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Abstract: The integration of micro-electro-mechanical system—inertial navigation systems (MEMS-
INSs) with other autonomous navigation sensors, such as polarization compasses (PCs) and geo-
magnetic compasses, has been widely used to improve the navigation accuracy and reliability of
vehicles in Internet of Things (IoT) applications. However, a MEMS-INS/PC integrated navigation
system suffers from cumulative errors and time-varying measurement noise covariance in unknown,
complex occlusion, and dynamic environments. To overcome these problems and improve the inte-
grated navigation system’s performance, a dual data- and model-driven MEMS-INS/PC seamless
navigation method is proposed. This system uses a nonlinear autoregressive neural network (NARX)
based on the Gauss-Newton Bayesian regularization training algorithm to model the relationship
between the MEMS-INS outputs composed of the specific force and angular velocity data and the PC
heading’s angular increment, and to fit the integrated navigation system’s dynamic characteristics,
thus realizing data-driven operation. In the model-driven part, a nonlinear MEMS-INS/PC loosely
coupled navigation model is established, the variational Bayesian method is used to estimate the
time-varying measurement noise covariance, and the cubature Kalman filter method is then used to
solve the nonlinear problem in the model. The robustness and effectiveness of the proposed method
are verified experimentally. The experimental results show that the proposed method can provide
high-precision heading information stably in complex, occluded, and dynamic environments.

Keywords: cubature Kalman filter; integrated navigation system; NARX; variational Bayesian method

1. Introduction

Currently, global navigation satellite systems (GNSSs) and inertial navigation systems
(INSs) are the most typical and widely used navigation methods in the field of the Internet
of Things (IoT), such as the Internet of Vehicles (IoV) [1-4]. However, as a result of the rapid
developments in bionic technology [5], some new types of bionic autonomous navigation
technologies have emerged that are based on biological principles and can help unmanned
platforms including unmanned aerial vehicles (UAVs) [6], unmanned vehicles (UVs) [7-9],
and autonomous underwater vehicles (AUVs) to realize autonomous navigation. In recent
years, polarization navigation based on atmospheric polarized light [10] has been noted as
a more mature technique for bionic autonomous navigation technology. This technique
has the advantages of zero cumulative error, high accuracy, and zero electromagnetic
interference. However, when the sky region is occluded, the polarization information
will be subject to interference, and the accuracy of the polarization compass (PC) will
be affected. At this time, the common INS and the PC can be combined to form an
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integrated navigation system to improve the overall orientation accuracy. However, because
of the rapid accumulation of INS errors that occurs over time [11-14], the navigation
accuracy will continue to decline when this integrated navigation system is located in an
occluded and dynamic environment for long periods. Therefore, it is necessary to explore
a new integrated navigation method that can adapt to a dynamic environment when the
polarization signal is lost completely.

The current solutions available to improve the accuracy of an integrated navigation
system composed of an INS and a PC can be divided into two types. The first is intended
to increase the robustness of the integrated navigation system by adding other sensor
types, including global positioning system (GPS) sensors, magnetometers, odometers, star
sensors, celestial body sensors, and binocular stereo cameras, among others, but this leads
to increases in hardware costs, system power consumption, and system volume. The other
solution is to improve the navigation accuracy by improving the integrated navigation
model. For example, in [15], a polarization-based tight coupling model (PTCM) was estab-
lished and a reliable fusion strategy was proposed to extract information from the PC and
the INS. To solve the problem of attitude and heading determination for the polarization-
based attitude and heading reference system (PAHRS), the system measurement model
coupled the attitude and heading cumulative error of the INS closely [16]. Using the
new polarization measurement error equation and the INS error equation, the INS/PC
integrated navigation error equation was then established [17], and an autonomous and
fast initial alignment was realized. In addition, to improve the heading angle accuracy, the
system error source was analyzed [18], and a new calibration model was established on this
basis to compensate for the installation error of PAHRS. To compensate for the longitude
and latitude errors of the INS [19], a bionic positioning system model that combined the
PC and the INS was established. A mathematical model of the rapid transfer alignment
(RTA) with disturbance was established [20] and the grid heading solution for polarized
light navigation was extended to the measurement process, which solved the low-quality
attitude reference problem of the master INS.

