
Citation: Cirstea, M.; Benkrid, K.;

Dinu, A.; Ghiriti, R.; Petreus, D.

Digital Electronic System-on-Chip

Design: Methodologies, Tools,

Evolution, and Trends. Micromachines

2024, 15, 247. https://doi.org/

10.3390/mi15020247

Academic Editor: José de Jesús

Rangel Magdaleno

Received: 3 January 2024

Revised: 30 January 2024

Accepted: 31 January 2024

Published: 7 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Review

Digital Electronic System-on-Chip Design: Methodologies, Tools,
Evolution, and Trends
Marcian Cirstea 1,* , Khaled Benkrid 2, Andrei Dinu 3, Romeo Ghiriti 4 and Dorin Petreus 5

1 School of Computing and Information Science, Anglia Ruskin University, East Road, Cambridge CB1 1PT, UK
2 Arm Ltd., 110 Fulbourn Rd, Cambridge CB1 9NJ, UK
3 Collins Aerospace, Fore 3, Huskisson Way, Stratford Road, Shirley B90 4SS, UK
4 Exquisite IT Ltd., 33 Stokes Drive, Huntingdon PE29 2UW, UK
5 Applied Electronics Department, Technical University of Cluj-Napoca, Baritiu Street, 400027 Cluj-Napoca,

Romania; dorin.petreus@ael.utcluj.ro
* Correspondence: marcian.cirstea@aru.ac.uk

Abstract: This paper reviews the evolution of methodologies and tools for modeling, simulation, and
design of digital electronic system-on-chip (SoC) implementations, with a focus on industrial electronics
applications. Key technological, economic, and geopolitical trends are presented at the outset, before
reviewing SoC design methodologies and tools. The fundamentals of SoC design flows are laid out.
The paper then exposes the crucial role of the intellectual property (IP) industry in the relentless
improvements in performance, power, area, and cost (PPAC) attributes of SoCs. High abstraction levels
in design capture and increasingly automated design tools (e.g., for verification and validation, synthesis,
place, and route) continue to push the boundaries. Aerospace and automotive domains are included as
brief case studies. This paper also presents current and future trends in SoC design and implementation
including the rising, evolution, and usage of machine learning (ML) and artificial intelligence (AI)
algorithms, techniques, and tools, which promise even greater PPAC optimizations.

Keywords: system-on-chip (SoC); design methodology; field programmable gate array (FPGA);
electronic design automation (EDA); electronic system level (ESL) design; high level synthesis (HLS);
artificial intelligence (AI); machine learning (ML); generative design; prompt engineering

1. Introduction

The relentless march of Moore’s law [1] has enabled the computing industry to provide
exponential increases in computing power to consumers globally, throughout the last six
decades. The underlying developments in semiconductor technologies (such as in materials,
laser optics, lithography) are now enabling atomic-size miniaturization levels with billions
of transistors integrated into a single chip. The design methodologies of these chips have
also had to evolve markedly over several decades. From manual design in the early
years of the industry, to computer-aided design (CAD), and now to artificial intelligence
(AI)-assisted electronic design automation (EDA) tools, none of the above progress could
have happened without this evolution in design methodologies. These days, EDA tools
are supporting the design of multi-die system-on-chips (SoCs), optimizing for billions of
parameters to meet specific performance, power, area, cost (PPAC) constraints.

In order to achieve an enabling design environment that allows simultaneous consid-
eration of all engineering system parameters at an early stage in the design process, holistic
modelling and simulation of complex electronic systems is key. The use of high-level
languages enables the evaluation of an idea in the early stages of the design process, as they
allow the initiation/setup of a test environment at an abstract functional level. Therefore,
they constitute an appropriate solution for the description of novel designs. The outcome
of this system-level approach is a design environment based on modern EDA tools that
enables an early-stage hardware/software partitioning of the design along with functional

Micromachines 2024, 15, 247. https://doi.org/10.3390/mi15020247 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi15020247
https://doi.org/10.3390/mi15020247
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0003-3373-9816
https://orcid.org/0000-0001-9238-6729
https://doi.org/10.3390/mi15020247
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi15020247?type=check_update&version=1

Micromachines 2024, 15, 247 2 of 24

simulation ahead of synthesis, timing analysis, and verification, hence optimizing for spe-
cific PPAC sweet spots. We summarize the evolution of electronic systems over the decades
along the following parameters (DIGIT):

Down-up or bottom-up: refers to the traditional way in which electronic systems were
designed and built, i.e., starting at the bottom of an imaginary pyramid of building
blocks and leading up to a complete system.

Informatics: the explosion of data and information brought about by the evolution of
memory and communications technologies, including the Internet, has led to a rising
demand for increasingly complex electronic systems.

Globalization: the relentless march of globalization since the 1980s has led to extreme
specialization in various parts of supply chains, which in turn led to huge productivity
gains leading to further pressures on complexity of use cases and underlying new
electronic systems.

Integration: the above led to the integration of more functionality into electronic
systems, including chips which became system-on-chips over time, with various types
of processors to suit multiple needs, e.g., CPUs, GPUs, DSPs; analogue front ends,
e.g., for sensors or radio receivers; various memory types; transceivers; and switch
fabrics. These are now increasingly built from chiplets integrated together in 2.5D or
3D under a single package.

Top-down: the above is driving more top-down design methodologies, making
use of higher levels of abstraction in design specification, optimization, verification,
validation, and testing.

The remainder of this paper will revise the evolution of EDA methodologies, tools, and
target technologies, outline the fundamentals of SoC design flows in industrial electronics,
and showcase the crucial role of the intellectual property (IP) industry. Two application
domains were chosen as case studies to briefly demonstrate the above evolution, aerospace,
and automotive engineering, before outlining emerging/future trends in electronic design
automation. A summary will finally be provided.

2. Overview of System-on-Chip Design Methodologies and Tools
2.1. Brief Historical Evolution of Electronic Systems Design Methodologies and Tools

As mentioned earlier, the last six decades saw an unprecedented evolution of computa-
tional capacity, both in terms of software and hardware, with an exponential growth of the
integration scale of silicon devices targeted for electronic circuit hardware implementation
(following Moore’s Law). Another major advent was the apparition and exponential growth
of the Internet. To cope with this growth, we have also seen an evolution of computer-aided
engineering design tools for electronics, now known as electronic design automation (EDA)
tools, which have evolved from ‘islands of automation’ to integrated and automated design
packages, able to handle higher levels of abstraction and complexity [2].

A range of early initiatives/developments aimed to achieve an overall engineering
systems modeling environment at higher levels of abstraction, enabling the creation of a
test environment early in the design cycle. This allowed for more holistic evaluation of
engineering systems with optimized integrated functionality, further enabling the more
detailed design of its components. Just a few attempts are mentioned here. Rosetta was an
IEEE initiative (1999) of system-level design language that allowed users to create reusable
components that specify the structure and behaviors of their system and subsystems. It
targeted the modeling of engineering systems that combined complex electronics with
complex mechanical systems. The Millenium Machine (2000) was a pioneering initiative of
the Engineering and Physical Sciences Research Council (EPSRC), UK, for holistic modeling
of engineering systems (systems of systems). The aim was to achieve a fully digital model
of an engineering system (for example a car or an aircraft). The more recent Modelica is an
object-oriented equation-based modeling language for complex physical systems containing
mechanical, electrical [3], electronic, hydraulic, thermal [4], control, power/energy [5], or

Micromachines 2024, 15, 247 3 of 24

process-oriented components. It allows, for example, the graphical modeling of electronic
components (linked to SPICE) or mechanical parts (Dymola, offering models for CATIA).

Another step was the evolution of tools such as MATLAB and Simulink, used fre-
quently in electronic systems’ mathematical modeling, which had dedicated toolboxes
added, thus streamlining the hardware implementation of digital controllers associated
with the system modeled. The latter could be electronic, electrical, and/or mechatronic,
therefore bridging the gap between mathematical modeling and hardware prototyping
tools, such as those based on microprocessor/DSP compilers or hardware description lan-
guages (HDLs) [6] and facilitating hardware implementation in field programmable gate
arrays (FPGAs) or application-specific integrated circuits (ASICs). Due to the increased
availability of FPGAs, which contain microprocessor/DSP cores, as multi-million-gate
digital and reconfigurable system-on-chip, design methods had to adapt to enable faster
time-to-market for complex products.

Such examples, although not exhaustive, illustrate a trend towards EDA tools in-
tegration and their evolution towards a higher level of abstraction, in order to address
top-down electronic systems’ complex functionality and achieve combined/integrated
optimization [2]. Through such EDA tools, an electronic system’s functional description
and its electronic design details are rigorously combined ahead of implementation. A
top-down holistic design approach (Figure 1) enables engineering systems and associated
electronic controllers to be developed faster and offers added benefits by creating a test
environment at an early stage in the design cycle to evaluate system performance. They
also generate reusable design modules and enable hardware/software co-design [7].

Micromachines 2024, 15, x FOR PEER REVIEW 3 of 26

of the Engineering and Physical Sciences Research Council (EPSRC), UK, for holistic
modeling of engineering systems (systems of systems). The aim was to achieve a fully
digital model of an engineering system (for example a car or an aircraft). The more recent
Modelica is an object-oriented equation-based modeling language for complex physical
systems containing mechanical, electrical [3], electronic, hydraulic, thermal [4], control,
power/energy [5], or process-oriented components. It allows, for example, the graphical
modeling of electronic components (linked to SPICE) or mechanical parts (Dymola,
offering models for CATIA).

Another step was the evolution of tools such as MATLAB and Simulink, used fre-
quently in electronic systems’ mathematical modeling, which had dedicated toolboxes
added, thus streamlining the hardware implementation of digital controllers associated
with the system modeled. The latter could be electronic, electrical, and/or mechatronic,
therefore bridging the gap between mathematical modeling and hardware prototyping
tools, such as those based on microprocessor/DSP compilers or hardware description
languages (HDLs) [6] and facilitating hardware implementation in field programmable
gate arrays (FPGAs) or application-specific integrated circuits (ASICs). Due to the in-
creased availability of FPGAs, which contain microprocessor/DSP cores, as mul-
ti-million-gate digital and reconfigurable system-on-chip, design methods had to adapt
to enable faster time-to-market for complex products.

Such examples, although not exhaustive, illustrate a trend towards EDA tools inte-
gration and their evolution towards a higher level of abstraction, in order to address
top-down electronic systems’ complex functionality and achieve combined/integrated
optimization [2]. Through such EDA tools, an electronic system’s functional description
and its electronic design details are rigorously combined ahead of implementation. A
top-down holistic design approach (Figure 1) enables engineering systems and associ-
ated electronic controllers to be developed faster and offers added benefits by creating a
test environment at an early stage in the design cycle to evaluate system performance.
They also generate reusable design modules and enable hardware/software co-design [7].

Figure 1. Principle of top-down hardware/software co-design.

2.2. Electronic Systems—Design Methods and Target Technologies
Reflecting on the evolution of design methods, after the transition of methodologies

of electronics systems from a bottom-up approach, based on schematic entry (netlist) of
the intended circuit, to an HDL-based top-down approach, the next significant step
change was marked by electronic system level (ESL) design methods. It can be said that
these render an even higher level of abstraction, handle increased complexities at system
level, and enable the implementation of digital systems combining hardware and soft-
ware solutions. In the context of ESL design methods, this subsection also covers the
emergence of FPGAs and ASICs as target implementation technologies.

2.2.1. Text-Based High-Level Synthesis (HLS) Design Methods
A first category design methodologies is represented by those taking an ESL ap-

proach, by making use of text-based HLS tools [8], which enable the behavioral system
description developed using a high-level language (such as System-C) to be transformed
into a register transfer level (RTL) implementation/description [9,10]. In this approach,

Figure 1. Principle of top-down hardware/software co-design.

2.2. Electronic Systems—Design Methods and Target Technologies

Reflecting on the evolution of design methods, after the transition of methodologies of
electronics systems from a bottom-up approach, based on schematic entry (netlist) of the
intended circuit, to an HDL-based top-down approach, the next significant step change was
marked by electronic system level (ESL) design methods. It can be said that these render an
even higher level of abstraction, handle increased complexities at system level, and enable
the implementation of digital systems combining hardware and software solutions. In the
context of ESL design methods, this subsection also covers the emergence of FPGAs and
ASICs as target implementation technologies.

2.2.1. Text-Based High-Level Synthesis (HLS) Design Methods

A first category design methodologies is represented by those taking an ESL approach,
by making use of text-based HLS tools [8], which enable the behavioral system description
developed using a high-level language (such as System-C) to be transformed into a register
transfer level (RTL) implementation/description [9,10]. In this approach, adopted in many
industrial applications targeting FPGAs [11], the underlying details of implementation are
not visible to the user and their automatic generation enables a shorter time to market and
reduces the fabrication costs.

In the evolution of design methods and tools, the flexibility and choice of modeling
styles offered by HDLs became insufficient at some stage. C-Synthesizer and System-C are
examples of more efficient system design environments/compilers, which allow high-level
language modeling/simulation/design of electronics/mechatronics systems and electronic
controller system-on-chip implementation, with power efficiencies, especially relevant to
Internet of Things (IoT) applications with microcontrollers and FPGAs often as popular

Micromachines 2024, 15, 247 4 of 24

targets [12,13]. Hardware/software co-design is also facilitated [14] in a holistic approach.
With increased system complexity, network-on-chip (NoC) technology emerged as an
effective and efficient system component [15,16].

2.2.2. Schematic-Based/Graphical Electronic System Level (ESL) Design Methods

A second category of ESL design approaches is that based on schematic or visual
programming. The tools facilitating the top-down approach enable the design to be devel-
oped at high level of abstraction, in a graphical format. There are two popular families of
tools in this category, namely the Mathworks family, which includes Matlab [17–19] and
Simulink [20,21], and the National Instruments (NI) family, which includes Labview [22–24]
and can make use of third-party tools such as ModelSim [25,26]. They provide compo-
nent libraries for the modeling and simulation of electronic and mechatronic systems and
include models of semiconductors, motors, drives, sensors, and actuators [27].

