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Abstract: Silicon carbide (SiC) is widely used in many research fields because of its excellent proper-
ties. The femtosecond laser has been proven to be an effective method for achieving high-quality and
high-efficiency SiC micromachining. In this article, the ablation mechanism irradiated on different
surfaces of 6H-SiC by a single pulse under different energies was investigated. The changes in
material elements and the geometric spatial distribution of the ablation pit were analyzed using
micro-Raman spectroscopy, Energy Dispersive Spectrum (EDS), and an optical microscope, respec-
tively. Moreover, the thresholds for structural transformation and modification zones of 6H-SiC on
different surfaces were calculated based on the diameter of the ablation pits created by a femtosecond
laser at different single-pulse energies. Experimental results show that the transformation thresholds
of the Si surface and the C surface are 5.60 J/cm2 and 6.40 J/cm2, corresponding to the modification
thresholds of 2.26 J/cm2 and 2.42 J/cm2, respectively. The Raman and EDS results reveal that there
are no phase transformations or material changes on different surfaces of 6H-SiC at low energy,
however, decomposition and oxidation occur and then accumulate into dense new phase material
under high-energy laser irradiation. We found that the distribution of structural phase transformation
is uneven from the center of the spot to the edge. The content of this research reveals the internal
evolution mechanism of high-quality laser processing of hard material 6H-SiC. We expect that this
research will contribute to the further development of SiC-based MEMS devices.

Keywords: silicon carbide; femtosecond laser processing; phase transformation

1. Introduction

Due to their excellent photoelectric properties and physicochemical stability, SiC
devices have been widely used in many research fields, such as engine turbines [1], sen-
sors [2–4], accelerometers [5,6], electronic circuits [7–10], biomedicine [11], and thermal
piezoresistive devices [12,13]. By designing and processing various micro-fine and micro-
nanostructures on SiC wafers, researchers have realized functional applications that are
not available in conventional Si-based microelectromechanical systems (MEMS) devices.
However, the high stability and hardness of SiC make it difficult to process, which thereby
hinders the further development of SiC-based MEMS devices.

Currently, the main processing methods for SiC mainly include mechanical grind-
ing [14], wet etching [15,16], and dry etching [17–22]. However, mechanical gear grinding
can make SiC prone to edge collapse and fracture damage, which affects machining quality
and also causes irreversible damage to the gear. In particular, it is worth noting that the
isotropic corrosion characteristics of wet etching cannot realize the preparation of specific
micro-structure functional devices. As for the dry etching approach, its etching rate is
too low for practical engineering applications. Tightly focused femtosecond laser has
been extensively applied for deep-etch patterning of hard materials such as SiC, due to its
outstanding advantages of small thermal damage area, high efficiency, and ultra-high mask
volume processing.
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Nevertheless, it causes the modification of the surface refractive index and a change in the
material phase structure when the femtosecond laser irradiates the sample. By controlling the
specific parameters of femtosecond laser irradiation, self-assembled periodic nanostructures [23]
and SiC optical waveguides [24,25] induced by femtosecond laser irradiation were observed.
With the increase in laser fluence, the irradiated sample is melted and reshaped by laser ablation,
forming micro-cracks and holes. Feng et al. analyzed the recasting behavior caused by 4H-
SiC laser ablation through simulation and experiments and found that there are four forces—
including recoil pressure, surface tension, buoyancy, and gravity—in the ablation process, among
which recoil pressure and surface tension played the dominant role in the recasting process [26].
Vanthanh et al. successfully prepared holes in 6H-SiC samples with a thickness of 350 µm
by selective etching in a mixture of hydrofluoric acid and nitric acid after modification by
femtosecond laser irradiation [27]. Furthermore, the effects of pulse number and pulse energy on
hole depth and diameter were also analyzed. Xie et al. used a sapphire femtosecond laser with
a wavelength of 800 nm and a pulse width of 35 fs to induce ablation in a large-area periodic
structure on 4H-SiC; systematically studied the effects of pulse energy, scanning speed, and
polarization direction on the morphology and periodicity of the microstructures; and successfully
fabricated a planar optical attenuator that realized linearly polarized light [28]. Huang et al.
investigated the material rapid etching of single-crystal 6H-SiC by combining femtosecond laser
irradiation modification and inductively coupled plasma (ICP) etching, showing that the silicon
dioxide and rough surface produced after femtosecond laser irradiation can accelerate the rapid
etching of SiC compared to untreated 6H-SiC [29]. By configuring a femtosecond laser with a
wavelength of 780 nm into a double-pulse emission device, Kim et al. successfully achieved
exfoliation of a 4H-SiC single-crystal wafer with a thickness of 400 µm, and the results showed
that the root mean square roughness of the peel surface was 5 µm and the cutting loss thickness
was less than 24 µm [30]. Although femtosecond laser processing of SiC has been extensively
studied, unfortunately, the internal mechanism of the interaction between the femtosecond laser
and SiC has not been fully understood, and its further applications remain to be explored.

