be induced
in the liquid crystal material. Feringa, Chen, and co-workers reported the incorporation of
light-driven rotary molecular motors into liquid crystalline polymer networks to control
the dynamic behavior of composite materials (Figure 25) [326]. The chiral molecular motors
based on sterically dense alkenes used here can be driven by light in a non-invasive manner
to rotate in one direction. The rotational cycle process of the motors includes not only
molecular geometrical changes but also helicity change steps. It was demonstrated that the
motion of the molecular machine due to dynamic chirality was cooperatively amplified,
resulting in macroscopic directional motion. First, racemic and enantiomerically pure
motors were copolymerized with liquid crystal monomers. In addition, with the help of
photolithography technology and other techniques, molecular motors have nanoarchitec-
tonically created a material that is incorporated within an oriented structure in a polymer
liquid crystal film. Polymer liquid crystal films containing racemic motors can move on the
surface by high-speed wave-like motion, as well as by light-triggered bending. On the other
hand, films containing enantiomerically pure motors exhibit synchronized helical motion
with different handedness upon UV irradiation. Such studies will explore the possibility
of driving photoresponsive materials by programming the rotational motion of molecular
motors. The goal will be to design highly responsive and adaptive soft materials and to
develop functional materials with complex motility.

Attempts are also being made to drive molecular motors within the nanospace of
MOFs. Browne, Feringa, and co-workers have shown that stereoscopically interpenetrated
alkene molecular motors can be incorporated into MOF pillars and rotate under visible
light [327]. The framework is constructed from two functional sites. Palladium–porphyrin
is designed as the linker of the framework and the bispyridyl-derived molecular motor
as the pillar. The palladium–porphyrin is a photosensitizer, and the motor portion of the
framework is capable of rotational motion using low-energy green light. In other words,
this porphyrin skeleton is not only a scaffold, but also absorbs visible light and transfers the
collected energy to the molecular motor. This energy transfer process drives the rotational
motion of the motor. In fact, an efficient triplet energy transfer between the porphyrin
linker and the molecular motor was observed. Due to the good spatial arrangement of
the chromophores in the MOF, the energy transfer between the photosensitizer and the
molecular motor is efficient. As a result, photochemical isomerization of the molecular
motor could be achieved with green 530 nm light. Near-infrared Raman spectroscopy
confirms that the visible-light-driven rotation of the molecular motor proceeds in the solid
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state at a similar rate to that observed in solution. The nanospace of the MOF provides
a large free volume. This is an essential nanoarchitectonics element for the unhindered
rotation of light-driven molecular motors in the solid state. This study demonstrates that
the rotational motion of molecular motors in MOFs can be driven by visible light. It would
be possible to apply this technology to molecular membranes and pumps that can accelerate
the flow of gases by optical stimulation. Alternatively, miniaturized chemical reactors that
can accelerate the inflow of reactants and outflow of products using visible light as a power
source could be created in combination with catalytic functions. Furthermore, it may be
possible to further shift the excitation wavelength to red light by using photosensitizers or
molecular perturbations of molecular motors.
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Theoretical approaches to MOFs incorporating molecular motors have also been
made. Photoresponsive molecular motors embedded in the nanospaces of porous materials
with some degree of softness, such as MOFs, are expected to behave in a collective and
coordinated manner. Such behavior is expected to amplify the motion of individual motor
units. However, a thorough understanding of the dominant interactions at the atomic scale
of such systems has been lacking. This is a necessary element to predict and fully explore
the potential of MOFs incorporating molecular motors. Kolodzeiski and Amirjalayer have
advanced a theoretical approach to elucidate the collective conformational behavior of
MOFs incorporating molecular motors (Figure 26) [328]. The influence of the interaction
between molecular motors on the local and global properties of the framework was pursued
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by conformational studies. Computational studies were performed for structures with
simple cubic MOF-5 topology and organic linkers functionalized by molecular motor units.
In particular, the role of linker interactions and the influence of the molecular motor state
on the structure of the MOF scaffold were investigated. The symmetry of the motor-
functionalized linkers breaks the symmetry of the simple cubic topology. Correspondingly,
crystallographic direction-dependent anisotropy arises. These properties are expected to
be partially stable at room temperature. It is also revealed that chiral pores and planes can
exist within this structure. The latter finding, along with the local chirality of molecular
motors, is a promising property for applications such as chiral gas separation, sustainable
molecular storage, and sensing. The importance of studying the influence of different
network topologies beyond the local structure is demonstrated. A more comprehensive
overall picture of the structural properties of molecular motors embedded in highly ordered
nanospace structures needs to be revealed. More generally, this will pave the way to
elucidate the properties and functions of dynamic properties such as unidirectional rotation
as they are reflected at the material level.
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As seen in the above examples, various functions and phenomena can be studied by
incorporating molecular motors into the backbone of porous skeletal structures: for exam-
ple, non-equilibrium phenomena between the host and guest in three-dimensional solid
materials, nanoactuation, and molecular transport. However, the relationship between the
structure of the underlying porous nanospaces and the mobility of molecular motors is not
fully understood. Lotsch, Feringa, Krause, and co-workers have developed crystallinity-
controlled COFs with a diamine-based light-driven molecular motor (Figure 27) [329].
Unlike the use of amorphous polymeric materials or other materials as matrices, COFs, in
principle, have the ability to precisely arrange reactive molecules within their crystalline
backbone, similar to MOFs. Two-dimensional COF-based nanoarchitectonics can provide
a nanospace environment in which both crystallinity and porosity are preserved. A crys-
talline two-dimensional COF structure with stacked hexagonal layers containing 20 mol%
molecular motors was created. The arrangement of molecular motors in the nanospace
is crucial for amplifying and coordinating the movement of molecular machines. To this
end, the composition, porosity, molecular structure, and skeletal structure of the COFs are
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investigated. Even if the available pore size exceeds the radius of rotation of the motor, the
rotation of the molecular motor is not completely allowed. Intermolecular interactions from
adjacent layers may hinder or limit the rotations of the motor. Therefore, it is essential to
consider structural properties such as interlayer interactions and stacking offsets resulting
from the stacked layers. Using molecular motor units with heteroatom or 13C-enriched
structures such as fluorine, and advanced in situ solid-state NMR techniques, the rotation
of the motors can be observed in detail. The interlayer dynamics and dynamic host-guest
properties induced by the light-response dynamics of the molecular motors embedded
in the framework can also be studied. Data from such studies can be used for molecular
dynamics simulations, providing a multifaceted method to investigate design guidelines
for the operation of light-driven molecular motors in porous solids.
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Developments in coordination chemistry, supramolecular chemistry, and materials
science have made possible the nanoarchitectonics of materials that provide nanospaces that
can be precisely designed, as seen in MOFs and COFs. In them, molecular motors and other
molecular machines can be immobilized and their movements can be precisely studied.
Not only is the correlation between individual molecular motors and space an important
target of study, but also the joint movement and accumulation of molecular machines and
the interlocking of the movement of molecular machines with matrix materials such as
frameworks. The latter two elements, in particular, will also be necessary processes to
amplify the nano-level movements of molecular machines to the material level.
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5. Summary and Perspectives