From such tools, it is possible to deploy models to other simulation platforms. C-code
or HDL generation is possible, too, thus facilitating direct hardware implementation of com-
plex digital systems. In combination with FPGA technology for implementation, such tools
also facilitate the hardware-in-the-loop (HIL) approach to electronic systems design [28,29],
where part of the system being designed and developed (either the controller or the con-
trolled plant) is modelled and simulated in conjunction with real hardware elements, thus
enabling an effective evaluation and validation of a complex electronic/engineering sys-
tem’s behavior. This makes use of the novel concept of ‘Digital Twin’ (DT) [30–32]—a
virtual representation serving as real-time digital counterpart of a physical engineering
system or functional process. DTs are essentially using real-time data from sensors to
monitor a physical object. Their use can improve efficiency and predict future performance.
DTs are nowadays increasingly used by organizations such as Ocado, Rolls-Royce, NASA,
and Ford [32] or for managing risk in security critical environments [33].

2.2.3. FPGAs and ASICs

In the 1980s, a new underlying computing technology emerged, FPGA, initially as
interface with microprocessors (undertaking tasks that can render themselves to parallel
processing). In its basic form, an FPGA is defined as a matrix of interconnected configurable
logic blocks (CLBs) [34]. In most cases, these hardware structures are reprogrammable (can
be reconfigured), several such technologies being available (Flash, EPROM, SRAM). Since
then, a range of FPGA devices have been developed and they have grown to a technology
of established maturity [30]. These have initially enabled rapid prototyping of products
but nowadays are more and more used as mainstream implementation target. Recent
FPGAs also feature A/D converters and fast I/Os, enabling easy integration with mixed
analog/digital peripherals, and high-speed transceivers. Such devices are generally suited
for high speed and demanding industry applications.

Some design tools associated with this technology are very user friendly; designers
can develop hardware architectures dedicated to the implementation of a certain control
algorithm. The hardware validation of the design, following the earlier stages of circuit design
and simulation, is facilitated by the use of FPGA, either as permanent hardware target of the
product or as prototyping ahead of a permanent chip implementation in an ASIC.

Thus, re-programmable FPGA devices provide a fast and relatively low-cost method to
validate electronic controllers and system designs, in conjunction with modern EDA tools,
leading quickly to well-verified designs ahead of final implementation. Following historical
developments, nowadays complex FPGAs also include high end microprocessor cores [35],
thus eliminating the dilemma of choosing between hardware fabric or a processor-based
architecture; the ‘right’ hardware target device for a digital electronic controller is often an
embedded system-on-chip [30].

Micromachines 2024, 15, 247 5 of 24

2.3. SoC Design Methodologies and Tools—Users and Enablers of AI

The use of EDA tools and techniques for electronic systems design facilitates easy
development and hardware implementation of intelligent controllers employing complex
algorithms, leading to AI-based designs for industrial applications [36–40]. Their quick
route to hardware and the flexibility offered, especially through embedded system-on-chips,
enable hardware/software co-design and implementation [41].

The rise of deep neural networks (DNNs) driven by higher computational capabilities
and improved algorithmics has allowed for more embedded and powerful intelligence in
modern SoCs. Moreover, hardware-based neural networks are offering to industry higher
performance and low power consumption compared to pure software implementations,
exploiting the vast parallelization opportunities offered by DNN computations, and they
can be embedded in a wide range of systems [38]. Cost is being addressed by the scale of
consumer electronics harnessing this technology as well as the exponential growth in cloud
computing. It is worth noting that FPGAs often occupy an interesting PPAC sweet spot.

High-level descriptions of the neural algorithms in an industry standard that allows
full simulations and fabrication also constitute essential aspects for achieving advanced AI
systems. Traditional machine learning (ML) as well as DNN models can be captured in tools
such as MATLAB software libraries. Python or C-based high-level hardware languages
constitute other popular formats [37,39].

3. Industrial SoC Design
3.1. Fundamentals of SoC Design Flows

As tool outline, Figure 2 gives a high-level view of a typical SoC design flow. In such
flow, firstly, high level requirements are distilled into functionality with PPAC requirements
of the desired SoC. Many inputs are needed for this to happen, including the following:

- Marketing requirements: a gap is found in market offerings, e.g., an unserved segment
of user needs, or opportunity for differentiation on cost or functionality compared to
competition.

- Incremental improvements from previous products, e.g., moving to next generation
semiconductor node, or leveraging a new memory or interconnect technology.

- New application area requirements, e.g., a new machine learning (ML)/artificial
intelligence (AI) paradigm which can benefit from custom acceleration.

Micromachines 2024, 15, x FOR PEER REVIEW 6 of 26

Figure 2. A high-level view of a SoC design flow.

The above are usually captured in high level language with some formal rules,
document templates for example, or an engineering requirement management tool such
as SysML [42]. A functional model is then developed to capture the required functional-
ity, i.e., what the SoC should produce in response to various user inputs, for example.
This is usually conducted using a high-level language (C/C++) with low-level imple-
mentation details (block architecture, execution speed, or power consumption) abstracted
away. What follows is an iterative process of architectural domain exploration which
partitions the systems into various blocks including processors, domain-specific
co-processors or accelerators, memory, interconnects, and communication interfaces.
Design space exploration depends on many inter-related technical and non-technical
inputs, linked to questions like [43]:
- Which processor(s) or core(s) to use? Standard or custom, self-developed or from

third party?
- Which co-processors, if any, and which peripherals to use? Standard or custom,

self-developed or from third party? Such co-processors include graphic processing
units (GPUs), digital signal processors (DSPs), and neural processing units (NPUs).

- Which software stack to use? This includes operating system choice if any, and
availability of various software stack layers. This choice is intimately related to the
choice of processors/co-processors.

- Which memory types and hierarchy to use? Standard or custom, self-developed or
from third party?

- Which type of interconnect to use? Bus architecture or network-on-chip, standard or
custom, self-developed or from third party?

- Security of supply including support, e.g., if a third-party supplier of a component
fails to deliver, for any reason, is there at least a second source supplier? Geopolitical
turmoil is playing an increasingly important role in the choice of suppliers these
days as export controls make certain technologies and suppliers impossible to ac-
cess. In some industries, such as automotive, security of supply and support over a
long period of time is a fundamental requirement.
The reuse of existing intellectual property (IP) blocks and corresponding high-level

models has been an important driver of higher performance and higher quality SoCs at
economic prices. Reuse of various software stacks is also another important driver.
Throughout the process, PPAC constraints are at the forefront of the system architect’s
mind as they make partitioning decisions, initial estimates of performance, power, area,

Figure 2. A high-level view of a SoC design flow.

The above are usually captured in high level language with some formal rules, document
templates for example, or an engineering requirement management tool such as SysML [42].
A functional model is then developed to capture the required functionality, i.e., what the SoC

Micromachines 2024, 15, 247 6 of 24

should produce in response to various user inputs, for example. This is usually conducted
using a high-level language (C/C++) with low-level implementation details (block architecture,
execution speed, or power consumption) abstracted away. What follows is an iterative
process of architectural domain exploration which partitions the systems into various blocks
including processors, domain-specific co-processors or accelerators, memory, interconnects,
and communication interfaces. Design space exploration depends on many inter-related
technical and non-technical inputs, linked to questions like [43]:

- Which processor(s) or core(s) to use? Standard or custom, self-developed or from
third party?

- Which co-processors, if any, and which peripherals to use? Standard or custom, self-
developed or from third party? Such co-processors include graphic processing units
(GPUs), digital signal processors (DSPs), and neural processing units (NPUs).

- Which software stack to use? This includes operating system choice if any, and
availability of various software stack layers. This choice is intimately related to the
choice of processors/co-processors.

- Which memory types and hierarchy to use? Standard or custom, self-developed or
from third party?

- Which type of interconnect to use? Bus architecture or network-on-chip, standard or
custom, self-developed or from third party?

- Security of supply including support, e.g., if a third-party supplier of a component
fails to deliver, for any reason, is there at least a second source supplier? Geopolitical
turmoil is playing an increasingly important role in the choice of suppliers these days
as export controls make certain technologies and suppliers impossible to access. In
some industries, such as automotive, security of supply and support over a long
period of time is a fundamental requirement.

The reuse of existing intellectual property (IP) blocks and corresponding high-level
models has been an important driver of higher performance and higher quality SoCs
at economic prices. Reuse of various software stacks is also another important driver.
Throughout the process, PPAC constraints are at the forefront of the system architect’s
mind as they make partitioning decisions, initial estimates of performance, power, area,
and cost consequences of particular choices, iterating before settling on a partition that
meets or is as close as possible to the desired PPAC requirements.

Once a partition has been chosen, an electronic system level (ESL) model is produced.
This is captured in languages such as SystemC [44] or SystemVerilog [45]. High level
synthesis then takes over. This includes the following:

- Logic synthesis: Converting high level ESL models into register-transfer level (RTL)
descriptions of logic e.g., processor, glue logic. Verilog [46] or VHDL [47] hardware
description languages (HDLs) are generally used to capture RTL. The reuse of pre-
designed pre-verified IP blocks is popular for faster time to market and economic
efficiency. High-level synthesis (HLS) tools are also sometimes used to generate RTL
from high level languages, e.g., C/C++ [48] or Python [49], although this is mostly
performed in field programmable gate array (FPGA) designs [50]. Note that the
RTL generated in this phase is called behavioral RTL, as it does not depend on any
underlying implementation technology yet. The next synthesis phase will take the
implementation technology into account.

- Memory synthesis: converting high level memory transaction models into memory
blocks with input/output ports, bit width information etc.

- Interconnect synthesis: Interconnect plays a crucial role in meeting PPAC constraints;
for example, logic occupancy can be severely impacted if logic cannot access the right
data at the right time. This step is about converting the high-level communication
needs into the right interconnect architecture, e.g., bus hierarchy or network-on-chip
(NoC), with commensurate details. Here again, reuse of pre-designed pre-verified
interconnect is popular.

Micromachines 2024, 15, 247 7 of 24

The next phase is to synthesize RTL with target technology information. These are
usually available in the form of technology libraries, e.g., basic logic or memory block/cells.
This phase also includes clock and power/ground network synthesis. Tools used for this
phase include Synopsys Design Compiler [51] or Cadence Genus RTL Synthesis [52]. The
result is a technology-informed RTL netlist.

Throughout the above process, validation and verification steps using simulation
models and sometimes formal methods take place to make sure every iteration model is
consistent with previous stage models and with the SoC functional requirements. Test-
benches with constraints derived from functional requirements, synthetic, and real-world
stimuli are routinely used for his purposes. Tools used for this purpose include Siemens
EDA (ex-Mentor Graphics) Questa [53], Synopsys VCS [54], and Cadence Incisive [55].

Depending on target implementation technology, e.g., ASIC or FPGA, a place and
route phase takes place following RTL synthesis. The former (place) allocates various
SoC blocks (all the way down to discrete transistors) to specific coordinates in a 2D or 3D
space, whereas the latter (route) selects the specific routes that various nets take to connect
the SoC components (from blocks all the way down to transistors). Various electronic
design automation (EDA) tools are used in this phase including Siemens EDA’s Calibre [56],
Synopsys’ Silicon Compiler [57], and Cadence’s Innovus [58]. These tools optimize for user
parameters, e.g., speed, area, and power, supplied in the form of constraints or intents. As
the SoC design moves through lower levels of abstractions, various verification, validation,
and equivalence checking processes are usually executed to ensure consistency across the
phases and with the original functional model.

The final layout (in GDSII format) can then go to a Foundry for “tapeout”. Chips are
subsequently tested, and then diced off the wafer and packaged. Final packaged SoCs are
graded through various tests, e.g., to determine speed grades that account for fabrication
variations or downgraded because of faults in parts of the SoC. The physical layout of a
commercial SoC is provided as illustration in [59].

3.2. The Role of the Intellectual Property (IP) Industry

The relentless increase in the complexity of modern SoCs has led over the years to an
increased level of specialization at various supply chain stages, as shown in Figure 3.

Micromachines 2024, 15, x FOR PEER REVIEW 8 of 26

The relentless increase in the complexity of modern SoCs has led over the years to an
increased level of specialization at various supply chain stages, as shown in Figure 3.

Figure 3. Specialization of SoC development tasks. (* points to the place of EDA Tools in diagram).

The intellectual property (IP) market, in particular, allowed for the development of
high-quality, high-performance IP blocks, e.g., processor cores, interconnect, optimized
memory blocks, standard, and customized library cells, to suit the needs of various par-
ties in the supply chain. The latter would license such pre-designed pre-verified IP blocks
and configure them to suit their own needs. This extreme specialization allowed the
semiconductor industry to continue to deliver higher and higher customer value at the
same or even lower price, although the cost of SoC development has increased massively.

Complex software stacks are used and reused thanks to standard processor IPs,
mostly following the Arm architecture these days. As stated above, software compatibil-
ity is often a deciding factor in the choice of a particular IP in a SoC design.

3.3. Brief Comparative Analysis of SoC Design Methodologies and Tools
The evolution outlined in earlier subsections indicates that whereas both graph-

ic-based methods and text-like methods are being effective in providing designers with
useful tools and techniques for developing novel electronic systems design, both of these
categories need to handle a high level of abstraction in order to cope with increasingly
complex functionality. They also need the ability to communicate with other tools, from
the electronics domain and other areas, in order to address the increasing interdiscipli-
narity nature of products and services required by industry and the market. If we are to
look at each category, the schematic-based tools cover the entire system design cycle, but
Mathworks family tend to handle higher levels of abstraction (mathematical modelling),
whereas the National Instruments family can cope better with the details of physical im-
plementation, being particularly useful in mechatronics and robotics systems for exam-
ple, where various sensors and actuators are involved. The text-based methods can per-
haps more flexibly flow from abstract modelling to details of implementation, with a
range of vendor specific libraries and tools being available to support the flow. All tools,
however, need to accommodate increased system complexity, a variety of target devices
for implementation and effective inter-tool communication, in order to be viable and to
address the current challenges highlighted later in this paper.