Indeed, the intricate internal mechanisms involved in processing are pivotal for achiev-
ing high-quality processing and advancing the development of SiC. This paper presents
the results of single-pulse irradiation experiments conducted on the Si and C surfaces of
6H-SiC samples with varying pulse energies, followed by a comparative analysis. Mean-
while, qualitative analysis of the surface morphology distributions is performed using
optical microscopy. The ablation thresholds of the modification zone and the structural
transformation zone are calculated based on ablation theory. The laser-induced material
transformations and compositional changes are analyzed by micro-Raman spectroscopy
and EDS. In addition, the morphology of the Si and C surfaces is slightly changed at
lower energies, but no new phases are formed. At high energies, the laser-induced high
temperatures and stress waves cause the Si-C crystal bonds to break, leading to surface
melting, decomposition, formation of modification zones and structural transformation
zones, and the generation of new amorphous and crystalline silicon phases. By studying
the irradiation mechanism, we can realize the preparation of specific functional devices by
controlling the specific parameters of femtosecond laser irradiation, which can be widely
used in the field of high-precision optoelectronic devices.

2. Materials and Methods
2.1. Materials Preparation

A 430 µm thick n-type 6H-SiC wafer (Orientation: [0001] ± 0.5◦, Resistivity:
0.02–0.1 Ω cm, Ra ≤ 0.2 nm) was adopted in the experiments. The diameter of the ex-
perimental sample was 2 inches (Powerway Wafer, Xiamen, China), which was cut into
samples with dimensions of 8 × 8 mm. After analyzing the crystal phase of the SiC, Si and
C letters were marked on the Si and C surfaces of the SiC to distinguish them. Before laser
irradiation, the 6H-SiC sample was ultrasonically cleaned with anhydrous ethanol and
deionized water for 20 min.
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2.2. Experimental Method and Setup

The schematic of the experimental setup is depicted in Figure 1. The femtosecond laser
used in this work is a Yb: KGW system (PHAROS, Light Conversion, Vilnius, Lithuania)
with a pulse duration of 290 fs, a wavelength of 1030 nm, and a repetition frequency
of 50 kHz. A single-pulse laser with Gaussian intensity distribution is delivered to the
two-axis galvanometric scanner (Sunny Technology, Beijing, China) and then focused on
the sample surface through an F-theta lens (focal length is 100 mm). The galvanometric
scanner ensures accurate movement of the focused spot, and the entire machining process
can be monitored online by a connected high-speed CCD (Hikvision, Hangzhou, China).
During the experiment, the energy can be continuously adjusted through the combination
of a zero-order half waveplate and a polarization beam splitter (PBS). The laser polarization
can be modulated by a second zero-order half waveplate. The accuracy of the experimental
sample’s motion is accomplished by the three-dimensional displacement system (Ludl,
New York, NY, USA), which is controlled via high-precision servo motion. To ensure the
precision and coordination of the system, all the aforementioned devices communicate
with the host computer through serial bus control.
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Figure 1. Schematic of experimental setup.

