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Abstract: During micro-milling, regenerative chatter will decrease the machining accuracy, desta-
bilize the micro-milling process, shorten the life of the micro-mill, and increase machining failures.
Establishing a mathematical model of chatter vibration is essential to suppressing the adverse impact
of chatter. The mathematical model must include the dynamic motions of the cutting system with the
spindle–holder–tool assembly and tool runout. In this study, an integrated model was developed by
considering the centrifugal force induced by rotational speeds, the gyroscopic effect introduced by
high speeds, and the tool runout caused by uncertain factors. The tool-tip frequency-response func-
tions (FRFs) obtained by theoretical calculations and the results predicted by simulation experiments
were compared to verify the developed model. And stability lobe diagrams (SLDs) and time-domain
responses are depicted and analyzed. Furthermore, experiments on tool-tip FRFs and micro-milling
were conducted. The results validate the effectiveness of the integrated model, which can calculate
the tool-tip FRFs, SLDs, and time responses to analyze chatter stability by considering the centrifugal
force, gyroscopic effect, and tool runout.

Keywords: regenerative chatter; centrifugal force; gyroscopic effect; tool runout; micro-milling
process

1. Introduction

Microproducts are characterized by small sizes, complex structures, and high precision.
They are used in the aerospace, biomedical, optical, and electronics fields. They can be
manufactured by micro-milling with a tool diameter of less than 1mm [1].

During machining, regenerative chatter vibration is self-excited by the cutting process,
decreasing the surface precision and causing the instability of the micro-milling process
while shortening the life of the micro-mill and increasing the probability of machining
failure [2]. Regenerative chatter vibration mainly refers to vibrations between the cutting
tool and the workpiece. During micro-milling, the machined surface of the workpiece
produced by the previous cutting tooth is the surface machined by the next cutting tooth,
indicating a time delay between two successive cutting processes. An unexpected resonance
between the cutting force and a specific mode of the machining system may occur. In such
instances, the previous tooth may leave ripples on the surface of the workpiece, and the
subsequent tooth may produce new ripples, providing a phase difference in the machined
chip thickness. Consequently, the chip thickness variation will cause dynamic fluctuations
in the corresponding cutting forces. In addition, the variable cutting forces will act on
the relative cutting between the tool and the workpiece. Hence, the formation of the chip
thickness is affected. If such cutting processes occur repeatedly, they will cause an increase
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in the chip thickness and cutting forces, leading to regenerative chatter and ultimately
destabilizing the cutting system.

Developing an analytical model that includes key influencing factors is crucial to
demonstrating the influences of chatter. The main influencing factors must include the
dynamic motions of the spindle–holder–tool assembly. During cutting, the spindle speed
of the micro-machine is usually higher than 10,000 revolutions per minute to ensure a high
cutting efficiency in micro-milling [3]. Therefore, the centrifugal force induced by rotational
speeds and the gyroscopic effect induced by high speeds are inevitably accompanied by
high spindle speeds. Wang et al. [4] constructed a mathematical model for the spindle
system. The authors used the Timoshenko beam element and considered the effects of
beam bending, transverse shear, and gyroscopic moments. Furthermore, the model can be
employed to perform a dynamic analysis. Feng et al. [5] discretized the spindle into classical
Timoshenko beam elements, simplified the rotor as a rigid disk, and developed the mathe-
matical model of the spindle system by incorporating the centrifugal force and gyroscopic
moment. The authors developed a spindle-bearing dynamic model for vibration-response
analysis. Lu et al. [6] developed a model of the spindle–tool assembly by employing the
centrifugal force and gyroscopic moment. The model can be used to simulate and predict
chatter stability. Shi et al. [7] constructed a mathematical model of the spindle system
considering the effects of centrifugal force, gyroscopic moments, and bearing coupling
by employing the Timoshenko beam element and shaft tilt deformation. The model can
be applied to investigate chatter stability. Hentati et al. [8] employed Timoshenko beam
elements with distinct circular sections to equalize the spindle and demonstrate the dynam-
ics of spindle-rolling bearing systems for chatter analysis. The authors incorporated the
gyroscopic effect and centrifugal force. Lee et al. [9] employed a Timoshenko beam element
to construct the spindle system by considering the influences of eccentric mass and the
gyroscopic effect. The established model can predict spindle system vibration. The models
mentioned above include the effects of gyroscopic moments, centrifugal forces, or both,
without the influence of tool runout.

However, including the effects of tool runout during the dynamic modeling of chatter
vibration is crucial because the tool runout caused by installation errors, manufacturing
errors, and cutting uncertainties will change the tool point’s nonlinear trajectory and cutting
forces. Consequently, the surface precision will be decreased at the micro-scale during
micro-milling, affecting chatter stability. Zhang et al. [10] obtained cutting forces with
the effects of the micro-size and tool runout. Wimmer et al. [11] described the effects of
tool runout using the radial tool runout and jump angle. The authors incorporated the
effects into the instantaneous uncut chip thickness and applied the thickness to construct
the expression of cutting forces. Totis et al. [12] established an improved model to describe
the milling forces. The established model contains the influence of tool runout, geometry,
and forced vibration on the effective engagement condition of the tool and workpiece.
Wang et al. [13] obtained the milling force model by combining the tool eccentricity dis-
tance with the runout angle. The papers mentioned above mainly focus on modeling the
cutting forces with tool runout; as such, they do not involve the centrifugal force and
gyroscopic effect.

Researchers have tried to improve the mathematical model of spindle–holder–tool
systems by considering the centrifugal force and gyroscopic effect. Furthermore, several
investigations have been performed to model the cutting forces with tool runout. However,
the works mentioned above need to be further developed to obtain comprehensive mod-
eling for describing the incorporation of the centrifugal force, gyroscopic effect, and tool
runout of chatter vibration in micro-milling.