SoCs are employed with various roles, generating (for example) signals for control-
ling power converters; such control does not require the computing power of a custom
SoC as such but uses FPGAs for digital controller implementation. Tools for such digital

Figure 3. Specialization of SoC development tasks. (* points to the place of EDA Tools in diagram).

The intellectual property (IP) market, in particular, allowed for the development of
high-quality, high-performance IP blocks, e.g., processor cores, interconnect, optimized
memory blocks, standard, and customized library cells, to suit the needs of various parties

Micromachines 2024, 15, 247 8 of 24

in the supply chain. The latter would license such pre-designed pre-verified IP blocks
and configure them to suit their own needs. This extreme specialization allowed the
semiconductor industry to continue to deliver higher and higher customer value at the
same or even lower price, although the cost of SoC development has increased massively.

Complex software stacks are used and reused thanks to standard processor IPs, mostly
following the Arm architecture these days. As stated above, software compatibility is often
a deciding factor in the choice of a particular IP in a SoC design.

3.3. Brief Comparative Analysis of SoC Design Methodologies and Tools

The evolution outlined in earlier subsections indicates that whereas both graphic-
based methods and text-like methods are being effective in providing designers with useful
tools and techniques for developing novel electronic systems design, both of these cate-
gories need to handle a high level of abstraction in order to cope with increasingly complex
functionality. They also need the ability to communicate with other tools, from the electron-
ics domain and other areas, in order to address the increasing interdisciplinarity nature
of products and services required by industry and the market. If we are to look at each
category, the schematic-based tools cover the entire system design cycle, but Mathworks
family tend to handle higher levels of abstraction (mathematical modelling), whereas the
National Instruments family can cope better with the details of physical implementation,
being particularly useful in mechatronics and robotics systems for example, where various
sensors and actuators are involved. The text-based methods can perhaps more flexibly
flow from abstract modelling to details of implementation, with a range of vendor spe-
cific libraries and tools being available to support the flow. All tools, however, need to
accommodate increased system complexity, a variety of target devices for implementation
and effective inter-tool communication, in order to be viable and to address the current
challenges highlighted later in this paper.

SoCs are employed with various roles, generating (for example) signals for controlling
power converters; such control does not require the computing power of a custom SoC as
such but uses FPGAs for digital controller implementation. Tools for such digital systems
design include HDL to design FPGA controllers for power converters and electrical drives.
Some of the design code can be auto generated from Simulink models but most of it is
manually written. The RTL code is simulated using tools such as Questa from Siemens
EDA and Active-HDL from Aldec [60]. Aldec CTS tools are used for board level verification
of the FPGA designs. This is a tool which compares the RTL simulation results with the
behavior of the configured FPGA on a PCB. These tools prove the equivalence of the RTL
code with the fully configured silicon, which is a means to prove the correctness of the
synthesis process, the place-and-route process, and the generation of the configuration
file. This demonstrates that SoC design require the use of various tools, from a range of
categories, which can be used independently or in combination, ultimately increasing the
confidence in correct operation and enhancing security of service of the end-product.

Using the model-based design (MBD) allows a top-down approach to SoC design. The
basic functionality can be developed entirely offline before the partitioning of any of the
functionality is decided or is even clear. The tools have been available recently to take a
model of the whole system and generate the requisite code, either C/C++ for CPUs or
VHDL/Verilog for FPGA fabric or ASIC. The advantage of MBD is that the model of the
system components uses the same graphical language, providing the ability to target the
execution of blocks of functionality needed to either of the two, a flexibility that reduces
the turnaround time for implementing changes.

The flexibility of distributing the functionality as supported through targeted code
generation extends to validation. The current tools allow for validation at various stages
of development using model-in-the-loop (MIL), software-in-the-loop (SIL), processor-in-
the-loop (PIL), and hardware-in-the-loop (HIL) simulations. These allow the gradual
validation of the implementation, from the concept stage to the final product, using broadly

Micromachines 2024, 15, 247 9 of 24

the same tools, and integrating with third party tools from dedicated software houses or
semiconductor manufacturers.

Programmable logic devices, such as FPGAs and FPGA SoCs (FPGAs with micropro-
cessors on the same chip), have significantly impacted the history/development of low
power electronics equipment. They allow a fast development from concept to experiment
(fast prototyping) and low non-recurring engineering costs. Some current developments
are taking significant advantage of such device characteristics, by pushing the high com-
putational efforts on parallel acquisition channels to their limits. FPGAs and SoCs are a
perfect fit for equipment such as the European X-ray free-electron laser, as reported in [61].
Furthermore, special applications can exploit the flexibility of HDL design styles (such as
asynchronous structures), effectively transforming FPGAs into ASIC-like devices, where
an architecture optimization tailored to the application is achieved, while maintaining low
non-recurring cost. Time-to-space conversion is a good example of imaging application
being implemented in FPGA rather than ASIC [62]. Time-to-digital converters (TDCs)
constitute a relevant example of picosecond precision being achieved in time-measurement
applications, as reported in [63].

Table 1 aims to summarize the brief comparison of SoC design methods presented in
this subsection. This can be read in conjunction with a very informative table provided
in [30] with respect to target technologies for digital system-on-chip implementation.

Table 1. Comparative summary of SoC design methodologies.

Criteria\Method Graphical Text Mixed Custom

algorithm complexity •## •## ••# •••
high accuracy •## ••# ••• •••

high speed/parallelism ### •## ••# •••
short development time ••• ••# •## ###
high design flexibility •## ••# ••# •••

ease of learning ••• ••# •## ###

low development cost ••• ••# •## ###
Score: ###: poor, •##: medium, ••#: good, •••: very good.

In summary, the EDA tools and platforms enable high-level design methods to be
deployed as effective solutions for achieving faster, compact, and energy-efficient hardware
design in the form of system-on-chip solutions, following a typical industrial electronics
design flow and enabled by the IP industry. Such EDA environments enable software engi-
neers to design system-level/chip-level solutions, and ultimately to design optimized and
effective hardware implementations. This approach also enables the effective holistic mod-
elling and functional simulation of complex systems based on SoC electronic controllers,
with a plethora of applications such as: mechatronics [64,65], robotics [66,67], automa-
tion [68], security [69], power electronics [70], energy systems [71], electric drives [72], and
IoT systems [73–77].

4. SoC Design Applications: Aerospace and Automotive as Case Study Areas

This section covers, as examples, two application domains where SoC methodologies
and tools have been and continue to be an essential engine for technological progress:
aerospace and automotive.

4.1. Aerospace Applications Domain

System-on-chip (SoC) technology has several applications in the aerospace industry
which range from avionics systems to engine control systems and satellites.

Avionics systems are responsible for monitoring and coordinating the major aircraft
functions, including navigation, communication, flight control, and engine control. Tradi-
tionally, these functions have been implemented using many separate electronic compo-
nents, such as microprocessors, memory, analog-to-digital converters, and communication

Micromachines 2024, 15, 247 10 of 24

interfaces. It is now possible to integrate several such components into a smaller number
SoCs, reducing the overall size and power consumption, while improving the reliability of
civil and military aircraft avionics system. A single SoC can be used to implement the full
range of avionics functionality in the case of unmanned aerial vehicles (UAVs), where size
and weight are even more important than in the case of a manned aircraft.

SoCs can also be used to design a full authority digital engine control (FADEC) system
for aircraft engines [78]. The main functions of a FADEC are to control the initial engine
start and to optimize the engine operation throughout the flight. The engine thrust is
regulated by adjusting parameters such as fuel flow, stator vane position, bleed valve
position, etc. Other functions include general engine monitoring and safety features such
as engine overspeed protection, stall prevention, and automatic shutdown in case of an
emergency. Some FADECs include complex prognostics and/or health management (PHM)
algorithms, which in some cases may employ artificial intelligence techniques.

To perform their functions, FADECs interface with multiple sensors for air pressure,
engine speed, temperature, etc., distributed around the engine. A combination of micropro-
cessors, A/D and D/A converters, and communication interfaces is necessary to implement
the functionality outlined above. However, FADECs are generally mounted on the engine
and are expected to achieve very high reliability while operating in harsh environments
involving high altitude, high temperatures, vibration, lightning strikes, etc. As a result,
the reliability of SoC technology, particularly in its application-optimized ASIC form, is an
attractive implementation technology for this type of specialized equipment.

SoCs are commonly used by satellites for several functions including data collection
from sensors and cameras, data compression, communication with ground equipment,
altitude control (using sensors to detect the orientation of the satellite and adjusting its
thrusters to maintain the desired orientation), and navigation (using sensors such as
gyroscopes and accelerometers to calculate the satellite position and speed in orbit around
the Earth). SoC technology can also be used for power management, allowing the satellite
to optimize its power production by controlling the orientation of its solar panels and
balancing this against its power usage. A SoC-based system can perform the necessary
computations to decide which onboard equipment can be allowed to operate depending
on the amount of power available from the solar panels and battery systems.

A common characteristic of system-on-chip architectures used in aerospace appli-
cations is redundancy. For instance, FADECs implement dual redundant architectures
with two control units (a primary lane and a secondary lane). The secondary lane is a
hot-standby unit which is always available to assume full engine control in the event of
failure of the primary lane. This ensures the uninterrupted operation of the engine until the
aircraft lands at its destination. Some satellites as well as most deep space interplanetary
probes use triple modular redundancy (TMR) hardware architectures to help recover from
“soft errors” (corruption of digital data without permanent failure of the digital compo-
nents) which are caused by the effects of cosmic radiation on electronic equipment. In all
aerospace applications, the architectural redundancy of the hardware is complemented by
advanced error correction codes which use information redundancy to retrieve the original
data from corrupted messages received via noisy communication channels. Some of the
error correction codes are implemented in software while others are implemented directly
by special hardware blocks in the SoC, depending on the cost target and the safety criticality
of the application.

Generally, airworthiness certification is governed by three main documents. Complex
digital hardware (which includes FPGAs, ASICs, SoCs, and digital control circuits com-
posed of multiple components) is governed by a standard known as DO-254. Software
development is governed by DO-178. These are the application programs running on
the complex digital hardware mentioned above. Finally, certification of systems which
include digital controllers as well as electromechanical hardware or hydraulic hardware
or pneumatic hardware, or any combination of those is governed by ARP4754. These are
discussed in [79].

Micromachines 2024, 15, 247 11 of 24

There are additional standards which stipulate specific certification requirements for
things like model-based design (DO-331), qualification of design tools used for software and
hardware design (DO-330), etc. For instance, if Matlab/Simulink is used to create models
which are then automatically translated to design code and the result is implemented in a
custom SoC, then Simulink needs to be qualified in accordance with DO-330, the models
need to be validated in accordance with DO-331, the resulting software needs to be verified
in accordance with DO-178, while the SoC hardware needs to be designed and tested in
accordance with DO-254. Finally, the overall system will undergo environmental testing
(testing at relevant temperature, humidity, vibration, and electromagnetic interference) in
accordance with DO-160.

In terms or aerospace safety, general safety aspects are governed by ARP4761. This
stipulates a number of system safety assessments which have an impact on how thorough
the validation and verification activities need to be at component level (including the SoCs).
Generally, aircraft systems are classified on a scale with several levels which indicate the
aircraft level effect of a failure in that system. This is the so-called design assurance level
(DAL level) of the system and includes the following:

DAL A: Catastrophic effects—the failure will cause the loss of the aircraft and loss of life.
DAL B: Hazardous—the failure will cause injuries or fatalities without necessarily

losing the aircraft.
DAL C: Major—the failure will cause discomfort and minor injuries.
DAL D: Minor—the failure will reduce the safety margins of the aircraft.
DAL E: No safety effect—no impact on aircraft operation.
The aim of the design process and the certification procedures is to ensure that failures

of a DAL A system happen less often than 10−9 failures per hour of operation. Similarly,
for DAL B systems, the target is <10−7 failures per hour of operation. The exact failure rate
on a particular application may be set even lower (such as 10−10 or 10−11), depending on
the type of aircraft, certification authority, etc.

The system DAL classification is flowed down to its subsystems and components.
Components can have a different DAL classification compared to the higher-level system.
For instance, a dual-redundant system will fail if both its “lanes of operation” fail. So,
dual redundant DAL A system could be composed of two dissimilar DAL B subsystems.
However, if the subsystems are identical, then it is possible to have a double failure due
to a common mode failure. For instance, the same type of component is used which fails
simultaneously in both subsystems at the same temperature. In such case, a DAL A system
may be composed of two DAL A subsystems. There are also opposite examples where a
DAL B system is composed of DAL A subsystems when the failure of either subsystem will
cause the large system to fail.

The selection of tools for the design at component level (FPGA, ASIC, software running
on them) is dependent on the DAL level of the component and is governed by the standards
mentioned above (DO-254, DO-178, DO-330). Tool qualification is complex and expensive,
which means that often design teams use the alternative allowed by DO-254 and DO-
330, which is to involve independent tools to perform the verification of the design. For
instance, in FPGA design the same VHDL code can be simulated by independent tools
from independent providers, such as Questa from Siemens EDA and Active-HDL from
Aldec [60]. This ensures that false simulation results due to simulator bugs can be spotted
by comparison of simulation results of the two tools. Furthermore, hardware tests will be
conducted in the real hardware to check (some of) the results from simulations.