Micro-Raman spectroscopy is a powerful non-destructive testing method. It can obtain
molecular vibration or rotation information by detecting and analyzing the displacement,
intensity, and peak width of the Raman signal of the sample, and then can identify a
variety of information such as material composition, crystallinity analysis, and structure
stress with high-resolution [31,32]. In this paper, laser Raman spectroscopy (WITec alpha
300R, Ulm, Germany equipped with a 532 nm laser) was used to obtain the new phase
structure distribution and material composition of single-crystal SiC (c-SiC) under different
laser irradiation fluences. The surface morphology and distribution of ablation sputtering
following laser irradiation with a single pulse were examined and analyzed using a laser
confocal microscope (OLS4000, Olympus, Tokyo, Japan). Additionally, the EDS (Apreo S,
Thermo Scientific, Waltham, MA, USA) was employed for obtaining the variation in the
micro-region element.

3. Results
3.1. Calculation of Single-Pulse Ablation Threshold

To verify the ablation threshold of SiC, a series of single pulses with different energies
were applied. Figure 2 shows the optical micrographs of the Si and C surfaces of SiC
under laser irradiation with single-pulse energy of 33.0 µJ, 128.8 µJ, 144.4 µJ, 149.6 µJ,
156.0 µJ, and 162.1 µJ, respectively. It can be seen that the Si and C surfaces of SiC are only
slightly modified, resulting in refractive index changes at a lower energy of 33.0 µJ. With
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the increase in energy, a ring-like pattern distribution gradually emerges in the ablation
region. Previous research indicates that the central region of the ring pattern signifies the
structural transformation area, while the outer region represents the material modification
zone [33,34]. Moreover, as the energy levels rise, both the diameter of the modification
zone and the structural transformation zone of the material expand. Additionally, it was
noted that the ablation effect of the Si surface exceeded that of the C surface at equivalent
energy levels. To facilitate a quantitative analysis, we conducted calculations to determine
the ablation thresholds for both the Si and C surfaces.
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pulse energy of 33.0 µJ, 128.8 µJ, 144.4 µJ, 149.6 µJ, 156.0 µJ, and 162.1 µJ, respectively. (a–f) Si surfaces.
(g–l) C surfaces.

At present, the internal mechanism of femtosecond laser interaction with materials has
been sufficiently developed, such as Liu’s ablation threshold theoretical model, which is
widely accepted. According to Liu’s ablation theory model [33], we can calculate the single-
pulse ablation threshold of SiC. The intensity of the spot focused on the surface of the SiC
sample follows Gaussian distribution, and the laser fluence F(r) can be expressed as

F(r) = F0 exp(
−2r2

r02 ) (1)

where F0 represents the peak energy density of the focused spot, r0 is the beam waist radius of
the focused spot, and r represents the distance from the center of the spot to any point. E0 is the
pulse energy of the focused spot, and the peak energy density F0 can be obtained using

F0 =
2E0

πr02 (2)

Based on Liu’s theoretical model of ablation thresholds, this yields

D2 = 2r0
2 ln(

F0

Fth
) (3)

where D represents the diameter of the ablation pit, and Fth represents the ablation thresh-
old. Therefore, the relationship between the diameter of the ablation pit and the ablation
threshold can be obtained from the Equations (1)–(3), as follows:

D2 = 2r0
2(ln E0 − ln

πr0
2Fth
2

) (4)
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Therefore, the mathematical model between the ablation diameter and the ablation
threshold in the structural modification zone and the structural transformation zone of the
Si and C surfaces can be obtained as follows:

Dm_si
2 = 2r0

2(ln E0 − ln πr0
2Fth_m_si

2 )