A dynamic model incorporating the centrifugal force, gyroscopic effect, and tool
runout into the motion of spindle–holder–tool assembly is presented in this paper by
following previous investigations [6,7,14,15]. In this paper, the introduction is presented in
Section 1, which describes the need for comprehensive approaches to modeling the effects
of the centrifugal force, gyroscopic moment, and tool runout of chatter vibration in micro-
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milling. According to this demand, a mathematical model has been developed by using
the finite element method and time-domain modeling and is illustrated in Sections 2–4.
In Section 2, the motion equations for a beam unit with the centrifugal force and the
gyroscopic effect are illustrated. Then, the equations of cutting forces considering the
tool runout distance and the runout angle are described in Section 3. Subsequently, the
assembling of the equations in Sections 2 and 3 is expressed in Section 4. Following the
assembled equation, it is verified in Section 5 by analyzing the experimental and predicted
tool-tip FRFs. Based on the FRFs, the SLDs are described in Section 6. According to the
results of SLDs, an analysis of the time responses of vibrations is demonstrated in Section 7.
Finally, the conclusions are drawn in Section 8.

2. The Kinetic Equations of a Beam Unit with Centrifugal Force and the
Gyroscopic Effect

Figure 1 illustrates a practical spindle–holder–tool assembly, which includes a spindle,
holder, and tool. The effects of the holder and spindle cannot be neglected when inves-
tigating the dynamics of a rotating micro-mill because they provide the driving torque
and clamping action, respectively. The micro-mill could not rotate without them, losing its
function as a tool.

As illustrated in Figure 1, the spindle–holder–tool system can be divided into four
parts according to the design size and configuration assembly [9,16,17]. If each part is
divided into several segments, the assembly can be simplified [5,7,18].

Figure 1. A spindle–holder–tool system.

2.1. Kinetic Energy, Potential Energy, and Work Performed by External Forces for a Rotating
Beam Unit

The Timoshenko beam shown in Figure 2 is employed to model the segment with
beam bending. The length of the rotating Timoshenko beam is L. The kinetic energy can be
derived as follows [19]: 

T = T1 + T2 + T3

T1 = 1
2

∫ L
0 ρJΩ2dz

T2 = 1
2

∫ L
0 ρA

(
u̇2 + v̇2)dz

T3 = 1
2

∫ L
0 ρI

(
θ̇2

x + θ̇2
y

)
dz

(1)
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where T1 represents the polar area effect of rotatory inertia, T2 represents the translational
energy, and T3 expresses the motion for beam bending. The displacements and rotations of
point P on the beam unit are denoted by

{
u v θx θy

}T, the velocities are expressed

by
{

u̇ v̇ θ̇x θ̇y
}T, Ω denotes the rotational speed, ρ is the material’s density, A is

the cross-sectional area, J = 0.5πR4, I = 0.25πR4, and R denotes the radius of the
beam section.

Figure 2. Timoshenko element.

The potential energy of a beam element is given as [20]
V = V1 + V2

V1 =
∫ L

0
1
2 KS AGγ2dz

V2 = 1
2 EI

∫ L
0

(
dθ
dz

)2
dz

(2)

where V1 represents the motion equation for the shear strain energy, V2 indicates the motion
equation for the bending strain energy, Ks is the shear coefficient, γ is the shear deformation
angle, G represents the shear modulus, and E denotes the modulus of elasticity.

As shown in Figure 3, the shear deformation angles of the beam unit due to bending
are obtained as follows [21]:

γxz =
∂u
∂z

− θy (3)

and
γyz =

∂v
∂z

− θx (4)

Figure 3. The original shape and deformation of a beam in the X-Z plane.
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The potential energy can be rewritten by substituting Equations (3) and (4) into
Equation (2): 

V = V1 + V2

V1 = 1
2 Ks AG

∫ L
0

[(
∂u
∂z − θy

)2
+

(
∂v
∂z + θx

)2
]

dz

V2 = 1
2 EI

∫ L
0

[(
∂θx
∂z

)2
+

(
∂θy
∂z

)2
]

dz

(5)

The work performed by external forces and torques is expressed by [22]

W1 =
∫ L

0

(
Fxu + Fyv + Mxθx + Myθy

)
dz (6)

where Fx and Mx represent the external force and external moment in the X-direction,
respectively, while Fy and My represent the external force and external moment in the
Y-direction, respectively.

2.2. Equations of External Work by Incorporating Centrifugal Force

As demonstrated in Figure 4, the centrifugal force acting on a segment of a rotating
beam is given as follows:

dF = ρArΩ2dz (7)

where r denotes the radius of rotation, and dz indicates the element length.

Figure 4. Rotating beam with centrifugal force.

The external virtual work is obtained as follows [23]:

dW =
1
2

dFr =
1
2

ρAr2Ω2dz (8)

Furthermore, integrating the expression dW for a beam segment with length L
yields [23]

W2 =
∫ L

0

1
2

ρAΩ2r2dz =
∫ L

0

1
2

ρAΩ2u2dz +
∫ L

0

1
2

ρAΩ2v2dz (9)

2.3. Equation of Kinetic Energy by Including Gyroscopic Effect

In Figure 5, the moment of inertia about the Z-axis is Jz, and the beam unit centroid is S.
The gyroscopic moment about the Z-axis in the Y-direction can be expressed as follows [24]:

Mty = − JzΩθ̇y (10)
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And the gyroscopic moment about the Z-axis in the X-direction can be expressed as

Mtx = − JzΩθ̇x (11)

Z Z

X 

Y 

X 

Y 

F

-F

S

 

S

 

y
q

Figure 5. Effect of gyroscopic moment.