SoCs are employed with various roles such as the navigation system, the commu-
nication system, the flight control system. These then generate signals for controlling
power converters. Such systems typically use FPGAs for digital controller implementation.
Typical hardware target are flash-based FPGAs (such as Smart Fusion, Igloo2 and PolarFire)
and SoCs from Microsemi (part of Microchip now). This avoids the need for configuration
memory scrubbing, which would be necessary with radiation-sensitive RAM-based FPGAs.
RAM-based Xilinx or Intel (e.g., Altera) FPGAs and SoCs are not as widely used because

Micromachines 2024, 15, 247 12 of 24

they do not provide the level of radiation tolerance required in aerospace applications.
Another aspect to mention is that such applications are not sensitive to FPGA power
consumptions because they are not battery-operated mobile devices. In these parts of
aerospace applications/equipment, FPGAs are operated at low to medium clock frequen-
cies (40–50 MHz) because these do not involve high-bandwidth communication channel
like telecommunication equipment. Another notable aspect is that normally the target
devices are selected from the military temperature range (−55 ◦C, +125 ◦C), given that
aerospace systems must operate at the low temperatures typical for high altitude.

A specific aspect of aerospace industry, when compared with automotive industry, is the
relatively low manufacturing volume. A manufacturer like Airbus, Boeing, Bombardier, and
Embraer will not manufacture more than a few tens of aircraft of a particular type per month.
By comparison, a company like Ford will produce several thousand cars of a particular type
per day. The large manufacturing volumes mean that investing in ASIC design is more likely
to be economically viable for an automotive company than it is for an aerospace company.
Therefore, more of the aerospace applications will use FPGAs and more of the automotive
applications will use ASICs. However, some of the aerospace applications have special
environmental requirements related to temperature and radiation tolerance, etc. In these cases,
special ASICs may be used to ensure the expected levels of performance which go above
the capability of commercial components. Sometimes, the bare ASIC die may be packaged
together with RAM memory, EPROM memory and various other components. The result is
multi-chip-module (MCM), which is basically a SoC, aiming to improve the design of FADECs
(those used by Rolls-Royce engines, for example).

Finally (for this section), an important aspect to cover is the use and regulation of
AI in aerospace. Concerns and challenges related to the certification aerospace applica-
tions which would include elements of AI are summarized in [79]. A few interesting
aspects are covered by the diagrams provided in this publication, if the reader is inter-
ested in more details. However, more general and more recent considerations about AI
in aviation/aerospace are covered in a whitepaper from European Union Aviation Safety
Agency (EASA)—a certification authority [80]. AI is an emerging technology that will affect
multiple domains of the aerospace/aviation sector, to address its challenges such as air
traffic volume increase or environmental standards. Some use case studies are provided,
together with an overview of the rulemaking strategy anticipated by EASA, including
specific aspects such as: (i) aircraft design, operation, production, maintenance; (ii) air
traffic management, drones, aerodromes; or (iii) safety risk management. Figure 4 [80]
presents the human-centric approach to application of AI in aviation.

The use of ML/AI in the aerospace industry is explored, including plans for flight
critical applications such as navigation solutions. However, there are still some concerns
in this respect, which include data-driven development, statistical/probabilistic outputs,
repeatability, etc. Approaches to build confidence in the use of machine learning in flight
critical applications are reported in [79], with solutions including combined evaluation of
performance assurance and mitigations.

Micromachines 2024, 15, 247 13 of 24

Micromachines 2024, 15, x FOR PEER REVIEW 13 of 26

is basically a SoC, aiming to improve the design of FADECs (those used by Rolls-Royce
engines, for example).

Finally (for this section), an important aspect to cover is the use and regulation of AI
in aerospace. Concerns and challenges related to the certification aerospace applications
which would include elements of AI are summarized in [79]. A few interesting aspects
are covered by the diagrams provided in this publication, if the reader is interested in
more details. However, more general and more recent considerations about AI in avia-
tion/aerospace are covered in a whitepaper from European Union Aviation Safety
Agency (EASA)—a certification authority [80]. AI is an emerging technology that will
affect multiple domains of the aerospace/aviation sector, to address its challenges such as
air traffic volume increase or environmental standards. Some use case studies are pro-
vided, together with an overview of the rulemaking strategy anticipated by EASA, in-
cluding specific aspects such as: (i) aircraft design, operation, production, maintenance;
(ii) air traffic management, drones, aerodromes; or (iii) safety risk management. Figure 4
[80] presents the human-centric approach to application of AI in aviation.

Figure 4. EASA AI Roadmap 2.0 [80].

The use of ML/AI in the aerospace industry is explored, including plans for flight
critical applications such as navigation solutions. However, there are still some concerns
in this respect, which include data-driven development, statistical/probabilistic outputs,
repeatability, etc. Approaches to build confidence in the use of machine learning in flight
critical applications are reported in [79], with solutions including combined evaluation of
performance assurance and mitigations.

4.2. Automotive Applications Domain
Electronics and software in vehicles have seen an exponential rise in the last couple

of decades, a trend set to continue. A high-end car sold 30 years ago would have had a

Figure 4. EASA AI Roadmap 2.0 [80].

4.2. Automotive Applications Domain

Electronics and software in vehicles have seen an exponential rise in the last couple of
decades, a trend set to continue. A high-end car sold 30 years ago would have had a handful
of electronic control units (ECUs)-embedded computers effectively—whereas a similar one
sold today would have in excess of 100 [81]. This may go a long way to explaining why
SoC technologies are a relatively new phenomenon in the automotive industry: historically,
functionality was implemented in specialized controllers next to the physical systems they
were controlling, which from a PPAC perspective provided enough performance, good
power control, efficient space use and low cost, with the cost of non-volatile memory being
a major factor [82].

There have been three main drivers in the adoption of new electronics and software
technology in the automotive industry, and therefore of SoCs: increased functional com-
plexity, safety requirements, and development tools support.

In terms of functional complexity, the last decade saw two very significant areas of vehicle
development: advanced driving assistance systems (ADASs), with their natural progression
into autonomous driving (AD), and electric propulsion. While the latter saw an increase in
the use of power electronics in vehicles, the former is extensively data-driven [83].

The Society of Automotive Engineers (SAE) defines in its standard “J3016 SAE Levels
of Driving Automation” 6 levels, from Level 0 (lowest) to Level 5 (highest), with the Levels
0–2 being known in the industry as ADAS, and Levels 3–5 as AD. ADAS entails technologies
that assist the driver in its actions, but the driver still has control and is responsible for
driving. AD entails features that take over the responsibility of driving, with very limited
driver interaction, if at all, and builds on the ADAS technologies that are necessary to
achieve AD [84].

Micromachines 2024, 15, 247 14 of 24

ADAS uses a wide range of sensors to assess the environment around the vehicle:
radar, lidar, video, ultrasonic, GPS, etc. These sensors produce a vast amount of data that
needs to be processed, sometimes exceeding 50 Gbps. This led to the concept of sensor
fusion, where SoCs show their versatility. By using SoC technologies, different types of
data streams can be processed efficiently in one place, reducing the need for expensive
inter-ECU connectivity, and achieving a ‘fusion’ of the data such that relevant information
is extracted quickly from the data and redundant information—data about the same feature
of the environment from multiple sensors—is safely discarded. SoCs are perfectly suited for
such applications, and such chips would contain communication transceivers for retrieving
the data from the sensors, FPGA fabric for fast pre-processing of the raw data, parallel
computing RISC paths for complex data processing, and processor cores for control and
decision algorithms. For this purpose, SoCs typically come from semiconductor companies
with historical automotive presence [85].

AD has a different focus in that it uses the data processed by the ADAS systems and
utilizes a significant amount of ML/AI algorithms. Such processing requires a different
mix of features to the ADAS SoCs, and unlike other ML/AI systems, it cannot rely on
cloud computing power, it must be able to process the information efficiently and very
fast. For this reason, new types of SoC dedicated to AD have been released recently, but by
semiconductor companies historically associated with general computing, rather than with
legacy automotive control [86].

Although not increasing exponentially in complexity, the area of telematics has ac-
quired new features that proved fertile ground for SoC technologies. Apart from providing
driving information using the global positioning system (GPS), telematics has added fea-
tures related to the connected vehicle, whereby the vehicle exchanges information with
the rest of the world through the Internet, predominantly via mobile connections, but also
via short-range networks, such as to search for and guide to electric vehicle (EV) charging
points, or to notify the fleet management of the vehicle status. This provides new challenges
in communication security and has an impact on functional safety [87].

Another area of development in the automotive industry with relation to SoC and
custom chips is the power management. How much power ECUs use during their ON
state was a marginal concern in the past, although that has changed more recently with
the EVs’ internal energy budget being very tightly controlled for range reasons. ECUs’
power consumption during their OFF state, however, was always an important consid-
eration. New technologies have allowed the design and the proliferation of system basis
chips (SBCs), which contain a number of analogue, digital, communication, and power
electronics components on a single chip, allowing the control of power management across
an ECU, as well as taking over some of the functionality typically implemented in the main
microcontroller. Such components would be found in different chips in the past, but the
SoC technologies enabled their consolidation in one chip, with benefits of cost saving, IP
protection, and safety certification.

Some of the components used in EVs are radically different to the ones used in
traditional non-EV vehicles. The high voltage (HV) batteries require specialized monitoring
and control, achieved through dedicated cell supervisory circuit (CSC) chips. Such CSC
chips contain ADC circuitry for voltage and current monitoring of the individual cells,
power transistors for performing the balancing of the cell current, SPI circuitry with galvanic
isolation for communication with the battery controller, as well as preprogrammed—but
configurable—logic and diagnostics [88]. Utilizing such SoCs provide significant cost
savings and standardized monitoring strategies. They are also safety-certified, streamlining
the certification process for the whole system.

Another essential component in EVs is the electric motor control. The strategies needed
for the control of electric motors require for their effective implementation dedicated FPGAs or
SoCs with FPGA fabric: the most recent control algorithms can only be implemented on such
devices. In the early years of EV development, the majority of such drivers were implemented
using FPGAs. Competition with the other industries in the wake of the COVID-19 outbreak for

Micromachines 2024, 15, 247 15 of 24

FPGAs, as well as an increased maturity of the control strategies that became state-of-the-art,
led to the design of specialized SoCs used for this purpose, at least at the level of the current
loop. The speed loop is still generally executed on the main microcontroller.

Alongside the need for accurate motor control for propulsion, devices in modern vehicles
may require special control strategies, which are addressed by SoCs that are dedicated to a
specific application, such as valves and pump control for suspension systems or brushless DC
motors in power-assisted steering, essentially for accurate inductive loads control.

With the release of ISO 26262 “Road Vehicles—Functional Safety”, which imposes
various safety level requirements for all parts of a vehicle, the functional safety validation
of a SoC that has been certified to the requisite safety level by the manufacturer is much
more effective and cost-effective than the functional safety validation of a system composed
of various components, not least due to IP concerns [89,90].

The adoption of SoC technologies in the automotive industry is also strongly linked
with the availability of development tools for these chips. As a SoC is heterogenous in
its composition, with various technologies that historically utilize completely different
development processes under the same roof, its adoption in the automotive industry is
conditioned by the existence of tools that integrate well with the prevailing processes.

The automotive industry uses the model-based design (MBD) paradigm extensively [91].
A data-flow description with control-flow additions helps to manage the complexity of a
system by allowing the modelling of both the control strategy and the physical systems and
environment it interacts with in the same development environment. It is therefore essential
that any new technology, SoC included, needs to have the development tools to support this
paradigm. Using the MBD allows a top-down approach to designing automotive systems,
enabling the gradual validation of the implementation, CPU or HDL, from the concept stage
to the real ECU, using broadly the same tools, and integrating with third party tools from
dedicated software houses or semiconductor manufacturers.

Due to such progress, the development tools and validation environments provided
or supported by SoC designers and manufacturers have reached a level of maturity that
enabled the automotive industry to gradually move towards the extensive utilization of
SoCs [92]. However, an outstanding issue rests with packaging, which has specific chal-
lenges for automotive. There are several technologies available, their selection and use
being significantly influenced by thermal dissipation, reliability, and cost. The chips in the
vehicle are expected to behave reliably, with high immunity to vibration and dissipating
heat appropriately (not requiring a lot of cooling), while also being relatively lightweight
and small in dimensions. Therefore, 3D technologies and stacking die packaging technolo-
gies (Figure 5, Cadence, [93]) are not easily adopted in vehicles; however, they could be
used in automotive monitoring centers. Also, the denser the content (circuits) on chips, the
higher the risk of cosmic effects affecting functionality [93].

Micromachines 2024, 15, x FOR PEER REVIEW 16 of 26

enabled the automotive industry to gradually move towards the extensive utilization of
SoCs [92]. However, an outstanding issue rests with packaging, which has specific chal-
lenges for automotive. There are several technologies available, their selection and use
being significantly influenced by thermal dissipation, reliability, and cost. The chips in
the vehicle are expected to behave reliably, with high immunity to vibration and dissi-
pating heat appropriately (not requiring a lot of cooling), while also being relatively
lightweight and small in dimensions. Therefore, 3D technologies and stacking die pack-
aging technologies (Figure 5, Cadence, [93]) are not easily adopted in vehicles; however,
they could be used in automotive monitoring centers. Also, the denser the content (cir-
cuits) on chips, the higher the risk of cosmic effects affecting functionality [93].

Figure 5. 3D technologies—IC design and packaging [93].

Finally, recent developments of SoC applications to the automotive domain relate to
the inclusion of various sensors in the SoCs (such as for self-driving cars), which have to
be reliable, affordable and sufficiently miniaturized, thus introducing the concept of light
detection and ranging (LIDAR) on a chip [94].

5. Challenges and Future Trends in SoC Design
This section discusses SoC design methods by looking at some of the current chal-

lenges and identifying interesting new developments and future trends, on the roadmap
from the early stages of Moore’s Law [1], through the IC design major transformations
enabled by the significant contributions brought to EDA tools [95], and process technol-
ogies leading to the current state-of-the-art of high-numerical-aperture ex-
treme-ultraviolet (EUV) lithography as the current state-of-the-art of the transistor min-
iaturization approach [96].