Ds_si
2 = 2r0

2(ln E0 − ln πr0
2Fth_s_si

2 )

Dm_c
2 = 2r0

2(ln E0 − ln πr0
2Fth_m_c

2 )

Ds_c
2 = 2r0

2(ln E0 − ln πr0
2Fth_s_c

2 )

(5)

Here, Dm_si and Ds_si, Dm_c and Ds_c are the ablation pit diameters of the modification
zone and the structural transformation zone of the Si and C surfaces. Fth_m_si and Fth_s_si,
Fth_m_c and Fth_s_c are the ablation thresholds of the modification zone and the structural
transformation zone of the Si and C surfaces.

The diameter of the laser ablation pit can be accurately measured using confocal
microscopy. The results obtained by substituting the above mathematical model are shown
in Figure 3. By calculating the intercept of the linear fitting curve on the horizontal
axis, we can determine that the ablation thresholds of the modification zone and the
structural transformation zone of the Si surface are 2.26 J/cm2 and 5.60 J/cm2, respectively.
Additionally, the waist radii are 25.92 µm and 26.67 µm, as obtained by the linear fitting
curve slope. Conversely, the ablation thresholds of the modification zone and the structural
transformation zone of the C surface are 2.42 J/cm2 and 6.40 J/cm2, and the waist radii are
25.64 µm and 27.98 µm, respectively. These findings indicate that the ablation threshold
of the Si surface is lower than that of the C surface, indicating that the Si surface is more
prone to ablation than the C surface under similar conditions.
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Figure 2a,b,g,h shows the modified zone and the structural transformation zone
of the Si surface and the C surface when the single-pulse radiation energy is 33.0 µJ and
128.1 µJ, respectively. Hence, the thresholds were calculated at 3.231 J/cm2 and 12.54 J/cm2,
respectively. In fact, as the number of irradiation pulses increases, the sample’s ablation
threshold will decrease even further until it reaches a saturation state. This phenomenon
was observed in a relevant study conducted by Wang et al. [35,36].

3.2. Structural Transformation under Different Energies

To further investigate the evolving interaction mechanism between the laser and the
sample, we obtained the Raman spectrum of the pit center following single-pulse ablation
of 6H-SiC, as shown in Figure 4. The Si surface Raman spectrum of 6H-SiC is illustrated in
Figure 4a; the Raman characteristic peaks of 507 cm−1 (FLA), 767 cm−1 (FTO), 789 cm−1

(FTO), and 967 cm−1 (FLO) obtained without laser irradiation (0 µJ) are all Raman peaks
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generated by optical and acoustic phonons in single-crystalline 6H-SiC, which are consistent
with the data in the reference literature [29]. When the single-pulse energy is 33.0 µJ, the
peak of the Raman spectrum obtained is the same as that of the unirradiated single-crystal
6H-SiC, but the intensity of the characteristic peak is slightly diminished, indicating that
no structural phase transformation to produce new materials occurs at the current energy.
The modification mechanism of the surface under the laser-irradiated region compared to
the unirradiated region is due to the stress waves generated by the laser on the SiC surface,
which are not sufficient to break the tightly bonded Si-C crystal bonds inside the SiC at low
energy, so the sample surface is only slightly modified, resulting in physical morphological
changes and no new crystal phase formation.
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different energies.