Thus far, we have been discussing various nanoarchitectonics approaches in different
media under various conditions [104,330–332]. These previous reviews elucidate the impor-
tance of surrounding environments including nanospace confinements. Reevaluations of
nanoarchitectonics for dynamic functions and molecular machines on the basis of confined
space environments are necessary. Therefore, this review provides an overview of dynamic
functions in various confined spaces. They can be summarized as follows. Molecular
space is mainly composed of molecules themselves or supramolecular structures. The
size of the space is at the molecular level. Therefore, the functions of the molecules and
ions trapped there are dynamically perturbed. Such phenomena are useful for elucidating
the basic physical properties of functional molecules. The development of coordination
chemistry, supramolecular chemistry, and materials science has made it possible to create
precisely designed material nanospaces such as MOFs and COFs. Material nanospaces
are also associated with large objects and linked to bulk functions. Thus, the functions in
materials nanospace can be linked to macroscale phenomena. In addition, the properties
of nanospaces in disordered materials remain unexplored and will be the focus of future
research. Biomolecules and biostructures have a sophisticated ability to provide nanospace
skillfully. By modifying biomolecular systems that originally possess this high capability
and expressing functions through confined space, it is possible to modify functions at a
higher level. Totally, it can be considered that there is a great potential in the development
of functions using bionanospace.

Surface space and internal nanospace are considered as confined spaces for the devel-
opment of functions of molecular machines. Surface nanospace enables the high-resolution
analysis of molecular machines. The details of multi-step and sequential dynamic changes,
such as in molecular machines, can be analyzed at high resolution with confinement to the
surface. This will reveal more detailed mechanisms of molecular machine operation, paving
the way for the advanced analysis of machine behavior and realistic device construction.
Molecular motors and other devices can be immobilized in nanospaces within materials
such as MOFs and COFs, and their movements can be precisely controlled. In this case,
the joint movement and integration of molecular machines and the interlocking of the
movement of molecular machines with matrix materials such as frameworks will also
be important. This process is also necessary to amplify the nano-functions of molecular
machines to the material level.

What these examples show is that not only the central functional unit but also the
surrounding spatial configuration is necessary for higher functional expression. In this
regard, it can be imagined that the superiorities of bio-systems are due to the fact that
biological systems have evolved functional systems based on such design principles. Such
a role is played by nanoarchitectonics. It can not only develop functional units but also
construct entire systems. For example, external environment-dependent doping can be
performed by linking chemical reactions and other processes to the nanospaces that make
up organic semiconductors [333]. Such designs can lead to the development of devices
and sensors that can respond to the environment [334–336]. However, as indicated in this
review, confined space is diverse. The number of possible systems is a combination of the
diversity of functional units and the diversity of spaces, and thus the number of candidates
is enormous. Chemical structures and molecular motions under engineering aspects should
be made clearer by summarized discussion on the regarded structures and functions,
comparing, for example, length and volume scales, forces, rigidity, stability, robustness
time constants, repetition rates, actuation principles, and so on. However, it might be
difficult to select the appropriate system from among them only by experimental experience
and intuition. Fortunately, mankind has developed artificial intelligence as a means of
coping with the enormous information abundance. Methodologies have been proposed
for the application of machine learning to chemical/material systems [337–341] and the
concept of materials informatics [342–344]. For the preparation and use of nanospaces
(nanopores, etc.), an attempt to link nanoarchitectonics and materials informatics has also
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been proposed [345,346]. Functional development is not only about the functional unit
itself, but also about the control of the space that accommodates it. Nanoarchitectonics will
play important roles in the architecture of such a total system. In doing so, the cooperation
of emerging technologies such as artificial intelligence will be necessary.
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