5.1. Current Challenges Alongside Technology Enablers
The need for computing is increasing fast in all areas of life, most applications be-

coming interdisciplinary nowadays, whether looking at robotics, mechatronics,
healthcare applications, smart cities, intelligent transportation, energy systems and smart
grids, sustainable development, or mobile devices and applications—and the list can
continue. Therefore, further development work will have to focus towards ensuring that
electronic system design methods and tools are addressing the current challenges of the
related industries, such as the growing need for accommodating multi-domain integra-
tion, lower power consumption, and higher performance versus reduced size/compact
implementation, increased level of smartness, big data capacity, privacy and security,
e.g., cloud versus local processing balance.

If we were to summarize the current challenges for digital electronic systems into
one word, that will have to be ‘smart’. There is a clear need for smart electronic systems

Figure 5. 3D technologies—IC design and packaging [93].

Micromachines 2024, 15, 247 16 of 24

Finally, recent developments of SoC applications to the automotive domain relate to
the inclusion of various sensors in the SoCs (such as for self-driving cars), which have to
be reliable, affordable and sufficiently miniaturized, thus introducing the concept of light
detection and ranging (LIDAR) on a chip [94].

5. Challenges and Future Trends in SoC Design

This section discusses SoC design methods by looking at some of the current challenges
and identifying interesting new developments and future trends, on the roadmap from the
early stages of Moore’s Law [1], through the IC design major transformations enabled by the
significant contributions brought to EDA tools [95], and process technologies leading to the
current state-of-the-art of high-numerical-aperture extreme-ultraviolet (EUV) lithography
as the current state-of-the-art of the transistor miniaturization approach [96].

5.1. Current Challenges Alongside Technology Enablers

The need for computing is increasing fast in all areas of life, most applications be-
coming interdisciplinary nowadays, whether looking at robotics, mechatronics, healthcare
applications, smart cities, intelligent transportation, energy systems and smart grids, sus-
tainable development, or mobile devices and applications—and the list can continue.
Therefore, further development work will have to focus towards ensuring that electronic
system design methods and tools are addressing the current challenges of the related
industries, such as the growing need for accommodating multi-domain integration, lower
power consumption, and higher performance versus reduced size/compact implementa-
tion, increased level of smartness, big data capacity, privacy and security, e.g., cloud versus
local processing balance.

If we were to summarize the current challenges for digital electronic systems into
one word, that will have to be ‘smart’. There is a clear need for smart electronic systems
to be embedded in modern complex engineering systems, with a strong emphasis being
placed on the importance of coping with the increasing number of smart monitoring and
control tasks (diagnosis, prognosis, fault tolerant capabilities, power flow optimization,
handling large volume of data, or implementing various AI control algorithms, to name
just a few) [30].

In terms of implementation targets, despite of a certain number of limitations like
cost, limited analog interfaces, and a relatively long designer learning curve for optimal
use compared to pure software engineering, one of the most suitable technologies to
implement such smart controllers is FPGA as SoC for rapid prototyping, leading to ASIC
implementation, where economically viable. FPGA devices are not only able to manage
complex algorithm processing, optimization or HIL/Digital Twin, but they can also help to
accelerate their execution by parallelizing into customized hardware accelerators several
computationally demanding subtasks.

Based on their highly performing FPGA fabric, the architecture of such devices can
relieve the processing system from low-level time-consuming tasks. As FPGAs feature a
large number of I/Os, they provide the added advantage of enabling easy communication
with a complex system to be controlled. Furthermore, FPGAs can now embed feature-
rich operating systems, thus rendering an FPGA-based smart controller into an effective
software-defined edge computing platform, with the ability to address new challenges
inferred by data driven approaches in terms of complexity, storage, and processing [30].

Another enabler of the recent advancements in SoC design is constituted by open-
source EDA tools available that can be used to design industrial quality digital circuits. The
ongoing challenge is the lack of full end-to-end open-source tools, but recent developments
demonstrated some success, such as the use of OpenLane framework (based on the Open-
ROAD tool 2), where a SoC design was demonstrated [97,98]. An interesting approach is
presented in [99], which demonstrates that the combined use of open-source EDA tools
and ML techniques can lead to better design optimization, which in this case was achieved
earlier in the design flow, at RTL level, based on the model-driven ML techniques.

Micromachines 2024, 15, 247 17 of 24

5.2. Emerging Needs: 4.0 Industrial Revolution and Cross-Disciplinary Applications

The fourth industrial revolution, presented as the current step in the historical progress
and development of industrial revolutions in Figure 6 [100], is marked by smart sys-
tems/factories, autonomous industrial cyber-physical systems, IoT, and cloud computing.

Micromachines 2024, 15, x FOR PEER REVIEW 18 of 26

Figure 6. Industrial revolutions roadmap to Industry 4.0 [100].

The authors of [90] highlight that a smart system is not just a collection of intelligent
components, but a system of smart components designed to interact and cooperate.
Therefore, the electronic systems design methods of the future need to address the syn-
ergy of big data, computing power, 5/6 G, robotics, machine learning, digital twins (in-
cluding a wider range of application domains, such as construction [101,102]), in a con-
text where the IoT enriched with AI becomes the state-of-the-art technology to support a
user-centric ecosystem. Therefore, design engineers and companies need to be ready to
migrate their design methods, product offering and production infrastructure to Industry
4.0 compliant solutions for smart cities, IoT, or smart microgrids, to name just a few.

Some emerging examples of smart systems embarked on the current industrial rev-
olution are well-captured in [103]. This article reinforces the message of the ‘right recipe
for smart’ consisting of IoT enriched with AI. Real life examples highlighted in the paper
include smart cities (e.g., Pittsburgh in the USA tackling snow, based on edge computing
and AI-enriched IoT applications based on technology developed by Metro21), IoT
technology making use of a network of nanosatellites (e.g., by French company SigFox),
or contactless deliveries developed in response to the COVID-19 pandemic [104]. Con-
sidering such complex applications of the electronic systems of the future, with chal-
lenges to satisfy power efficiency, flexibility, scalability, communication, and integration,
the system-on-chip emerges as an ideal solution, enabling the designer to take advantage
of the inherent parallelism offered by many algorithms and allowing the exploitation of
hardware accelerators and dedicated peripherals in conjunction with CPU cores enabling
ML/AI algorithms and connectivity, as shown in Figure 7 [104].

Figure 6. Industrial revolutions roadmap to Industry 4.0 [100].

The authors of [90] highlight that a smart system is not just a collection of intelligent
components, but a system of smart components designed to interact and cooperate. There-
fore, the electronic systems design methods of the future need to address the synergy of
big data, computing power, 5/6 G, robotics, machine learning, digital twins (including a
wider range of application domains, such as construction [101,102]), in a context where
the IoT enriched with AI becomes the state-of-the-art technology to support a user-centric
ecosystem. Therefore, design engineers and companies need to be ready to migrate their
design methods, product offering and production infrastructure to Industry 4.0 compliant
solutions for smart cities, IoT, or smart microgrids, to name just a few.

Some emerging examples of smart systems embarked on the current industrial rev-
olution are well-captured in [103]. This article reinforces the message of the ‘right recipe
for smart’ consisting of IoT enriched with AI. Real life examples highlighted in the paper
include smart cities (e.g., Pittsburgh in the USA tackling snow, based on edge computing
and AI-enriched IoT applications based on technology developed by Metro21), IoT tech-
nology making use of a network of nanosatellites (e.g., by French company SigFox), or
contactless deliveries developed in response to the COVID-19 pandemic [104]. Considering
such complex applications of the electronic systems of the future, with challenges to satisfy
power efficiency, flexibility, scalability, communication, and integration, the system-on-chip
emerges as an ideal solution, enabling the designer to take advantage of the inherent paral-
lelism offered by many algorithms and allowing the exploitation of hardware accelerators
and dedicated peripherals in conjunction with CPU cores enabling ML/AI algorithms and
connectivity, as shown in Figure 7 [104].

Micromachines 2024, 15, 247 18 of 24Micromachines 2024, 15, x FOR PEER REVIEW 19 of 26

Figure 7. SoC platform for edge computing [104].

5.3. Future Trends on Chip Design—Holistic Systems Thinking and AI/ML-Enabled Design
An interesting publication [105] refers to recent challenges of climate change, cou-

pled with biodiversity crisis and the recent COVID-19 pandemic, all with world-wide
effect, reminding us of the fragility of our existence as humans. In the same article, the
author highlights the consequent complex interdependencies between natural systems
and engineering systems, with significant impact on public health and wellbeing. In this
context, an argument is being raised that a change in thinking is required, when a
cross-disciplinary holistic approach and system thinking/design approach are more rel-
evant than ever before.

Natural systems behavior is mirrored more and more in electronic systems design
through the use of AI and ML in a rapidly increasing range of applications. However, as
highlighted in [106], a step change is needed in terms of hardware implementation in
order to address the computational needs of AI-based systems, as traditional CPUs are
not sufficiently powerful platforms for many AI applications. Increased efficiency is ex-
pected to come from a new breed of microprocessors tailored to the needs of AI in the
coming decade. Physical limitations of chip physics (to 1 nm, about 10 atoms) [107], when
Moore’s Law of transistor scaling [1] cannot be applied any more, are pushing for new
materials and architectural innovations. For instance, chip architectures are rethought by
many companies to be inspired closer by the interconnected structure of the biological
brain, leading to the concept of a chip built for AI applications that could be called an AI
chip. Neuromorphic SoCs are examples of this trend in the design of electronic sys-
tem-on-chips [106].

So, AI started to play a growing role in the design of SoCs, as generative AI is har-
nessed for optimized architectural space exploration, optimized place and route, code
optimization, autocompletion of code, and at least partial automatic code generation
[107,108]. This role can be visualized as diagrammatic representation in Figure 8 [108].

Figure 7. SoC platform for edge computing [104].

5.3. Future Trends on Chip Design—Holistic Systems Thinking and AI/ML-Enabled Design

An interesting publication [105] refers to recent challenges of climate change, coupled
with biodiversity crisis and the recent COVID-19 pandemic, all with world-wide effect,
reminding us of the fragility of our existence as humans. In the same article, the author
highlights the consequent complex interdependencies between natural systems and engi-
neering systems, with significant impact on public health and wellbeing. In this context, an
argument is being raised that a change in thinking is required, when a cross-disciplinary
holistic approach and system thinking/design approach are more relevant than ever before.

Natural systems behavior is mirrored more and more in electronic systems design
through the use of AI and ML in a rapidly increasing range of applications. However,
as highlighted in [106], a step change is needed in terms of hardware implementation in
order to address the computational needs of AI-based systems, as traditional CPUs are not
sufficiently powerful platforms for many AI applications. Increased efficiency is expected
to come from a new breed of microprocessors tailored to the needs of AI in the coming
decade. Physical limitations of chip physics (to 1 nm, about 10 atoms) [107], when Moore’s
Law of transistor scaling [1] cannot be applied any more, are pushing for new materials and
architectural innovations. For instance, chip architectures are rethought by many companies
to be inspired closer by the interconnected structure of the biological brain, leading to the
concept of a chip built for AI applications that could be called an AI chip. Neuromorphic
SoCs are examples of this trend in the design of electronic system-on-chips [106].

So, AI started to play a growing role in the design of SoCs, as generative AI is harnessed
for optimized architectural space exploration, optimized place and route, code optimization,
autocompletion of code, and at least partial automatic code generation [107,108]. This role
can be visualized as diagrammatic representation in Figure 8 [108].

At the same time, ML/AI techniques are already used to develop methods for the
combinational circuit generation [109]. Recently, advanced machine learning techniques
have also been proposed for accurate power modelling, enabling optimization of power
distribution at chip level and the reduction in power consumption [110]. The other use of
ML/AI can be to verify the level of optimization of an intended chip design, by checking
the quality of the HDL code even before the synthesis stage [111]. In terms of supporting
ML/AI and making it work in conjunction with EDA tools, graphics processing units
(GPUs) are playing a pivotal role as enablers in accelerating ML/AI applications these days,
providing increased computing power [112].

Micromachines 2024, 15, 247 19 of 24

Micromachines 2024, 15, x FOR PEER REVIEW 20 of 26

Figure 8. The role of AI in SoC design [108].

At the same time, ML/AI techniques are already used to develop methods for the
combinational circuit generation [109]. Recently, advanced machine learning techniques
have also been proposed for accurate power modelling, enabling optimization of power
distribution at chip level and the reduction in power consumption [110]. The other use of
ML/AI can be to verify the level of optimization of an intended chip design, by checking
the quality of the HDL code even before the synthesis stage [111]. In terms of supporting
ML/AI and making it work in conjunction with EDA tools, graphics processing units
(GPUs) are playing a pivotal role as enablers in accelerating ML/AI applications these
days, providing increased computing power [112].

5.4. Generative Design; Prompt Engineering
Generative design is a new concept in engineering design [113], which represents

the latest trend in EDA tools evolution. It is based on the principle of AI optimization,
enabled by the software packages used for engineering system design. However, instead
of using the engineer to build up various designs in order to achieve product optimiza-
tion, these advanced EDA tools will generate various versions of the design, achieving
different levels of optimization. The EDA tools are therefore evolving into even more
complex aids to the design engineer, still carrying some limitations though due to their
performance being based on the environment set up by the engineer and the constraints
imposed as learning point for the tools. The engineer still has a role, but this has evolved
into that of understanding and selecting the best optimized alternative from the com-
puter-generated designs, with the major advantage that there is no need for an in-depth
knowledge of the specific details of the complexities of the designed product. Initially,
this kind of approach/technique is applicable to specific single product designs, but more
complex products and systems are expected to be designed in this way in the future
[114,115].