Summing the above two equations yields the kinetic energy generated by the gyro-
scopic moments acting on the beam unit [4,14]:

T4 =
1
2

∫ L

0
ρJΩ

(
θ̇xθy − θ̇yθx

)
dz (12)

2.4. Finite Element Equations

The dynamic modeling of the spindle–holder–tool system incorporates the effect
of gyroscopic moments. Additionally, dynamic modeling includes the influence of the
centrifugal force. The equation describing the total work performed by external forces and
torques, as well as the centrifugal force, will be derived by summing Equations (1) and (12)
as follows:

T =
1
2

∫ L

0
ρJΩ2dz +

1
2

∫ L

0
ρA

(
u̇2 + v̇2

)
dz +

1
2

∫ L

0
ρI
(

θ̇2
x + θ̇2

y

)
dz +

1
2

∫ L

0
ρJΩ

(
θ̇xθy − θ̇yθx

)
dz (13)

The potential energy can be obtained by summing the formulas in Equation (5):

V =
1
2

EI
∫ L

0

[(
∂θx

∂z

)2
+

(
∂θy

∂z

)2
]

dz +
1
2

Ks AG
∫ L

0

[(
∂u
∂z

− θy

)2
+

(
∂v
∂z

+ θx

)2
]

dz (14)

The work performed by external forces, torques, and the centrifugal force is formulated
by adding Equations (6) and (9):

W =
∫ L

0

(
Fxu + Fyv + Mxθx + Myθy

)
dz +

∫ L

0

1
2

ρAΩ2u2dz +
∫ L

0

1
2

ρAΩ2v2dz (15)

Rewriting Equations (13)–(15) results in

T =
∫ L

0

1
2

JρΩ2dz +
1
2
{q̇}T[Me]{q̇}+ 1

2
Ω{q̇}T[Ge]{q} (16)

V =
1
2
{q}T[Ke]{q} (17)

W = [Fe]{q}+ 1
2

Ω2{q}T[Mc
e]{q} (18)
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with

[Me] =
∫ L

0
[N]T


ρA 0 0 0
0 ρA 0 0
0 0 ρI 0
0 0 0 ρI

[N]dz [Ge] =
∫ L

0
[N]T


0 0 0 0
0 0 0 0
0 0 0 Jρ

0 0 −Jρ 0

[N]dz

[Ke] =
∫ L

0


[N′

θx][
N′

θy
]

[Nθx] + [N′
v][

Nθy
]
− [N′

u]


T

EI 0 0 0
0 EI 0 0
0 0 Ks AG 0
0 0 0 Ks AG




[N′
θx][

N′
θy
]

[Nθx] + [N′
v][

Nθy
]
− [N′

u]

dz

[Fe] =
∫ L

0


fx
fy

mx
my


T

[N]dz [Me
c] =

∫ L

0
[N]T


ρA 0 0 0
0 ρA 0 0
0 0 0 0
0 0 0 0

[N]dz

where
{

u v θx θy
}T

= [N]{q}, q represents the displacements and rotations of the

nodes at both ends of the beam, [N] =
[
Nu, Nv, Nθx, Nθy

]T is the shape function, [Me]
represents the mass matrix of a beam unit, [Ge] denotes the gyroscopic matrix, [Ke] denotes
the stiffness matrix, [Me

c] denotes the matrix utilized to reflect the centrifugal force effect,
and [Fe] denotes the force vector representing external forces.

The following equation can be obtained according to Hamilton’s Principle and the
Law of Conservation of Energy [25]:

δ
∫ t2

t1

(T − V + W)dt = 0 (19)

Substituting Equations (16)–(18) into Equation (19) yields

[Me]{q̈} − Ω[Ge]{q̇}+
(
[Ke]− Ω2[Me

c]
)
{q} = [Fe] (20)

3. Equations of Cutting Forces Considering Tool Runout Distance and Runout Angle

In fact, tool runout may occur in the radial and axial directions due to the complex cut-
ting conditions during micro-milling. The tool runout with the runout distance and runout
angle in radial directions has been one of the research hotspots in recent years [10,12,13],
without considering the tool runout in the axial direction. Moreover, the regenerative
chatter in radial directions has been investigated without considering the vibration in the
axial direction in recent research [7,8]. This may be because the tool stiffness in the axial
direction is usually sufficiently large to surpass unexpected vibrations during cutting due
to the large length-to-diameter ratio of the tool. In this paper, the tool runout in radial
directions is investigated without considering the tool runout in the axial direction.

Models of the cutting forces, including tool runout, are established based on the actual
trajectory of the micro-mill with runout due to uncertainties during cutting.

As demonstrated in Figure 6, the cutting thickness hi of the i-th tooth is represented
by [15] 

hi = EF = DF − DE = r0sin(φi + α0) + RD(1 − cosδ)
DF = r0sin(φi + α0) + RD
DE = RDcosδ

(21)

where r0 is the runout distance, φi demotes the position angle of the i-th tooth, RD is the tool
radius, δ is the angle between two successive teeth, and α0 is the runout angle, expressed as

α0 = arctan
(

∆yi
∆xi

)
(22)
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where ∆xi and ∆yi are the runout distances of the micro-mill center in the X- and Y-
directions, respectively.

Substituting the above equation into Equation (21) yields

hi = ∆xisinφi + ∆yicosφi + RD(1 − cosδ) (23)

where sinδ ≈ δ and cosδ ≈ 1 are assumed for small angles. Then, the above equation is
written as follows:

hi = ∆xisinφi + ∆yicosφi (24)

(a) Cutting forces of micro-milling (b) Tool runout diagram

Figure 6. Diagrams of tool runout and cutting forces.