It can be found that the Raman spectrum peak of 507 cm−1 is broadened at an energy
of 128.7 µJ, and a new amorphous Si phase (480 cm−1) appears. However, the intensity of
the new spectrum peak (amorphous Si) is weaker than that of the single-crystal 6H-SiC,
indicating the predominant retention of the single-crystal 6H-SiC structure within the
overall ablated structure. The Raman spectrum peak at 400–600 cm−1 was locally amplified
to reveal this phenomenon, as shown in Figure 4c. At an energy of 144.4 µJ, the amorphous
Si phase (480 cm−1) is partially transformed into the single-crystal Si phase (520 cm−1),
leading to the formation of a mixture of single-crystal Si phase and amorphous Si phase
within the ablation region. The Raman intensity of the Si phase surpasses that of the single-
crystal 6H-SiC. Subsequently, the center of the ablation structure undergoes complete phase
transformation into stable single-crystal Si at an energy of 156.0 µJ. This transformation
occurs as a result of increasing energy levels, leading to the breaking of Si-C bonds and
the formation of disordered local Si and C clusters distributed throughout the sample.
The ultra-short pulse time, limited spatial scale constraints, and the high temperature and
pressure in the local space contribute to the transformation of metastable amorphous Si
into stable single-crystal Si.
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Analysis of the Raman spectrum of the C surface of 6H-SiC in Figure 4b,d indicates
that the decomposition of the C surface into single-crystalline Si and amorphous Si exhibits
a trend consistent with that observed on the Si surface as energy increases. However, there
is a distinction in that the energy threshold for the conversion of SiC into the amorphous Si
phase is 144.4 µJ. The minimal presence of the amorphous Si phase at the current energy
level, as indicated by the Raman peak, suggests that the structure of the ablated region is
predominantly composed of single-crystal SiC. At an energy of 162.1 µJ, the transformation
of single-crystal SiC into the amorphous Si phase, followed by its conversion into single-
crystal Si, is observed.

Since the intensity of the spot focused on the surface of the sample has a Gaussian
distribution, the structural transformation of the laser-irradiated region from the center to
the edge of the structure was quantified on different SiC surfaces at an energy of 162.1 µJ,
position 0 of the unirradiated region is used as a reference, and the remaining positions
(1–5) are evenly distributed along the irradiated region, as shown in Figure 5. Raman
spectrum peaks at different positions in the irradiated region of the Si surface are shown
in Figure 5a,b. Compared to the unirradiated region at position 0, the Raman peak at the
boundary positions 1 and 5 of the irradiated region is still dominated by single-crystal SiC,
but the Raman intensity is slightly weakened. As the laser irradiation causes the stacking
and dislocation of the SiC structure, the spectrum peak at 507 cm−1 is broadened, and an
amorphous Si phase (480 cm−1) is formed. At positions 2 and 4 of the irradiated region, the
higher irradiation energy causes the decomposition of single-crystal SiC to produce more
metastable amorphous Si phase content, and the amorphous Si phase material is mainly
distributed in the irradiation region.
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In central position 3, where the irradiation energy is highest, the SiC is ablated,
sprayed, and recrystallized to form a stable single-crystal Si phase (520 cm−1) due to the
higher temperature and pressure. This can be seen from the sharp c-si (520 cm−1) peak
that appears in the Raman peak. In addition, it can be seen that the trend of the Raman
spectrum peaks at positions 1 and 5, and 2 and 4 are almost the same, indicating that the
irradiated energy is the same, which is also consistent with the Gaussian distribution of the
irradiated spot intensity. The irradiated region obtained under the above conditions shows
a ring distribution, the outer ring being called the modification region and the inner ring
being called the structural transformation region.

The Raman spectrum peaks at different positions in the irradiated region of the C
surface are shown in Figure 5c,d. The spatial distribution of the irradiated area corresponds
to that of the Si face, with the exception that positions 2 and 4 exhibit lower amorphous
Si content due to single-crystal SiC decomposition. The predominant structure within the
irradiated area is still that of single-crystal SiC.