Prompt engineering is defined as a comprehensive discipline within the wider field
of AI, which involves a systematic design, refinement, and optimization of prompts to a
generative AI engine, e.g., a large language model (LLM) and underlying data structures.

Figure 8. The role of AI in SoC design [108].

5.4. Generative Design; Prompt Engineering

Generative design is a new concept in engineering design [113], which represents
the latest trend in EDA tools evolution. It is based on the principle of AI optimization,
enabled by the software packages used for engineering system design. However, instead of
using the engineer to build up various designs in order to achieve product optimization,
these advanced EDA tools will generate various versions of the design, achieving different
levels of optimization. The EDA tools are therefore evolving into even more complex aids
to the design engineer, still carrying some limitations though due to their performance
being based on the environment set up by the engineer and the constraints imposed as
learning point for the tools. The engineer still has a role, but this has evolved into that of
understanding and selecting the best optimized alternative from the computer-generated
designs, with the major advantage that there is no need for an in-depth knowledge of
the specific details of the complexities of the designed product. Initially, this kind of
approach/technique is applicable to specific single product designs, but more complex
products and systems are expected to be designed in this way in the future [114,115].

Prompt engineering is defined as a comprehensive discipline within the wider field
of AI, which involves a systematic design, refinement, and optimization of prompts to
a generative AI engine, e.g., a large language model (LLM) and underlying data struc-
tures. The LLMs are AI models designed to understand and generate text like human
language, based on large input data [116]. Their use guides AI systems towards achieving
more specific outputs, facilitating effective interaction between humans and AI, which is
expected to revolutionize engineering design. Prompts as part of prompt engineering are
continuously evaluated and categorized to ensure their relevance and effectiveness. It is
also important to maintain an up-to-date prompt library, fostering efficiency, accuracy, and
knowledge sharing among AI professionals [117–119]. In a recent survey carried out by
IEEE on key technology predictions for 2023 and beyond, 98% of respondents said that
AI-powered autonomous collaborative software and mobile robots will play a key role in
automating processes and tasks [120]; hence, SoC design methods and tools will need to be
more AI-friendly. The use of AI in chip design has already started to cause heated debates
and disagreements between experienced designers and AI users, for example in relation to
reinforcement learning [121].

Micromachines 2024, 15, 247 20 of 24

6. Summary

This paper reviewed SoC design tools and techniques for the integrated development
of embedded digital electronic systems, including their main features, evolution, challenges,
and trends for the future. Such methods make use of high-level languages and enable
fast, compact, and power-efficient hardware implementation as system-on-chips. SoC
development follows a design cycle starting from an idea that is then progressed through
design and functional simulation stages, design space exploration, then through synthesis,
timing analysis, and verification to complete system implementation. Through higher
levels of abstraction and increased automation, the development cycle is completed in an
increasingly efficient time cycle, with advantages such as high degree of flexibility and high
confidence in the correct ‘first time’ operation of the system/product. Wide compatibility
of the design with respect to multiple EDA tools and implementation target technology is
assured. The IP industry has played a major role in the development of the SoC industry
and will continue to do so, with a plethora of applications such as robotics, automation,
security, power electronics, electric drives, aerospace, and automotive.

Current challenges of design methods and tools for SoCs, such as the growing need for ac-
commodating multi-domain integration, lower power consumption, and higher performance
versus reduced size/compact implementation, increased level of smartness, big data capacity,
privacy, and security, were then briefly reviewed. Future trends and technology enablers,
including smart systems, digital twins, hardware-in-the-loop (HIL) testing, open-source EDA
tools, ML/AI including LLMs and prompt engineering, were introduced.

Overall, AI-assisted SoC design and implementation is increasingly commonplace and
will play a bigger role going forward. Longer term, generative designs are likely to emerge
on a wider scale as a new trend, with the role of the engineer shifting towards the analysis,
interpretation, and optimized selection of designs generated by sophisticated EDA tools,
with prompt engineering likely to bring large benefits of AI into the SoC design processes.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: Khaled Benkrid was employed by the company Arm Ltd., Andrei Dinu
was employed by the company Collins Aerospace, Romeo Ghiriti was employed by the company
Exquisite IT Ltd. The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential conflict of interest.
The paper reflects the views of the scientist, and not the company.

References
1. Moore, G.E. Cramming more components onto integrated circuits. Electronics 1965, 38, 114–117. Available online: http://www.

computer-architecture.org/textual/Moore-Cramming-More-Components-1965.pdf (accessed on 3 February 2024). [CrossRef]
2. Cirstea, M.N. Modelling and Design of Digital Electronic Systems. In Proceedings of the IEEE International Conference on

Development and Application Systems (DAS), Suceava, Romania, 19–21 May 2016; pp. 189–194.
3. Spiliotis, K.; Gonçalves, J.E.; Saelens, D.; Baert, K.; Driesen, J. Electrical system architectures for building-integrated photovoltaics:

A comparative analysis using a modelling framework in Modelica. Appl. Energy 2020, 261, 114247. [CrossRef]
4. Helmns, D.; Blum, D.H.; Dutton, S.M.; Carey, V.P. Development and Validation of a Latent Thermal Energy Storage Model Using

Modelica. Energies 2021, 14, 194. [CrossRef]
5. Mo, Q.; Liu, F. Modeling and optimization for distributed microgrid based on Modelica language. Appl. Energy 2020, 279, 115766.

[CrossRef]
6. Zhang, K.; Feng, Z.; Zhou, H. A fast HDL model for full-custom FPGA verification. In Proceedings of the IEEE 12th International

Conference on ASIC (ASICON), Guiyang, China, 25–28 October 2017; pp. 989–992.
7. Monmasson, E.; Idkhajine, L.; Cirstea, M.N.; Bahri, L.; Tisan, A.; Naouar, W. FPGAs in Industrial Control Applications. IEEE

Trans. Ind. Inform. 2011, 7, 224–244. [CrossRef]
8. Muslim, F.B.; Ma, L.; Roozmeh, M.; Lavagno, L. Efficient FPGA Implementation of OpenCL High-Performance Computing

Applications via High-Level Synthesis. IEEE Access 2017, 5, 2747–2762. [CrossRef]
9. Lattuada, M.; Ferrandi, F. A Design Flow Engine for the Support of Customised Dynamic High Level Synthesis Flows. ACM

Trans. Reconfigurable Technol. Syst. (TRETS) 2019, 12, 1–26. Available online: https://trets.acm.org/ (accessed on 7 January 2023).
[CrossRef]

http://www.computer-architecture.org/textual/Moore-Cramming-More-Components-1965.pdf
http://www.computer-architecture.org/textual/Moore-Cramming-More-Components-1965.pdf
https://doi.org/10.1109/JPROC.1998.658762
https://doi.org/10.1016/j.apenergy.2019.114247
https://doi.org/10.3390/en14010194
https://doi.org/10.1016/j.apenergy.2020.115766
https://doi.org/10.1109/TII.2011.2123908
https://doi.org/10.1109/ACCESS.2017.2671881
https://trets.acm.org/
https://doi.org/10.1145/3356475

Micromachines 2024, 15, 247 21 of 24

10. Dossis, M.F. Formal ESL Synthesis for Control-Intensive Applications. Adv. Softw. Eng. 2012, 2012, 156907. [CrossRef]
11. Cong, J.; Liu, B.; Neuendorffer, S.; Noguera, J.; Vissers, K.; Zhang, Z. High-Level Synthesis for FPGAs: From Prototyping to

Deployment. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2011, 30, 473–491. [CrossRef]
12. Škuta, M.; Macko, D.; Jelemenská, K. Automation of Dynamic Power Management in FPGA-Based Energy-Constrained Systems.

IEEE Access 2020, 8, 165894–165903. [CrossRef]
13. Valdes-Pena, M.D.; Rodriguez-Andina, J.J.; Manic, M. The Internet of Things: The Role of Reconfigurable Platforms. IEEE Ind.

Electron. Mag. 2017, 11, 6–19. [CrossRef]
14. Díaz, E.; Mateos, R.; Bueno, E.J.; Nieto, R. Enabling Parallelized-QEMU for Hardware/Software Co-Simulation Virtual Platforms.

Electronics 2021, 10, 759. [CrossRef]
15. Prasad, B.M.P.; Parane, K.; Talawar, B. FPGA friendly NoC simulation acceleration framework employing the hard blocks.

Computing 2021, 103, 1791–1813. [CrossRef]
16. Prabhu Prasad, B.M.; Parane, K.; Talawar, B. An Efficient FPGA-Based Network-on-Chip Simulation Framework Utilizing the

Hard Blocks. Circuits Syst. Signal Process. 2020, 39, 5247–5271. [CrossRef]
17. Madasamy, P.; Pongiannan, R.K.; Ravichandran, S.; Padmanaban, S.; Chokkalingam, B.; Hossain, E.; Adedayo, Y. A Simple

Multilevel Space Vector Modulation Technique and MATLAB System Generator Built FPGA Implementation for Three-Level
Neutral-Point Clamped Inverter. Energies 2019, 12, 4332. [CrossRef]

18. Bonny, T. Chaotic or Hyper-chaotic Oscillator? Numerical Solution, Circuit Design, MATLAB HDL-Coder Implementation,
VHDL Code, Security Analysis, and FPGA Realization. Circuits Syst. Signal Process. 2021, 40, 1061–1088. [CrossRef]

19. Parera-Ruiz, A.; Cirstea, M.N.; Cirstea, S.E.; Dinu, A. Integrated Renewable Energy System Modelling with direct FPGA Controller
Prototyping. In Proceedings of the IEEE Industrial Electronics Conference (IECON’09), Porto, Portugal, 3–5 November 2009;
pp. 2963–2968.

20. Lai, C.-K.; Tsao, Y.-T.; Tsai, C.-C. Modeling, Analysis, and Realization of Permanent Magnet Synchronous Motor Current Vector
Control by MATLAB/Simulink and FPGA. Machines 2017, 5, 26. [CrossRef]

21. Michael, T.; Reynolds, S.; Woolford, T. Designing a Generic, Software-Defined Multimode Radar Simulator for FPGAs Using
Simulink® HDL Coder and Speedgoat Real-Time Hardware. In Proceedings of the International Conference on Radar (RADAR),
Brisbane, QLD, Australia, 27–31 August 2018; pp. 1–4. [CrossRef]

22. Dhruv, M.; Patel, D.M.; Shah, A.K. FPGA-PLC-based multi-channel position measurement system. ISA Trans. 2021, 115, 234–249.
[CrossRef]

23. Waldbjoern, J.P.; Maghareh, A.; Ou, G.; Dyke, S.J.; Stang, H. Multi-rate Real Time Hybrid Simulation operated on a flexible
LabVIEW real-time platform. Eng. Struct. 2021, 239, 112308. [CrossRef]

24. Sheikh, S.S.; Iqbal, S.; Kazim, M.; Ulasyar, A. Real-Time Simulation of Microgrid and Load Behavior Analysis Using FPGA. In
Proceedings of the 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur,
Pakistan, 30–31 January 2019; pp. 1–5. [CrossRef]

25. Gupta, N.; Jain, A.; Vaisla, K.S.; Kumar, A.; Kumar, R. Performance analysis of DSDV and OLSR wireless sensor network routing
protocols using FPGA hardware and machine learning. Multimed. Tools Appl. 2021, 80, 22301–22319. [CrossRef]

26. Tomov, V.; Iliev, I.; Krasteva, V. High resolution FPGA pulse width modulation control of full-bridge DC–DC converters. IET
Circuits Devices Syst. 2020, 14, 1110–1116. [CrossRef]

27. Chaturvedi, D.K. Modeling and Simulation of Systems Using MATLAB® and Simulink®; Taylor & Francis: Abingdon, UK; CRC Press:
Boca Raton, FL, USA, 2010.

28. Iranian, M.E.; Mohseni, M.; Aghili, S.; Parizad, A.; Baghaee, H.R.; Guerrero, J.M. Real-Time FPGA-Based HIL Emulator of Power
Electronics Controllers Using NI PXI for DFIG Studies. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 10, 2005–2019. [CrossRef]

29. Singh, V.K.; Tripathi, R.N.; Hanamoto, T. HIL Co-Simulation of Finite Set-Model Predictive Control Using FPGA for a Three-Phase
VSI System. Energies 2018, 11, 909. [CrossRef]

30. Monmasson, E.; Hilairet, M.; Spagnuolo, G.; Cirstea, M.N. System-on-Chip FPGA Devices for Complex Electrical Energy Systems
Control. IEEE Ind. Electron. Mag. 2022, 16, 53–64. [CrossRef]

31. OPAL-RT Technologies. Available online: www.opal-rt.com (accessed on 21 May 2021).
32. Nathan, S.; Giorlami, M.; Mair, R.; Jans-Singh, M. Creating a Virtual Replica. Ingenia 2021, 87, 16–20. Available online:

https://www.ingenia.org.uk/articles/creating-a-virtual-replica/ (accessed on 1 January 2023).
33. Synoptix. Digital Twins: How do we integrate and manage risk in security critical environments. Partn. News 2023, 55, 16.
34. Monmasson, E.; Cirstea, M.N. FPGA Design Methodology for Industrial Control Systems—A Review. IEEE Trans. Ind. Electron.

Spec. Issue FPGAs Used Ind. Control Syst. 2007, 54, 1824–1842. [CrossRef]
35. Molanes, R.F.; Rodriguez-Andina, J.J.; Farina, J. Performance Characterization and Design Guidelines for Efficient Processor–

FPGA Communication in Cyclone V FPSoCs. IEEE Trans. Ind. Electron. 2018, 65, 4368–4377. [CrossRef]
36. Cecati, C.; Ciancetta, F.; Siano, P. A FPGA/fuzzy logic-based multilevel inverter. In Proceedings of the IEEE International

Symposium on Industrial Electronics (ISIE), Seoul, Republic of Korea, 5–8 July 2009; pp. 706–711.
37. Dinu, A.; Cirstea, M.N.; Cirstea, S.E. Direct Neural Networks Hardware Implementation Algorithm. IEEE Trans. Ind. Electron.