The integrated navigation system’s accuracy can be improved substantially using
the method above, but when the carrier moves in a complex occluded environment, the
PC’s polarization information is lost completely; the method described above will then
be unable to estimate the navigation information accurately, and it will also be unable to
output high-precision navigation information continuously. The limitations of use of a
single Kalman filter have motivated researchers to explore new methods to enhance the
accuracy of integrated navigation systems during partial sensor navigation information
interruptions. Due to the self-learning and fitting capabilities of neural networks, the
precision of integrated navigation system can be improved by combining them with a
Kalman filter. In [21], an adaptive neural fuzzy inference system algorithm based on
variational Bayesian (VB) Kalman filtering and principal component analysis was proposed
to prevent degradation of the navigation system’s positioning accuracy being caused by
erroneous compensation. A Kalman fusion algorithm based on a backpropagation neural
network (BPNN) was proposed [22], which used the current and past two-step information
as inputs to the BPNN model; a relationship model between the INS velocity, the inertial
measurement unit (IMU) output, the GPS interruption time, and the GPS position increment
was then established to improve the integrated navigation system’s performance. By
combining a Kalman filter with an improved multilayer perceptron network, a new hybrid
fusion algorithm proposed in [23] provided pseudo-position information to assist the
integrated navigation system. Because of the simple structure of the radial basis function
(RBF) neural network, it is suitable for use in fast online training [24]. Various forms
of hybrid prediction methods based on RBF neural networks and Kalman filters were
proposed in [25], which improve the robustness of the integrated navigation system during
the interruption of navigation information from partial sensors. To overcome the problem
of increased navigation positioning errors caused by data interruption, ref. [26] developed
a maximum correlation Kalman filter (KF) (mcKF) assisted by a dual free-size least-squares
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support vector machine (fLS-SVM) for fusing INS and UWB data. A finite impulse response
(FIR) filter that combined predictive models and extreme learning machines (ELMs) was
proposed [27] to improve the accuracy of the quadcopter positioning based on the UWB.

However, most of the combinatorial methods above are based on static neural net-
works, e.g., BPNN and RBF neural networks. Some methods only use the current and
past two-step information as inputs, which cannot fit the dynamic characteristics of the
integrated navigation system fully, and thus there is still room for further navigation ac-
curacy improvement. With further extension of the research field, researchers have found
that dynamic neural networks with strong learning abilities, memory retention abilities,
and robustness, including the nonlinear autoregressive neural network (NARX), the long
short-term memory (LSTM), and the gated recurrent unit (GRU) network, can make rea-
sonable decisions based on the current input and historical information. These networks
are also suitable for fitting and prediction of the time series. By considering the error
accumulation of GRU network prediction, a hybrid algorithm based on the GRU and an
adaptive Kalman filter was proposed in [28] to improve the navigation performance. To
improve the position and velocity accuracy of the navigation system during GNSS outages,
a new method was proposed in [29] that combined an unscented Kalman filter with the
NARX, and the performance of the proposed method was validated experimentally using
a real-world dataset.

The neural-network-aided navigation systems above have shown impressive per-
formances. However, some neural network algorithms require large quantities of data
and considerable computing resources to train effectively, and the predicted values in-
evitably contain errors. The disadvantages of the former case can be partially resolved by
using appropriate data-driven models, while the disadvantages of the latter case can be
suppressed by establishing appropriate error models. Therefore, this article proposes a
dual data- and model-driven micro-electro-mechanical system-inertial navigation system
(MEMS-INS)/PC seamless navigation method. In this method, when the PC signal is lost,
the NARX is used to predict the heading angle increment and the VB cubature Kalman
filter (VBCKEF) algorithm is used to estimate the measurement noise covariance to improve
the integrated navigation accuracy. The main contributions of this article are as follows:

1. The MEMS-INS/PC seamless navigation method driven by data and modeling is
applied to the nonlinear MEMS-INS/PC integrated navigation system to provide a
continuous and accurate navigation scheme.

2. A Gaussian—Newton Bayesian regularization algorithm, which is used to train the
NARYX, improves the accuracy and efficiency of the model significantly and increases
the model’s stability. A nonlinear relationship between the angular rate and the
specific force information of the INS and the PC heading angle increment is established
by the NARX.

3. By considering the prediction error of the neural network, this study proposes a
VBCKEF algorithm with an inverse gamma distribution, introduces the variational
Bayesian theory to estimate the variational measurement noise covariance, and im-
proves the Kalman filter’s estimation accuracy in the presence of unknown measure-
ment noise covariance and measurement outliers.