When the tool center is moved from Ci−1 to Ci, ∆xi and ∆yi can be written as follows:

∆i =

[
∆xi
∆yi

]
=

[
N ft
2π ∆φi + r0[sin(φi + γi)− sin(φi − ∆φi + γi)]

r0[cos(φi + γi)− cos(φi − ∆φi + γi)]

]
(25)

where ft denotes the feed per tooth, ∆φi = 2π/N − δ, and N denotes the number
of teeth. The parameter hi can be calculated by substituting the above equations into
Equation (24) [26]:

hi = ft(1 −
Nδ

2π
)sinφi + r0cosγi − r0cos(γi + δ − 2π

N
) (26)

As depicted in Figure 6, the cutting forces acting on the i-th tooth are expressed as[
Fx,i
Fy,i

]
=

[
−cosφi −sinφi
sinφi −cosφi

][
Ft,i
Fr,i

]
(27)

where Fx,i and Fy,i represent the cutting forces in the X-direction and Y-direction, and Ft,i
and Fr,i denote the cutting forces in the tangential and radial directions and are obtained
from [26,27] [

Ft,i
Fr,i

]
= aphi(t)

[
Ktc
Krc

]
+ ap

[
Kte
Kre

]
(28)

where ap represents the axial depth of cut, Ktc is the shear force coefficient in the tangential
direction, Krc denotes the shear force coefficient in the radial direction, Kte indicates the
plow force coefficient in the tangential direction, and Kre demonstrates the plow force
coefficient in the radial direction. In this paper, the cutting force coefficients are modeled as
parameters that can be time-varying or fixed to adapt to different cutting situations of the
developed model.
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The dynamic cutting forces can be formulated by substituting the above equations
into Equation (27) and neglecting the second terms [27]:[

Fx,i
Fy,i

]
= ap

[
axx,i axy,i
ayx,i ayy,i

]
∆i (29)

where axx.i = − Ktcsinφicosφi − Krcsin2 φi, axy,i = − Ktccos2 φi − Krcsinφicosφi,
ayx,i = Ktcsin2 φi − Krcsinφicosφi, ayy,i = Ktcsinφicosφi − Krccos2 φi

4. Assembling the Equations

As Figure 1 describes, the cutting forces can be applied to the first node of the simplified
spindle–holder–tool assembly. The mathematical model for demonstrating the dynamics of
the rotating spindle–holder–tool assembly during cutting can be obtained by adding the
matrices in Equations (20) and (29), as follows [6,7,14]:

[M]{q̈} − Ω[G]{q̇}+
(
[K]− Ω2[Mc]

)
{q} = [F] (30)

where {q} = {q1, q2...}T , M = ∑ [Me], G = ∑ [Ge], K = ∑ [Ke], Mc = ∑ [Me
c], and

[F] =


∑N

i = 1 Fx,i

∑N
i = 1 Fy,i

0
...
0


Finally, the obtained dynamic model is characterized by the following:

(1) It includes considerations of the tool runout, centrifugal force, and gyroscopic effect;
(2) It is obtained by combining the FEM and time-domain formulation;
(3) The time-domain, stability lobe, and frequency-domain methods can be applied to

analyze the obtained dynamic model.

5. Verification and Frequency Analysis

To verify the developed model, experiments on tool-tip FRFs in the X- and Y-directions
were conducted using a three-axis CNC Machine (CNC4040F). This machine is equipped
with a motorized spindle capable of reaching a maximum rotational speed of 24,000 rpm.
The chosen micro-mill for the experiments with two teeth was a tungsten-carbide cutter
with a diameter of 0.4 mm. And the results were compared to those of theoretical calcula-
tions. Furthermore, micro-milling experiments were carried out. The machined surfaces
are presented.

Theoretical calculations and simulation experiments were also employed in this study
due to the difficulty of achieving the FRFs of a micro-mill with high rotational speeds.
The existing experimental methods for obtaining the FRFs of the spindle–holder–tool
system are usually performed at zero rotational speed because it is difficult to apply
excitations to rotating tools with high speeds. Tool-tip FRFs were simulated for several
high speeds. The material properties and geometric parameters of the spindle–holder–tool
system for conditions 1 and 2 are shown in Tables 1 and 2. The cutting force coefficients for
condition 1 and condition 2 are demonstrated in Tables 3 and 4.
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Table 1. Material properties and geometric parameters of spindle–holder–tool system for condition 1.

Parameters Spindle Holder Tool Cutter

Elastic modulus E (Pa) 2.1 × 1011 2.1 × 1011 6.08 × 1011 6.08 × 1011

Poisson ratio µ 0.3 0.3 0.23 0.23
Density ρ (kg/m3) 7900 7850 14,000 14,000

Length L (m) 0.198 0.031 0.0136 0.003
Radius R (m) 0.0135 0.0105 0.002 0.0002

Table 2. Material properties and geometric parameters of spindle–holder–tool system for condition 2.

Parameters Spindle Holder Tool Cutter

Elastic modulus E (Pa) 2.1 × 1011 2.1 × 1011 2.1 × 1011 6.3 × 1011

Poisson ratio µ 0.3 0.3 0.3 0.25
Density ρ (kg/m3) 7850 7850 7850 8100

Length L (m) 0.219 0.031 0.0014 0.002
Radius R (m) 0.0125 0.0105 0.0015 0.00015

Table 3. Cutting force coefficients for condition 1.

Number of Teeth Ktc Krc Kte Kre

2 3.6 × 109 N/m2 3.5 × 109 N/m2 1.3 × 104 N/m 1 × 104 N/m

Table 4. Cutting force coefficients for condition 2.

Number of Teeth Ktc Krc Kte Kre

2 8.5 × 108 N/m2 8 × 108 N/m2 3.3 × 104 N/m 3 × 104 N/m

5.1. Experimental Analysis of Tool-Tip FRFs

Experiments for validating the tool-tip FRFs were carried out. The experimental setup
is demonstrated in Figure 7. An impulse hammer (Shiao-SALCO5KE) with a sensitivity of
1 mv/N was used to create impacts on the micro-mill. Vibration displacements of the tool tip
were measured using a laser displacement sensor (KEYENCE LK-G80A) with a maximum
sampling frequency of 50 K Hz and a sensitivity of 0.13 V/mm. The laser displacement
sensor was connected to a multi-channel data acquisition system (LMS SCADAS Moblie)
via a separate controller (KEYENCE LK-G3001A), which was also connected to the hammer,
to facilitate data acquisition. Considering the fragile nature of the micro-mill, the point of
impact was carefully chosen at the shank to prevent any damage.