2010, 57, 1845–1848. [CrossRef]
38. Le, Q.N.; Jeon, J.W. Neural-Network-Based Low-Speed-Damping Controller for Stepper Motor with an FPGA. IEEE Trans. Ind.

Electron. 2010, 57, 3167–3180.

https://doi.org/10.1155/2012/156907
https://doi.org/10.1109/TCAD.2011.2110592
https://doi.org/10.1109/ACCESS.2020.3022955
https://doi.org/10.1109/MIE.2017.2724579
https://doi.org/10.3390/electronics10060759
https://doi.org/10.1007/s00607-020-00901-x
https://doi.org/10.1007/s00034-020-01411-z
https://doi.org/10.3390/en12224332
https://doi.org/10.1007/s00034-020-01521-8
https://doi.org/10.3390/machines5040026
https://doi.org/10.1109/RADAR.2018.8557272
https://doi.org/10.1016/j.isatra.2021.01.012
https://doi.org/10.1016/j.engstruct.2021.112308
https://doi.org/10.1109/ICOMET.2019.8673431
https://doi.org/10.1007/s11042-021-10820-4
https://doi.org/10.1049/iet-cds.2020.0068
https://doi.org/10.1109/JESTPE.2020.3023100
https://doi.org/10.3390/en11040909
https://doi.org/10.1109/MIE.2021.3052179
www.opal-rt.com
https://www.ingenia.org.uk/articles/creating-a-virtual-replica/
https://doi.org/10.1109/TIE.2007.898281
https://doi.org/10.1109/TIE.2017.2766581
https://doi.org/10.1109/TIE.2009.2033097

Micromachines 2024, 15, 247 22 of 24

39. Youssef, A.; El Telbany, M.; Zekry, A. Reconfigurable generic FPGA implementation of fuzzy logic controller for MPPT of PV
systems. Renew. Sustain. Energy Rev. 2018, 82, 1313–1319. [CrossRef]

40. Gomperts, A.; Ukil, A.; Zurfluh, F. Development and Implementation of Parameterized FPGA-Based General Purpose Neural
etworks for Online Applications. IEEE Trans. Ind. Inform. 2011, 7, 78–89. [CrossRef]

41. Bueno, E.J.; Hernandez, A.; Rodriguez, F.J.; Girón, C.; Mateos, R.; Cobreces, S. A DSP and FPGA-based industrial control with
high-speed communication interfaces for grid converters applied to distributed power generation system. IEEE Trans. Ind. Electron.
2009, 56, 654–669. [CrossRef]

42. Weilkiens, T. Model-Based System Architecture; Wiley: Hoboken, NJ, USA, 2015.
43. Greaves, D.J. Modern System-on-Chip Design on Arm, Arm Education Media. 2021. Available online: https://www.arm.com/

resources/education/books/modern-soc (accessed on 2 June 2023).
44. Black, D.C.; Donovan, J. SystemC: From the Ground Up, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2010.
45. Spear, C. SystemVerilog for Verification: A Guide to Learning the Testbench Language Features, 3rd ed.; Springer: Berlin/Heidelberg,

Germany, 2012.
46. Vahid, F.; Lysecky, R. Digital Design with RTL Design, Verilog, and VHDL, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2019.
47. Chang, K.C. Digital Design and Modeling with VHDL and Synthesis; McGraw-Hill: New York, NY, USA, 2009.
48. Coussy, P.; Morawiec, A. High-Level Synthesis: From Algorithm to Digital Circuit; Springer: Berlin/Heidelberg, Germany, 2011.
49. Louise, H.; Crockett, H.; Northcote, D.; Ramsay, C. Exploring Zynq MPSoC with PYNQ and Machine Learning Applications;

Strathclyde Academic Media: Glasgow, UK, 2019.
50. Cirstea, M.N.; Dinu, A.; Khor, J.; McCormick, M. Neural and Fuzzy Logic Control of Drives and Power Systems; Elsevier Science,

Newnes: Oxford, UK, 2002.
51. Synopsis. Design Compiler. Available online: https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-

ultra.html (accessed on 2 June 2023).
52. Cadence. Genus (TM) Synthesis Solution. Available online: https://www.cadence.com/en_US/home/tools/digital-design-and-

signoff/synthesis/genus-synthesis-solution.html (accessed on 2 June 2023).
53. Siemens EDA. Questa Simulator Tool. Available online: https://eda.sw.siemens.com/en-US/ic/questa/simulation/advanced-

simulator/ (accessed on 2 June 2023).
54. Synopsis. VCS Functional Verification Solution. Available online: https://www.synopsys.com/verification/simulation/vcs.html

(accessed on 2 June 2023).
55. Cadence. Incisive (TM). Available online: https://www.cadence.com/en_US/home/training/all-courses/82115.html (accessed

on 2 June 2023).
56. Siemens EDA. Calibre Design Solutions. Available online: https://eda.sw.siemens.com/en-US/ic/calibre-design/ (accessed on 2

June 2023).
57. Synopsis. IC Compiler. Available online: https://www.synopsys.com/implementation-and-signoff/physical-implementation/

ic-compiler.html (accessed on 2 June 2023).
58. Cadence. Innovus Implementation System. Available online: https://www.cadence.com/en_US/home/tools/digital-design-

and-signoff/soc-implementation-and-floorplanning/innovus-implementation-system.html (accessed on 2 June 2023).
59. Frumusanu, A. Apple Announces M1 Pro and M1 Max: Gian New ARM SoCs with All-out Performance. AnandTech. 2021.

Available online: https://www.anandtech.com/show/17019/apple-announced-m1-pro-m1-max-giant-new-socs-with-allout-
performance (accessed on 2 June 2023).

60. Available online: https://www.aldec.com/en/products/mil_aero_verification/do-254 (accessed on 10 October 2023).
61. Costa, A.; Lusardi, N.; Garzetti, F.; Ronconi, E.; Maffessanti, S.; Danilevski, C.; Lomidze, D.; Turcato, M.; Porro, M.; Geraci, A. A

Study of the Latest Updates of the DAQ Firmware for the DSSC Camera at the European XFEL. IEEE Access 2023, 11, 84323–84335.
[CrossRef]

62. Lusardi, N.; Garzetti, F.; Costa, A.; Cautero, M.; Corna, N.; Ronconi, E.; Brajnik, G.; Stebel, L.; Sergo, R.; Cautero, G.; et al.
High-Resolution Imager Based on Time-to-Space Conversion. IEEE Trans. Instrum. Meas. 2022, 71, 2004811. [CrossRef]

63. Lusardi, N.; Garzetti, F.; Costa, A.; Ronconi, E.; Geraci, A. From Multiphase to Novel Single-Phase Multichannel Shift-Clock Fast
Counter Time-to-Digital Converter. IEEE Trans. Ind. Electron. 2023, 1–9. Available online: https://ieeexplore.ieee.org/document/
10288129 (accessed on 21 January 2024). [CrossRef]

64. Huang, H.-C.; Tao, C.-W.; Chuang, C.-C.; Xu, J.-J. FPGA-Based Mechatronic Design and Real-Time Fuzzy Control with Computa-
tional Intelligence Optimization for Omni-Mecanum-Wheeled Autonomous Vehicles. Electronics 2019, 8, 1328. [CrossRef]

65. Vargas-Treviño, M.A.; Lopez-Gomez, J.; Vergara-Limon, S.; Palomino-Merino, A.; Torres-Reyes, R.; Garcia-Ramirez, P. A
mechatronic approach for ball screw drive system: Modeling, control, and validation on an FPGA-based architecture. Int. J. Adv.
Manuf. Technol. 2019, 104, 2329–2346. [CrossRef]

66. Shao, X.; Sun, D. Development of a New Robot Controller Architecture with FPGA Based IC Design for Improved High-Speed
Performance. IEEE Trans. Ind. Inform. 2007, 3, 312–321. [CrossRef]

67. Yoshimoto, Y.; Tamukoh, H. FPGA Implementation of a Binarized Dual Stream Convolutional Neural Network for Service Robots.
J. Robot. Mechatron. 2021, 33, 386–399. [CrossRef]

68. Di Paolo Emilio, M. Embedded Systems Design for High-Speed Data Acquisition and Control; Springer: Berlin/Heidelberg, Germany, 2015.

https://doi.org/10.1016/j.rser.2017.09.093
https://doi.org/10.1109/TII.2010.2085006
https://doi.org/10.1109/TIE.2008.2007043
https://www.arm.com/resources/education/books/modern-soc
https://www.arm.com/resources/education/books/modern-soc
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html
https://eda.sw.siemens.com/en-US/ic/questa/simulation/advanced-simulator/
https://eda.sw.siemens.com/en-US/ic/questa/simulation/advanced-simulator/
https://www.synopsys.com/verification/simulation/vcs.html
https://www.cadence.com/en_US/home/training/all-courses/82115.html
https://eda.sw.siemens.com/en-US/ic/calibre-design/
https://www.synopsys.com/implementation-and-signoff/physical-implementation/ic-compiler.html
https://www.synopsys.com/implementation-and-signoff/physical-implementation/ic-compiler.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/innovus-implementation-system.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/innovus-implementation-system.html
https://www.anandtech.com/show/17019/apple-announced-m1-pro-m1-max-giant-new-socs-with-allout-performance
https://www.anandtech.com/show/17019/apple-announced-m1-pro-m1-max-giant-new-socs-with-allout-performance
https://www.aldec.com/en/products/mil_aero_verification/do-254
https://doi.org/10.1109/ACCESS.2023.3302400
https://doi.org/10.1109/TIM.2022.3198442
https://ieeexplore.ieee.org/document/10288129
https://ieeexplore.ieee.org/document/10288129
https://doi.org/10.1109/TIE.2023.3322007
https://doi.org/10.3390/electronics8111328
https://doi.org/10.1007/s00170-019-03945-2
https://doi.org/10.1109/TII.2007.912360
https://doi.org/10.20965/jrm.2021.p0386

Micromachines 2024, 15, 247 23 of 24

69. Stanciu, A.; Cirstea, M.N.; Moldoveanu, F. Analysis and Evaluation of PUF-based SoC Designs for Security Applications. IEEE
Trans. Ind. Electron. 2016, 63, 5699–5708. [CrossRef]

70. Vetter, T.; Schulz, M. FPGA to Control Power Electronics. Power Electron. Eur. 2014, 6, 19–21.
71. Petreus, D.; Daraban, S.; Cirstea, M. Modular Hybrid Energy Concept Employing a Novel Control Structure Based on a Simple

Analog System. Adv. Electr. Comput. Eng. 2016, 16, 3–10. [CrossRef]
72. Rogers, P.; Kavasseri, R.; Smith, S.C. An FPGA-in-the-loop approach for HDL motor controller verification. In Proceedings of the

International Conference on ReConFigurable Computing and FPGAs (ReConFig), Cancun, Mexico, 4–6 December 2017; pp. 1–6.
73. Pan, C. Design of sports course management system based on Internet of Things and FPGA system. Microprocess. Microsyst. 2021,

80, 103357. [CrossRef]
74. Zhou, Z.; Liu, Y.; Yu, H.; Chen, Q. Logistics supply chain information collaboration based on FPGA and internet of things system.

Microprocess. Microsyst. 2021, 80, 103589. [CrossRef]
75. Huang, X.; Li, X. Agricultural labor market equilibrium based on FPGA platform and IoT communication. Microprocess. Microsyst.

2021, 80, 103332. [CrossRef]
76. Elnawawy, M.; Farhan, A.; Nabulsi, A.A.; Al-Ali, A.R.; Sagahyroon, A. Role of FPGA in Internet of Things Applications. In

Proceedings of the IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Ajman, United
Arab Emirates, 10–12 December 2019; pp. 1–6. [CrossRef]

77. Urbina, M.; Acosta, T.; Lázaro, J.; Astarloa, A.; Bidarte, U. Smart Sensor: SoC Architecture for the Industrial Internet of Things.
IEEE Internet Things J. 2019, 6, 6567–6577. [CrossRef]

78. Tulpule, B.; Ohme, B.; Larson, M.; Behbahani, A.; Gerety, J.; Steines, A. A System On Chip (SOC) ASIC chipset for Aerospace and
Energy Exploration Applications. In Proceedings of the International Conference on High Temperature Electronics (HiTEC),
Albuquerque, NM, USA, 1 January 2014; pp. 278–284.

79. Carter, H.; Chan, A.; Vinegar, C.; Rupert, J. Concerns with using Machine Learning in Airworthiness Applications. In Proceedings
of the Vertical Flight Society’s 79th Annual Forum & Technology Display, West Palm Beach, FL, USA, 16–18 May 2023; pp. 1–23.
[CrossRef]

80. European Union Aviation Safety Agency (EASA). Artificial Intelligence Roadmap 2.0-Human-Centric Approach to AI in Aviation. 10
May 2023. Available online: https://www.easa.europa.eu/en/domains/research-innovation/ai (accessed on 10 October 2023).

81. Pitcher, G. Growing Number of Ecus Forces New Approach to Cars Electrical Architecture. New Electronics. 25 September
2012. Available online: https://www.newelectronics.co.uk/content/features/growing-number-of-ecus-forces-new-approach-
to-cars-electrical-architecture (accessed on 2 June 2023).

82. van Djik, L. Future Vehicle Networks and ECUs-Architecture and Technology Considerations. NXP Semiconductor. Available
online: https://www.nxp.com/docs/en/white-paper/FVNECUA4WP.pdf (accessed on 2 June 2023).

83. Burkacky, J.D.; Doll, G.; Knochenhauer, C. Rethinking Car Software and Electronics Architecture. 14 February 2018. Avail-
able online: https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/rethinking-car-software-and-
electronics-architecture (accessed on 3 June 2023).