The rest of this article is organized as follows. Section 2 describes the integrated
navigation system model and the fundamentals of the proposed algorithm in detail. The
proposed dual data- and model-driven approach for seamless MEMS-INS/PC navigation
is then presented in Section 3. In Section 4, field test results are given and the performance
of the proposed algorithm is analyzed. Conclusions are finally presented in Section 5.

2. Integrated Navigation Model and Basic Algorithm
2.1. MEMS-INS/PC Loosely Coupled Navigation Strategy

The MEMS-INS/PC integrated navigation system mainly comprises the INS and the PC.
The INS is composed of a three-axis gyroscope and an accelerometer that can measure the
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angular velocity and the linear velocity of the carrier. The PC is installed on top of the carrier
and the carrier heading angle is calculated by obtaining atmospheric polarization information.

Since loosely coupled integration has the characteristics of small computation and
easy realization [30], this paper integrates the INS and PC in a loosely coupled way (as
shown in Figure 1). The INS provides continuous attitude information, and the PC can
provide the vector heading information. The Kalman filter uses the difference between
the INS and PC heading angle measurements to estimate the INS heading angle error and
then feeds the error back to INS for correction. Because the method in this article only
estimates the heading angle information optimally, the attitude error ¢" = [¢x ¢y ¢:], the
three-axis gyro deviation ¢” = [8 x €y ez] , and the accelerometer deviation V" = [V xVy VZ}
are selected as the state X of the integrated navigation model:

T
X =[x py ¢, ex e, ViV, V] . 1)
| PC Heading
PC
NS Kalman Filter
i - Integrated
IMU ——> Mechanization —( Navigation
A A INS Solution
: Heading
Bias Corrections Heading Correction

Figure 1. Block diagram of the loosely coupled MEMS-INS/PC system integration.

The error state equation of the integrated navigation model can be given as
X=FX+W, 2)

where F is the state transition matrix; a detailed description of this matrix can be found
in[31]. W= {leg,wg wa} is the system’s Gaussian white noise, wy is the gyroscope noise,

and wy is the accelerometer noise.
The measurement equation for the integrated model can then be given as

Z=HX+V, 3)

where Z = [012(¢ pc — (P[NS)leé]T is the measurement quantity; ¢pc is the heading
angle measured by the PC, and ¢ s is the heading angle measured by the INS; H is the
measurement matrix, the specific derivation of which can be found by referring to [32]; and
V is the measurement noise.

The integrated navigation system has strong nonlinear characteristics, and thus it is
necessary to discretize the state equation and the measurement equation of the integrated
navigation model as follows:

xp = f(xk-1) + W1
{zk = h(x;) + vk @)

where xy is the state at time k; zj is the measurement at time k; f(-) and /(-) represent the
state transition matrix F and the measurement matrix H after discretization, respectively;
and wy_1 ~N(0,Qx_1) and vx ~ N(0, Ry) are the mutually independent Gaussian noise.
The discretized integrated navigation model of (4) is the essential part of the cubature
Kalman filter (CKF), and the specific filtering process will be given in Section 3.
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2.2. The NARX Neural Network

Unlike static neural networks, the NARX [33] is a nonlinear autoregressive model
with external inputs that has feedback connections to capture the dynamic properties of
time series data. The NARX can thus handle nonlinear time series data with autoregressive
and external inputs, and it can learn the relationships between the inputs and the outputs
of complex nonlinear dynamic systems. The output result from the NARX depends on
the external input and the historical input and output at the current time. After nonlinear
function processing, the network structure contains delay and feedback components, which
enhance the adaptability of the network to time-varying laws, and the network also has the
memory and correlation functions of the historical information. Therefore, the NARX offers
great advantages in time-series prediction applications. In the integrated navigation system
proposed in this article, the NARX can provide the predicted value of the PC heading
angle increment based on the angular rate and specific force information output by the
INS, which is essential to improve both the accuracy and the stability of the integrated
navigation system. The mathematical expression for the NARX is given as

y(t) = gu(t),ut—1),u(t—2)...,u(t—ny),
y(t=1),y(t=2)...,y(t—ny))

where y(t) represents the output of the neural network at time ¢, g(-) represents the
nonlinear function obtained by neural network fitting, u(t) represents the input of the
neural network, and 7, and 1, represent the maximum orders of the input and output
delay, respectively.