The experimental results of tool-tip FRFs in the X- and Y-directions are illustrated in
Figures 8 and 9, respectively. The peak values and the corresponding positions of the fre-
quencies obtained by theoretical and experimental FRFs are compared in Figures 10 and 11.
They indicate the agreement between the theoretical calculations and experimental FRFs.
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Figure 7. Experimental setup for testing tool-tip FRFs.
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Figure 8. Original experimental FRFs in the X-direction.
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Figure 9. Original experimental FRFs in the Y-direction.
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Figure 10. Comparisons of theoretical and experimental FRFs in the X-direction.
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Figure 11. Comparisons of theoretical and experimental FRFs in the Y-direction.

As demonstrated in Figures 8 and 9, the experimental results of FRFs in the X- and
Y-directions show that the largest peak value is about 1.8 × 10−6 m, and the corresponding
frequency is about 10,000 Hz, suggesting that the spindle–holder–tool system is sensitive
to the corresponding frequencies of disturbances. As shown in Figure 8, the second largest
peak value in the X-direction is about 6.87 × 10−7 m, and the corresponding frequency
is about 10,390 Hz, indicating its low sensitivity to the corresponding frequencies of
disturbances. Other peak values are less than 6.06 × 10−7 m, illustrating that the system is
not sensitive to the corresponding frequencies of disturbances. As described in Figure 9,
the second largest peak value in the Y-direction is about 8.07 × 10−7 m with a frequency of
about 10,010 Hz, and the other peak values are less than 6.60 × 10−7 m, implying its low
sensitivity to the corresponding frequencies of disturbances.

Comparing the theoretical and experimental tool-tip FRFs from Figures 10 and 11
reveals that the maximum error of the largest peak values is 2.82 × 10−7 m, and the
maximum difference between the corresponding frequencies is 39 Hz, indicating that small
errors are obtained, and the developed model can be validated.
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5.2. Frequency Responses at Different Speeds for Condition 1

To analyze tool-tip FRFs at different speeds, theoretical calculations and simulation
experiments are employed in this paper.

The material properties and geometric parameters are listed in Table 1 according
to [28–30] for condition 1.

The ANSYS simulation was used to achieve the predicted tool-tip FRFs by modal
and harmonic analyses, as shown in Figure 12, where the system models were built
using SOLIDWORKS2022.

The MATLAB/SIMULINK simulation calculates the theoretical tool-tip FRFs of the
rotating spindle–holder–tool system based on the developed model without tool runout.
The presented model was validated by conducting several simulations and matching the
frequency responses from MATLAB/SIMULINK 2021a and ANSYS 2022R1 simulations.

Figure 12. Flowchart of the simulation experiment.

Figures 13 and 14 show the theoretical and predicted results of tool-tip FRFs in the X-
and Y-directions at different rotating speeds.
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Figure 13. Frequency responses in X-direction for condition 1.
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Figure 14. Frequency responses in Y-direction for condition 1.

The FRF peak values are compared in Tables 5 and 6. The peak values of FRFs obtained
by theoretical calculations and captured by the simulation experiments are similar in their
key positions and numerical values.

According to Table 5, in the X-direction, the main amplitudes obtained from theory and
simulations exhibit minimal differences with small errors (i.e., <0.124 m/N). Furthermore,
the positions of the corresponding frequencies at different speeds are very close, with small
errors (i.e., <3.162%). According to Table 6, in the Y-direction, the maximum error of peak
values is 0.188 m/N, and the maximum error of the corresponding frequencies is 2.730%.

The obtained results indicate an agreement between the theoretical calculations and
simulation predictions of FRFs.

Table 5. Comparisons of peak values in X-direction for condition 1.

Rotation Speed (rpm)
Amplitude (10−6 · m/N) Frequency (Hz)

Theoretical Simulation Theoretical Simulation

0 1.530 1.654 9971 9880
10,000 0.997 1.042 9821 9520
20,000 1.375 1.488 9571 9400
30,000 0.575 0.654 9221 9120

Table 6. Comparisons of peak values in Y-direction for condition 1.

Rotation Speed (rpm)
Amplitude (10−6 · m/N) Frequency (Hz)

Theoretical Simulation Theoretical Simulation

0 1.530 1.342 9971 9960
10,000 0.997 1.020 9821 9560
20,000 1.375 1.371 9571 9480
30,000 0.575 0.572 9221 9120

Comparing the theoretical and predicted tool-tip FRFs reveals a close agreement,
confirming the effectiveness of the presented model. Furthermore, the results suggest that
the corresponding frequencies of the peak values decrease with an increase in the rotating
speed. This phenomenon can be attributed to the influence of the gyroscopic moment
that influences damping. Moreover, the centrifugal force also plays an important role in
changing the stiffness. It can be observed that the amplitudes of the dominant mode show
a small decline with an increase in the rotating speed. The achieved results agree with
those from [31–33].
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5.3. Frequency Responses at Different Speeds for Condition 2

The assumed material properties and geometric parameters for condition 2 are pro-
vided in Table 2.

Figures 15 and 16 show the differences between the theoretical and predicted results
of tool-tip FRFs in the X-direction and Y-direction at different rotational speeds. It can be
found that the FRF peaks achieved by the theoretical calculations are very close to those
obtained from the simulation experiments in critical locations and values.