84. SAE (Society of Automotive Engineers) Standard J3016: Taxonomy and Definitions for Terms Related to Driving Automation
Systems for On-Road Motor Vehicles. 30 April 2021. Available online: https://www.sae.org/standards/content/j3016_202104/
(accessed on 3 June 2023).

85. Lieske, T.; Pfundt, B.; Vaas, S.; Reichenbach, M.; Fey, D. System on chip generation for multi-sensor and sensor fusion applications.
In Proceedings of the 2017 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation
(SAMOS), Pythagorion, Greece, 17–20 July 2017; pp. 20–29. [CrossRef]

86. Kani, A. The New Era of Transportation Is Built on NVIDIA DRIVE Orin. 9 November 2012. Available online: https://blogs.
nvidia.com/blog/2021/11/09/new-era-transportation-drive-orin/ (accessed on 3 June 2023).

87. Telemaco3P Automotive Family of Telematics and Connectivity Microprocessor. Available online: https://www.st.com/en/
automotive-infotainment-and-telematics/sta1385.html (accessed on 3 June 2023).

88. Cabrera, J.; Vega, A.; Tobajas, F.; Deniz, V.; Fabelo, H. Design of a reconfigurable Li-Ion Battery Management System (BMS). In
Proceedings of the 2014 XI Tecnologias Aplicadas a la Ensenanza de la Electronica (Technologies Applied to Electronics Teaching)
(TAEE), Bilbao, Spain, 11–13 June 2014; pp. 1–6. [CrossRef]

89. Tangemann, C. ISO 26262; Part 11: Systems-on-Chips and the Intellectual Property Conundrum. ISO: Geneva, Switzerland, 13
May 2019. Available online: https://www.automotive-iq.com/autonomous-drive/articles/iso-26262-part-11-systems-on-chips-
and-the-intellectual-property-conundrum (accessed on 3 June 2023).

90. Munsel, M. How to Handle Complexity in ISO 26262 Compliance Workflow. 30 April 2021. Available online: https://www.
perforce.com/blog/mdx/iso-26262-compliance-workflows (accessed on 3 June 2023).

91. Schaefer, J.; Christlbauer, H.; Schreiber, A.; Reith, G.; Jonker, M.; Potman, J.; Dannebaum, U.; Eissfeldt, T. Future Automotive
Embedded Systems Enabled by Efficient Model-Based Software Development. SAE Technical Paper 2021-01-0129. 2021. Available
online: https://www.sae.org/publications/technical-papers/content/2021-01-0129/ (accessed on 3 June 2023).

92. Embitel. Model Based Design of Automotive Software. Available online: https://www.embitel.com/model-based-development-
mbd-services-for-automotive-applications (accessed on 3 June 2023).

93. Mutschler, A. Advanced Packaging for Automotive Chips. Semiconductor Engineering. Deep Insights for the Tech Industry. 2021.
Available online: https://semiengineering.com/advanced-packaging-for-automotive-chips/ (accessed on 7 November 2023).

https://doi.org/10.1109/TIE.2016.2570720
https://doi.org/10.4316/AECE.2016.02001
https://doi.org/10.1016/j.micpro.2020.103357
https://doi.org/10.1016/j.micpro.2020.103589
https://doi.org/10.1016/j.micpro.2020.103332
https://doi.org/10.1109/ISSPIT47144.2019.9001747
https://doi.org/10.1109/JIOT.2019.2908264
https://doi.org/10.4050/F-0079-2023-18153
https://www.easa.europa.eu/en/domains/research-innovation/ai
https://www.newelectronics.co.uk/content/features/growing-number-of-ecus-forces-new-approach-to-cars-electrical-architecture
https://www.newelectronics.co.uk/content/features/growing-number-of-ecus-forces-new-approach-to-cars-electrical-architecture
https://www.nxp.com/docs/en/white-paper/FVNECUA4WP.pdf
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/rethinking-car-software-and-electronics-architecture
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/rethinking-car-software-and-electronics-architecture
https://www.sae.org/standards/content/j3016_202104/
https://doi.org/10.1109/SAMOS.2017.8344607
https://blogs.nvidia.com/blog/2021/11/09/new-era-transportation-drive-orin/
https://blogs.nvidia.com/blog/2021/11/09/new-era-transportation-drive-orin/
https://www.st.com/en/automotive-infotainment-and-telematics/sta1385.html
https://www.st.com/en/automotive-infotainment-and-telematics/sta1385.html
https://doi.org/10.1109/TAEE.2014.6900162
https://www.automotive-iq.com/autonomous-drive/articles/iso-26262-part-11-systems-on-chips-and-the-intellectual-property-conundrum
https://www.automotive-iq.com/autonomous-drive/articles/iso-26262-part-11-systems-on-chips-and-the-intellectual-property-conundrum
https://www.perforce.com/blog/mdx/iso-26262-compliance-workflows
https://www.perforce.com/blog/mdx/iso-26262-compliance-workflows
https://www.sae.org/publications/technical-papers/content/2021-01-0129/
https://www.embitel.com/model-based-development-mbd-services-for-automotive-applications
https://www.embitel.com/model-based-development-mbd-services-for-automotive-applications
https://semiengineering.com/advanced-packaging-for-automotive-chips/

Micromachines 2024, 15, 247 24 of 24

94. Watts, M.R.; Poulton, C.; Byrd, M.; Smolka, G. Lidar on a Chip Enters the Fast Lane: Sensors for Self-Driving Cars and Robots
will be Tiny, Reliable, and Affordable. IEEE Spectrum. 2023, 60, 38–43. [CrossRef]

95. Pretz, K. Aart de Geus Transformed IC Design: The Synopsis CEO helped create logical Synthesis. IEEE Spectrum. 2023, 60, 52–53.
96. Van Schoot, J. The Moore’s Law Machine: The Next Trick to Tinier Transistors is High-Numerical-Aperture EUV Lithography.

IEEE Spectrum. 2023, 60, 44–48. [CrossRef]
97. Edwards, R.T.; Shalan, M.; Kassem, M. Real Silicon Using Open-Source EDA. IEEE Des. Test 2021, 38, 38–44. [CrossRef]
98. Shalan, M.; Edwards, T. Building OpenLANE: A 130 nm OpenROAD-based Tapeout-Proven Flow: Invited Paper. In Proceedings of

the IEEE/ACM International Conference On Computer Aided Design (ICCAD), San Diego, CA, USA, 2–5 November 2020; pp. 1–6.
99. Lopera, D.S.; Servadei, L.; Kasi, V.P.; Prebeck, S.; Ecker, W. RTL Delay Prediction Using Neural Networks. In Proceedings of the

IEEE Nordic Circuits and Systems Conference (NorCAS), Oslo, Norway, 26–27 October 2021; pp. 1–7. [CrossRef]
100. Colombo, A.W.; Karnouskos, S.; Yu, X.; Kaynak, O.; Luo, R.C.; Shi, Y.; Leitao, P.; Ribeiro, L.; Haase, J. A 70-Year Industrial

Electronics Society Evolution through Industrial Revolutions: The Rise and Flourishing of Information and Communication
Technologies. IEEE Ind. Electron. Mag. 2021, 15, 115–126. [CrossRef]

101. Ferguson, H. 3D Printing a Bridge with a Twin. Ingenia 2023, 94, 26–31.
102. Hunter, A. The future of construction is digital: How digital innovation is proving transformative for NG Bailey. Partn. News

2023, 55, 36–37.
103. Hayes, C. Right Recipe for Smart: Add a Pinch of AI to the IoT. Eng. Technol. 2020, 15, 66–67.
104. Lucia, O.; She, J.; Chen, A.C.; Cheng, Z.; Chow, M.Y.; Dunai, L.; Hilairet, M.; Huang, V.; Monmasson, E.; Umetani, K.; et al.

Emerging Trends in Industrial Electronics: A Cross-Disciplinary View. IEEE Ind. Electron. Mag. 2021, 15, 127–139. [CrossRef]
105. Fletcher, M. Rethinking the Future Through Design. Ingenia 2021, 87, 8–9.
106. Hayes, J. Deep as Chips [AI Chips]. Eng. Technol. 2020, 15, 72–75. [CrossRef]
107. Agnesina, A.; Mark Ren, M. AutoDMP Optimizes Macro Placement for Chip Design with AI and GPUs. 27 March 2023.

Available online: https://developer.nvidia.com/blog/autodmp-optimizes-macro-placement-for-chip-design-with-ai-and-gpus/
(accessed on 4 June 2023).

108. Rapid Silicon. RapidGPT—The Evolutionary AI-Based Design Tools for FPGA Designers. 2023. Available online: https:
//rapidsilicon.com/rapidgpt/ (accessed on 4 June 2023).

109. Zunin, V.V.; Romanov, A.I.; Solovyev, R.A. Developing Methods for Combinational Circuit Generation. In Proceedings of the
International Russian Automation Conference (RusAutoCon), Sochi, Russia, 4–10 September 2022; pp. 842–846. [CrossRef]

110. Kumar, A.K.A.; Al-Salamin, S.; Amrouch, H.; Gerstlauer, A. Machine Learning-Based Microarchitecture-Level Power Modeling of
CPUs. IEEE Trans. Comput. 2023, 72, 941–956. [CrossRef]

111. Sengupta, P.; Tyagi, A.; Chen, Y.; Hu, J. How Good Is Your Verilog RTL Code?: A Quick Answer from Machine Learning. In
Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Diego, CA, USA, 30
October–3 November 2022; pp. 1–9. [CrossRef]

112. Kaplan, J.; McCandlish, S.; Henighan, T.; Brown, T.B.; Chess, B.; Child, R.; Gray, S.; Radford, A.; Jeffrey Wu, J.; Vasilakos, F.; et al.
Scaling Laws for Neural Language Models. arXiv 2020, arXiv:2001.08361. Available online: https://arxiv.org/pdf/2001.08361.pdf
(accessed on 4 June 2023).

113. Fryer, T. The end of the Engineer? Eng. Technol. 2017, 12, 26–29. [CrossRef]
114. Aameri, B.A.; Cheong, H.; Beck, J.C. Towards an Ontology for Generative Design of Mechanical Assemblies. Appl. Ontol. 2019, 14,

127–153. [CrossRef]
115. Dean, L.; Loy, J. Generative Product Design Futures. Des. J. 2020, 23, 331–349. [CrossRef]
116. Crouch, J.; Palmer, B. Large Language Models: Revolutionising Engineering Design. Partn. News 2023, 55, 28.
117. Prompt Engineering Institute. What Is Prompt Engineering? Prompt Engineering Guides, News and Resources. 2023. Available

online: https://www.promptengineering.org/what-is-prompt-engineering/ (accessed on 3 July 2023).
118. Ferguson, M.C. Prompt Engineering; The Future of Language Generation; Michael Ferguson Publisher: Boise, ID, USA, 2023; ISBN

13 979-8215905739.
119. Rodriguez, J. Google’s Chain of Thought Prompting is One of the Most Exciting Techniques in Generative AI. Towards AI. 2023.

Available online: https://pub.towardsai.net/googles-chain-of-thought-prompting-is-one-of-the-most-exciting-techniques-in-
generative-ai-782cc62fe602 (accessed on 3 July 2023).

120. IEEE. The Impact of Technology in 2023 and Beyond: An IEEE Global Study. IEEE Spectr. 2023, 60, 57.
121. IEEE. An Ugly Chapter in Chip Design–Study tries to settle a bitter disagreement over Google’s AI tool. IEEE Spectr. 2023, 60, 5–8.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/MSPEC.2023.10234174
https://doi.org/10.1109/MSPEC.2023.10234175
https://doi.org/10.1109/MDAT.2021.3050000
https://doi.org/10.1109/NorCAS53631.2021.9599868
https://doi.org/10.1109/MIE.2020.3028058
https://doi.org/10.1109/MIE.2020.3032942
https://doi.org/10.1049/et.2020.1113
https://developer.nvidia.com/blog/autodmp-optimizes-macro-placement-for-chip-design-with-ai-and-gpus/
https://rapidsilicon.com/rapidgpt/
https://rapidsilicon.com/rapidgpt/
https://doi.org/10.1109/RusAutoCon54946.2022.9896390
https://doi.org/10.1109/TC.2022.3185572
https://doi.org/10.1145/3508352.3549375
https://arxiv.org/pdf/2001.08361.pdf
https://doi.org/10.1049/et.2017.0900
https://doi.org/10.3233/AO-190207
https://doi.org/10.1080/14606925.2020.1745569
https://www.promptengineering.org/what-is-prompt-engineering/
https://pub.towardsai.net/googles-chain-of-thought-prompting-is-one-of-the-most-exciting-techniques-in-generative-ai-782cc62fe602
https://pub.towardsai.net/googles-chain-of-thought-prompting-is-one-of-the-most-exciting-techniques-in-generative-ai-782cc62fe602

	Introduction
	Overview of System-on-Chip Design Methodologies and Tools
	Brief Historical Evolution of Electronic Systems Design Methodologies and Tools
	Electronic Systems—Design Methods and Target Technologies
	Text-Based High-Level Synthesis (HLS) Design Methods
	Schematic-Based/Graphical Electronic System Level (ESL) Design Methods
	FPGAs and ASICs

	SoC Design Methodologies and Tools—Users and Enablers of AI

	Industrial SoC Design
	Fundamentals of SoC Design Flows
	The Role of the Intellectual Property (IP) Industry
	Brief Comparative Analysis of SoC Design Methodologies and Tools

	SoC Design Applications: Aerospace and Automotive as Case Study Areas
	Aerospace Applications Domain
	Automotive Applications Domain

	Challenges and Future Trends in SoC Design
	Current Challenges Alongside Technology Enablers
	Emerging Needs: 4.0 Industrial Revolution and Cross-Disciplinary Applications
	Future Trends on Chip Design—Holistic Systems Thinking and AI/ML-Enabled Design
	Generative Design; Prompt Engineering

	Summary
	References