The NARX model includes an input layer, hidden layers, and an output layer. Unlike
a traditional neural network, the NARX input layer has a feedback connection that can
provide the network output as an input to the network. Additionally, the input layer also
contains external inputs and time series data. The number of nodes in the input layer
is the same as the number of input values. The hidden layers are used to extract the
nonlinear feature information from the data and then output this information to the output
layer through a linear transformation to produce the final prediction results. The network
performance can be improved by reasonable setting of the input delay, the output delay,
and the numbers of hidden layers and nodes. Figure 2 shows the architecture of the NARX.

| Hidden Layers | | Output Layer |

©)

s,
N

Z

y(®)

Nmmm————

\,

Figure 2. Architecture of the NARX.

To obtain the optimal dynamic performance for the NARX, optimal dynamic adjust-
ment of the network weights must be accomplished through training. Currently, most
neural networks are trained using the Levenberg—Marquardt (LM) training algorithm,
but when faced with more complex systems, such as limited datasets or complex model
architectures, its generalization ability is poor, leading to poor network model accuracy.
The Bayesian regularization algorithm, however, uses Bayesian principles to optimize
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the regularization parameters and improve the neural network’s generalization ability by
correcting the neural network performance function. Therefore, this article uses the Gauss—
Newton Bayesian regularization (GNBR) algorithm based on the Bayesian probabilistic
model for training.

The purpose of a conventional neural network training algorithm is to reduce the
mean squared error (MSE) Ep of the neural network output:

Ep = *Zilil (Y; — i) (6)

where N is the number of samples, Y; is the target output, y; is the actual output, and the
regularization method involves addition of a penalty term Ey to Ep for correction. The
regularized network performance objective function can be expressed as

E =aFEp + BEw @)

where Eyy = ﬁzj]\il sz is the sum of the squares of the network weights, « and j are the
target parameters, M is the total number of weights, and W; represents the neural network
connection weights.

Determination of the appropriate target parameters represents the main challenge after
regularization, and the Bayesian regularization method can adjust the network weights
according to the LM optimization theory, adjust the sizes of the target parameters a and 3
adaptively during the training process, and ensure these parameters are optimal. In the
Bayesian framework, the neural network weights are regarded as random variables, and
both these weights and the prior probabilities of the training samples are considered to
follow Gaussian distributions. The optimal target parameters & and 8 can be solved based
on the principle of maximizing the posterior probability:

M-y, v
- 2ED ’ﬁ (8)

& = 2En

where 7 is the number of effective weight values, and

y= N—Zﬁtr(G_l) )

where G is the Hessian matrix of the objective function, which can be approximated by
using the Gaussian-Newton method:

G = aV2Ep + BV2Ey. (10)

Based on combination of the Hessian matrix approximated by using the Gaussian—
Newton method with Bayesian regularization [34], the specific steps for the GNBR training
algorithm are given in Algorithm 1.

Algorithm 1: GNBR Training Algorithm

Step 1: Initialize the target parameters a, , and W;.

Step 2: Use the one-step LM algorithm to minimize the target network performance scale
function E.

Step 3: Approximate G by means of the Gaussian-Newton method and calculate the number of
effective weights 7.

Step 4: Update target parameters « and  with (8).

Step 5: Repeat Steps 2—4 until the values of « and B converge.

3. Seamless MEMS-INS/PC Loosely Coupled Navigation Based on NARX-VBCKF

In practical navigation applications, when the carrier moves in a complex occlusion
environment, the heading angle information output by the PC will be unstable because
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of occlusion. At this time, optimal estimation cannot be achieved using the traditional
single Kalman filter. The proposed dual data- and model-driven MEMS-INS/PC seamless
integrated navigation system architecture includes two parts: the data-driven part and the
model-driven part. The core of the data-driven part is the NARX based on GNBR, which
does not need to input the specific system mathematical model, and can fit the complex
nonlinear dynamic system well. When the PC works normally, large amounts of INS data
and PC data are used as the input to the neural network to regress the incremental model
of the PC heading angle. When the PC heading angle data are abnormal, the measured
PC value is then compensated to provide assistance for subsequent model driving. The
core of the model-driven part is the loosely coupled navigation model based on the VBCKE.
Because the original measurement and the predicted measurement inevitably contain
errors, and the measurement noise covariance is unknown, variational Bayesian theory is
introduced to the model-driven part to estimate the virtual measurement noise covariance
and improve the model’s estimation accuracy. The MEMS-INS/PC seamless integrated
navigation system based on dual data and model driving can solve the problem of PC data
loss in complex occlusion environments, and it can also restrain the error accumulation
caused by the IMU and sensor measurement noise. The working framework for the
integrated navigation system is shown in Figure 3.