Tables 7 and 8 illustrate the variations in amplitude and frequency at different ro-
tational speeds in the X-direction and Y-direction, respectively. It can be seen that the
maximum error of amplitudes is 0.582 m/N and the absolute error of frequencies is 3.885%
in the X-direction. Meanwhile, in the Y-direction, the analysis reveals a maximum ampli-
tude error of 0.376 m/N and an absolute frequency error of 3.885%. These results show
that the theoretical calculations are in agreement with the simulation predictions of tool
tip FRFs.

The validity of the proposed model has been demonstrated from the above compar-
isons. Obviously, the frequencies corresponding to the peaks of tool-tip FRFs decrease with
increasing rotational speeds. This phenomenon can be caused by gyroscopic moments and
centrifugal forces [31,32].
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Figure 15. Frequency responses in X-direction for condition 2.
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Figure 16. Frequency responses in Y-direction for condition 2.
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Table 7. Comparisons of peak values in X-direction for condition 2.

Rotation Speed (rpm)
Amplitude (10−6 · m/N) Frequency (Hz)

Theoretical Simulation Theoretical Simulation

0 6.362 6.640 12,301 12,200
10,000 4.805 4.628 12,300 11,840
20,000 3.864 3.900 12,211 11,760
30,000 1.150 1.732 11,780 11,745
40,000 3.925 4.184 11,760 11,680
50,000 1.011 1.209 11,390 11,520

Table 8. Comparisons of peak values in Y-direction for condition 2.

Rotation Speed (rpm)
Amplitude (10−6 · m/N) Frequency (Hz)

Theoretical Simulation Theoretical Simulation

0 6.362 6.459 12,301 12,200
10,000 4.805 4.896 12,300 11,840
20,000 3.864 3.900 12,211 11,800
30,000 1.150 1.254 11,791 11,760
40,000 3.925 3.639 11,760 11,680
50,000 1.011 1.387 11,390 11,520

6. Stability Analysis

Several SLDs are compared with the gyroscopic effect and the centrifugal force induced
by different rotating speeds. A stability analysis of vibrations is also presented.

This paper mainly focuses on developing a dynamic model for chatter analysis in
micro-milling by integrating the effects of the centrifugal force, gyroscopic moment, and
tool runout without considering different tool cutting edges and workpiece materials.
The effects of different tool cutting edges and workpiece materials are included in the
cutting force coefficients.

6.1. Stability Analysis of Lobe Diagrams for Condition 1

The parameters of the cutting force coefficients for condition 1 are shown in Table 3 as
in [34,35].

Figure 17 demonstrates the simulation results of SLDs and reveals that the critical
axial depth of cut is decreased when comparing speeds of 0, 1.2 × 104, and 2.2 × 104 rpm,
indicating a decrease in chatter stability. The results demonstrate that the chatter stability
can be roughly decreased by increasing the rotating speed and considering the effects of
gyroscopic moments and centrifugal forces.

However, according to Figure 17, the critical axial depth of cut is increased at a speed
of 3.2 × 104 rpm compared to that at 2.2 × 104 rpm. The nonlinear shifts in SLDs suggest
the nonlinear effects of rotating speed on SLDs at particular rotating speeds.

The results are consistent with the conclusions from [31,36].



Micromachines 2024, 15, 244 17 of 30

1 1.5 2 2.5 3 3.5

Spindle speed (rpm) 10
4

0

0.5

1

1.5

2

C
ti

ti
ca

l 
d

ep
th

 o
f 

cu
t 

(m
)

 = 0 10
4
 rpm

 = 0.6 10
4
 rpm

 = 1.2 10
4
 rpm

 = 2.2 10
4
 rpm

 = 3.2 10
4
 rpm

10
-3

Figure 17. Stability lobe diagrams for condition 1.

6.2. Stability Analysis of Vibrations for Condition 1

As presented in Figure 18, the vibrations are finally stable at an axial depth of cut of
ap = 0.5 × 10−4 m without tool runout. However, the vibrations display an unstable trend
at an axial depth of cut of ap = 8 × 10−4 m without tool runout. The stability indicated by
the SLDs described in Figure 17 also makes this point.
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Figure 18. Stable and unstable time responses for condition 1.

6.3. Stability Analysis of Lobe Diagrams for Condition 2

The parameters of the cutting force coefficients are shown in Table 4 [34,35].
Figure 19 shows that the critical depth of cut decreases with an increase in rotating

speed for 0, 0.5 × 104, 1.5 × 104, and 3.5 × 104 rpm, indicating a decrease in chatter stability.
The critical axial depth of cut exhibits an increase at a speed of 2.5 × 104 rpm compared to
1.5 × 104 rpm, as depicted in Figure 19. This observation suggests that the rotating speed
nonlinearly influences SLDs at specific rotational speeds. This is consistent with previous
conclusions [31,36].
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Figure 19. Stability lobe diagrams for condition 2.

6.4. Stability Analysis of Vibrations for Condition 2

Figure 20a,b illustrate that the vibrations reach a stable state when the axial depth of
cut is set to ap = 2 × 10−4 m without tool runout. The vibrations become unstable at an
axial depth of cut of ap = 8 × 10−4 m. These results are in agreement with the stability
predicted by the SLDs presented in Figure 19.
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Figure 20. Stable and unstable time responses for condition 2.

7. Time-Response Analysis
7.1. Time-Response Analysis for Condition 1

Simulations of time responses were performed with different parameters to verify the in-
fluences of tool runout, the centrifugal force, and the gyroscopic moment on time responses.

The parameters of the cutting force coefficients for condition 1 are listed in Table 3.
The parameters of micro-milling are chosen as follows: ft = 2.5 × 10−6 m, Ω = 1.2 × 104

rpm, r0 = 2 × 10−7 m, and ri = 0.001π, where the tool runout continues for 10−3 s,
and the initial value of chatter vibration is 2 × 10−7 m.