Energy dispersive spectrum (EDS) was used to analyze the elemental changes in the
ablated region. At energies of 33.0 µJ and 162.1 µJ, respectively, the central regions of the
ablated structures on the Si and C surfaces were scanned by the EDS. The results are shown
in Figure 6. The analysis indicates that Si, C, and O elements are the primary constituents of
the irradiated region. The compositional distribution of the ablated region on the Si surface
is shown in Figure 6a,b. Si and C elements are the main elements in the ablated region under
a low energy of 33.0 µJ irradiation. As the energy level increases to 162.1 µJ, the Si element
content gradually increases, while the C element content decreases. Simultaneously, the O
element content remains nearly unchanged. This is because single-crystal SiC undergoes
almost no structural changes or formation of new phase materials under low-energy laser
irradiation; whereas under high-energy irradiation, SiC will explode into Si and C vapor
and melt particles at high temperature and pressure, and the Si and C vapor will react with
O elements in the air environment to form Si and C oxides. Si and O elements react and
eventually accumulate on the surface of the material as Si oxides, and C and O react to
produce CO and CO2. Therefore, the percentage of Si elements increase and the percentage
of C elements decrease [37,38].

The compositional distribution of the ablated region on the C surface is shown in
Figure 6c,d. It is evident that the trend of Si, C, and O element content is the same as that of
the Si surface during irradiation from low to high energy. However, under the same energy
irradiation conditions, the increase in Si elements on the Si surface is higher than that on
the C surface, while the decrease in C elements is lower than that on the C surface, which
reaffirms that ablation on the Si surface is more intense than that on the C surface.

According to the above experimental results, it is extremely important to understand
the internal mechanism behind this. Transparent materials will produce nonlinear absorp-
tion and ionization when irradiated by an ultrafast laser, which can promote electrons
from the valence band to the conduction band and deposit laser energy into the material,
causing permanent damage. There are two main mechanisms by which nonlinear ioniza-
tion produces electrons: multiphoton ionization (MPI) and avalanche ionization [36,39].
The main mechanisms of ionization to produce electrons can be calculated by the Keldysh
parameter [39]. At an energy of 33.0 µJ, the calculated Keldysh parameter was 1.168, indi-
cating that the electrons’ ionization state was mainly tunneling ionization. At 161.2 µJ, the
Keldysh parameter was 0.526 and tunneling ionization prevails. After electron ionization,
a few free electrons with low kinetic energy will absorb light energy in the form of seed
electrons [40], and when their kinetic energy exceeds the band gap width, they collide with
valence band electrons, resulting in two low-kinetic-energy conduction-band electrons.
This continuous process is called avalanche ionization. In this process, energy is transferred
to the SiC lattice through phonons and impurities, resulting in high temperature and high
pressure, which causes the SiC to decompose into different phase substances, and the
decomposition rate increases linearly with the increase in laser fluence [41]. There will be
melting and resolidification around the laser irradiation spot, resulting in the accumulation
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of oxidized material around the ablative pit, and the whole process can achieve effective
material removal.
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4. Conclusions

This paper investigates the internal ablation mechanism of SiC surfaces under differ-
ent single-pulse irradiations. The geometric spatial distribution of the ablation pits was
observed and analyzed by optical microscopy. The modification thresholds and structural
transformation thresholds of different surfaces were calculated according to Liu’s theory.
Furthermore, the changes in the elements of the material in the laser ablation pit were
observed and analyzed by means of micro-Raman spectroscopy and EDS. The measured
results indicate that the structural transformation and modification thresholds of the Si
surface are 5.60 J/cm2 and 2.26 J/cm2, whereas the structural transformation and modifica-
tion thresholds of the C surface are 6.40 J/cm2 and 2.42 J/cm2, respectively. This indicates
that the Si surface is more prone to ablation compared to the C surface under the same
processing conditions. Results of the Raman spectrum and EDS show that there are no
structural or new phase material changes on different surfaces of SiC at lower energy levels.
However, under high-energy laser irradiation, the Si-C bonds of single-crystal SiC (c-SiC)
begin to break and decompose to form new Si phase material, and the high temperature
and high pressure induce oxidative stacking of silicon and the formation of dense oxidized
nanostructures. This research is significant in revealing the high-quality laser processing
mechanism of the hard material 6H-SiC.
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