According to Figure 21a, small changes in vibration displacements occur when the
gyroscopic effect or the centrifugal force is considered without tool runout. However,
the vibration displacements can be significantly modified by only considering the influence
of tool runout, as shown in Figure 21b. Figure 21c provides a detailed view of the final vibra-
tions, indicating that the final variations in vibration displacement induced by considering
the centrifugal force are similar to those generated by considering the gyroscopic effect.
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Figure 21. Time responses for condition 1.

Figure 22a demonstrates how the factors influence the time-domain responses with
tool runout. The largest variation is observed when the gyroscopic effect, the centrifugal
force, and tool runout are considered. Figure 22b suggests that the results are similar for
the effects of centrifugal force and tool runout. Figure 22 reveals that the three influencing
factors can play important roles in the time-domain response, which should not be ignored
when modeling the spindle–holder–tool system in micro-milling.
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Figure 22. Time responses with tool runout for condition 1.

Figure 23a describes the influences of the gyroscopic moment and centrifugal force
on the time-domain responses without tool runout. The highest variation is demonstrated
when considering both effects. Figure 23b shows that the two effects may lead to similar
variations in vibration displacement.
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Figure 23. Time responses without tool runout for condition 1.

7.2. Time-Response Analysis for Condition 2

Table 4 provides the parameters of the cutting force coefficients. The parame-
ters of micro-milling are selected as follows: ft = 3 × 10−6 m, Ω = 3.5 × 104 rpm,
r0 = 2 × 10−7 m, and ri = 0.001π. The tool runout lasts for a duration of 10−3 s, while
the initial value of chatter vibration is 2 × 10−7 m.

According to Figures 24a and 25a, the local enlarged drawings in Figures 24b and 25b,
and the detailed views in Figures 24c and 25c, tool runout has a significant impact on the
vibration displacement, while the effect of the gyroscopic moment or centrifugal force on
vibration displacements is relatively small.



Micromachines 2024, 15, 244 22 of 30

0 1 2 3 4 5 6 7 8 9

Time(sec) 10
-3

-10

-8

-6

-4

-2

0

2

T
o
o
l 

v
ib

ra
ti

o
n
 i

n
 x

-d
ir

ec
ti

o
n
(m

) 10
-5 X motion 

No effects of centrifugual force, gyroscopic effect and tool runout

Considering gyroscopic effect

Considering centrifugual force

Considering tool runout

(a) Vibration displacements in X direction

9.569 9.57 9.571 9.572 9.573 9.574 9.575 9.576 9.577 9.578

Time(sec) 10
-3

-1.5

-1

-0.5

0

0.5

1

1.5

T
o

o
l 

v
ib

ra
ti

o
n

 i
n

 x
-d

ir
ec

ti
o

n
(m

) 10
-7 X motion 

No effects of centrifugual force, gyroscopic effect and tool runout

Considering gyroscopic effect

Considering centrifugual force

Considering tool runout

(b) Local enlarged drawing

9.569 9.57 9.571 9.572 9.573 9.574 9.575 9.576 9.577 9.578

Time(sec) 10
-3

-8

-6

-4

-2

0

2

4

6

8

T
o

o
l 

v
ib

ra
ti

o
n

 i
n

 x
-d

ir
ec

ti
o

n
(m

) 10
-10 X motion 

No effects of centrifugual force, gyroscopic effect and tool runout

Considering gyroscopic effect

Considering centrifugual force

Considering tool runout

(c) Detailed view

Figure 24. Time responses in X-direction for condition 2.
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Figure 25. Time responses in Y-direction for condition 2.
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Figures 26 and 27 demonstrate comparisons of time responses by considering the
effects of tool runout, the centrifugal force, and the gyroscopic moment. The results show a
similar trend. Figures 26b and 27b reveal that the three influencing factors can contribute
to the fluctuations in time-domain responses.
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Figure 26. Time responses in X-direction with tool runout for condition 2.
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Figure 27. Time responses in Y-direction with tool runout for condition 2.

Figures 28a and 29a show the influences of the gyroscopic moment and centrifugal
force on the time-domain responses without tool runout. Figures 28b and 29b illustrate that
the two effects may lead to similar variations in vibration displacement.
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Figure 28. Time responses in X-direction without tool runout for condition 2.
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Figure 29. Time responses in Y-direction without tool runout for condition 2.

7.3. Effects of Changing Parameters of Tool Runout on Time Responses for Condition 1

The effects of changing the parameters of tool runout on the time response were
investigated to analyze their influences on micro-milling.

Different parameters of the runout distance and runout angle result in different time
responses of vibrations. Three different conditions are considered: the runout distances for
cases A, B, and C are 2× 10−7 m, 4× 10−7 m, and 2× 10−7 m, respectively; the runout angles
for cases A, B, and C are 1 × 10−3π, 1 × 10−3π, and 3 × 10−3π, respectively. The duration
times for cases A, B, and C range from 0 to 0.1 × 10−3 s. The parameters of micro-milling
are the same as in condition 1.

The results are demonstrated in Figures 30 and 31. Figure 30 indicates that a larger
runout distance can lead to larger vibrations, and it will take a longer time for the cutting
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system to stabilize the vibrations. Figure 31 suggests that the impact of a larger runout
angle on the time response is relatively small.
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Figure 30. Time responses for cases A and B with tool runout.
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Figure 31. Time responses for cases A and C with tool runout.

7.4. Effects of Changing Parameters of Cutting Force Coefficients on Time Responses

The cutting force coefficients can be time-varying or fixed due to different cutting situ-
ations. Two commonly used methods for the identification of cutting force coefficients are
linear regression analysis [37] and the equilibrium-optimizer-based method [38]. To investi-
gate the effects of changing the parameters of cutting force coefficients on time responses,
four simulations were carried out with assumed time-varying cutting force coefficients,
which were used to represent the identified ones.

Two different conditions are considered. For condition 1, for which the material
properties and geometric parameters are presented in Table 1, the initial values of the
chatter vibrations are 2 × 10−7 m, ft = 2.5 × 10−6 m, ap = 0.02 mm, Ω = 2.2 × 104 rpm,
r0 = 2 × 10−7 m, and ri = 0.001π. The tool runout lasts for a duration of 10−3 s.
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Two cases, case A and case B, are investigated. In case A, the time-varying cutting force
coefficients are 1.06 × |sin(t)|× the fixed cutting force coefficients presented in Table 3,
with t as the simulation time. In case B, the time-varying cutting force coefficients are
0.94 × |sin(t)|× the fixed cutting force coefficients presented in Table 3.

For condition 2, for which the material properties and geometric parameters are
presented in Table 2, ft = 2.0 × 10−6 m, ap = 0.2 mm, and Ω = 1.5 × 104 rpm, and
the other parameters of cutting are the same as those of condition 1. Two cases, case C
and case D, are explored. Cases C and D, respectively, denote time-varying cutting force
coefficients that are 1.05 × |sin(t)|× the fixed cutting force coefficients presented in Table 4
and 0.95 × |sin(t)|× the fixed cutting force coefficients presented in Table 4.

The time responses with time-varying cutting force coefficients are shown in
Figures 32 and 33. The figures indicate that different cutting force coefficients, which may
be time-varying due to different cutting situations, can lead to differences in the time
responses of vibrations.
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Figure 32. Time responses for cases A and B with time-varying cutting force coefficients.
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Figure 33. Time responses for cases C and D with time-varying cutting force coefficients.

7.5. Experiments for Micro-Milling

To verify the effectiveness of the calculated SLD in Figure 34, which is used to predict
the stable and unstable regions between different spindle speeds and depths of cut, micro-
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milling experiments were carried out. Figure 35 illustrates the experimental setup for
micro-milling. A micro-mill with a diameter of 0.4 mm and two teeth was used for micro-
milling. The workpiece material was aluminum 6061 with a size of 150 mm × 80 mm ×
15 mm. During the experiment, the spindle speed was set to Ω = 1.2 × 104 rpm, and the
feed was maintained at 10 mm per minute.
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Figure 34. The stable and unstable regions predicted by SLD.

Figure 35. Experimental setup for micro-milling.

As shown by the SLD in Figure 34, point A, which represents the condition with a
rotational speed Ω = 1.2 × 104 rpm and an axial depth of cut ap = 0.05 mm, and point B,
which represents the condition with a rotational speed Ω = 1.2 × 104 rpm and an axial
depth of cut ap = 0.8 mm, are selected to present the stable and unstable cutting conditions
for micro-milling. Figure 36 displays the machined surfaces of a workpiece under different
selected cutting conditions. The pictures of machined surfaces were captured by using an
optical microscope (Aosvi U3CMO5). For a rotational speed Ω = 1.2 × 104 rpm and an
axial depth of cut ap = 0.05 mm, the machined surface is shown in Figure 36a. The results
reveal a regular distribution of machined waves with distinct separation between neighbor-
ing processes, indicating a stable cutting condition in micro-milling. For a rotational speed
Ω = 1.2× 104 rpm and an axial depth of cut ap = 0.8 mm, the machined surface is shown
in Figure 36b. Conversely, irregular machined waves were observed on the machined
surface in this condition, illustrating an unstable cutting condition.



Micromachines 2024, 15, 244 28 of 30

(a) (b)

Figure 36. Machined surfaces of workpiece. (a) Machined surface for cutting condition A
(Ω = 1.2 × 104 rpm, ap = 0.05 mm). (b) Machined surface for cutting condition B
(Ω = 1.2 × 104 rpm, ap = 0.8 mm).

According to the above analyses of the experiments and the calculated SLD, a satisfac-
tory coincidence between theoretical and experimental results is achieved. Subsequently,
stable cutting conditions of different spindle speeds and depths of cut for micro-milling
can be predicted and applied for actual cutting, preventing unstable cutting conditions and
obtaining the required precision of machined surfaces.

8. Conclusions

In this study, a mathematical model for describing the dynamics of the regenerative
chatter behavior of micro-milling was developed by using the FEM and time-domain
formulation and considering tool runout, the centrifugal force, and the gyroscopic moment.
The developed model was verified by comparing the tool-tip FRFs obtained by theoretical
calculations and those obtained via a simulation test. The SLDs and time responses were
analyzed, and the following points are summarized:

1. In this paper, the development of an integrated modeling for chatter analysis in micro-
milling is presented by integrating the effects of the centrifugal force, the gyroscopic
moment and tool runout.

2. Comparing the theoretical and experimental tool-tip FRFs reveals that the maximum
error of the largest peak values is 2.82 × 10−7 m, and the maximum difference of
corresponding frequencies is 39 Hz, indicating that small errors are obtained, and
the developed model can be validated. Moreover, the stable and unstable cutting
conditions for micro-milling were predicted by the SLD and verified by cutting
experiments. The comparison between the actual cutting conditions for micro-milling
experiments and those predicted by the SLD shows their agreement, illustrating the
effectiveness of the developed model.

3. The theoretical results of tool-tip FRFs calculated from the developed model with
high speeds are approximately consistent with the simulated results, indicating the
validity of the developed equations.

4. The results of SLDs suggest that the critical axial depth of cut decreases with an
increase in rotating speed within a specific range. Furthermore, the nonlinear shifts in
SLDs imply nonlinear influences of the centrifugal force and nonlinear impacts of the
gyroscopic moment on SLD.

5. The highest variations in the time-domain response are observed when the effects of
tool runout, the centrifugal force, and the gyroscopic moment are included.

6. The results show that the developed model can be used to demonstrate the influences
of tool runout, the centrifugal force, and the gyroscopic effect on regenerative chatter
behavior, including tool-tip FRFs, SLDs, and time responses.

7. The chatter control method will be investigated in the future.
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