O e e S ¢ —
PC Heading PC [ Bppe
Training goal Predictive output PC Heading
APpc Appc
GNBR tz)—» GNBR N 2) 5
ALY - NARX C *
fle INS fle
+ o\ Output .. + Output
z S Meck
INS Heading =4 calibration My INS Heading &) calibration
(a) (b)

Figure 3. The working framework of the integrated navigation system. (a) Training model.
(b) Prediction model.

3.1. Design of NARX Input/Output Models

To obtain more accurate prediction results, it is necessary to select suitable training
samples. At present, neural-network-assisted MEMS-INS/PC integrated navigation sys-
tems can be mainly categorized into two types. The first type establishes the relationship
between the initial INS information and the output heading angle errors of the INS and the
PC,i.e., Oins — d@pc—ins, which can be expressed specifically as

OPpc—INs = Prc — PINS
= ¢pc +6¢pc — (PiNs +09ins) (11)
= 0¢pc_1Ns T OPpc — OPINS

where 0¢pc_rns is the heading angle error output by the two sensors; ¢pc and @ins
represent the heading angles output by the PC and the INS, respectively; ¢pc and ¢rns
represent the actual heading angle information of the PC and the INS, respectively; d¢pc
and Jd¢rns represent the measurement errors of the PC and the INS, respectively; and
d@pc_ing is the actual heading angle error of the two sensors. The heading angle error
d¢pc_1Ns output by this model includes the measurement errors for both sensors.



Micromachines 2024, 15, 237

8 of 17

The second type establishes a relationship between the initial INS information and the
PC heading angle increment, i.e., O;ns — A@pc, which can be expressed as

Agpc(k) = ¢pc(k) — ¢pc(k—1)
= gpc (k) +d¢pc(k) — (ppc(k — 1) + dppc(k — 1)) (12)
= Agpc (k) +6gpc(k) —dppc(k —1)

where A@pc (k) denotes the increment in the heading angle output from the PC at moment
k; ¢pc(k) denotes the heading angle output from the PC at the moment k; ¢pc (k) and
d@pc(k) denote the actual heading angle of the PC at the moment k and the corresponding
measurement error of the PC heading angle, respectively; and Agp- (k) denotes the actual
increment in the PC heading angle at the moment k. The above shows that the heading
angle increment output from this model only includes the PC heading angle measurement
error. The previous model includes the measurement errors of both sensors and the error
6¢@ins of INS will also accumulate with time; therefore, the input-output model selected
here is the Ojns — Appc model.

The input to the neural network is the initial information of the INS, including the
specific force f and the angular velocity w, and the output from the network is the increment
in the PC heading angle Appc, which can be expressed as

put: [f @] =[f, fy fo @ @ ] (13)
Output : APpc. (14)

3.2. Nonlinear System Processing Method Based on VB

In the complex occlusion dynamic environment, time-varying noise occurs during
observation of the nonlinear integrated navigation system, and the covariance matrix of
the noise is usually unknown. However, the traditional Kalman filter ignores the variations
and sets the measurement noise covariance at a constant value, which means that the
filter is unable to track the system changes well and leads to reduced estimation accuracy.
Therefore, the variational Bayesian method is introduced here to approximate the joint
posterior distribution of the measurement noise covariance and estimate the measurement
noise covariance.

In generalized Bayesian filtering theory, the state x; of the system and the covariance
Ry of the measurement noise are treated as random variables and are regarded as the
parameters to be estimated. The joint prior probability density function of these two
parameters at the moment k — 1 can be expressed as

p(x, Ry | z14-1) = /P(xk | Xe—1)p (X, R | Z1—1) - P(Xk—1, Rg—1 | Z1:k—1)dxe—1dRy_1 (15)

The joint posterior probability density function at time k is then

Ry,z1.k)
R ) — POwReziy
p(xk, Ry | z1:x) (p(zlzk) RO (LR
_ P2k 21k 1 X R ) P (X R
B p(zk214-1) (16)
_ Pzl Ro) p (i R z1:-1)

p(zklz1x-1)

The equations above can be used as a summary of the prediction and updating steps
of the generalized Bayesian filtering method. However, in practical applications, because
(15) and (16) contain complex integral operations, it is difficult to obtain analytical solutions
using this method. Therefore, variational Bayesian theory [20] is introduced here to obtain
approximate solutions, and (15) and (16) are approximated as the products of the Gaussian
distribution and the inverse gamma distribution:

. b
p(xk, Ry | z16-1) ~ N(xk\k—1/Pk|k—l> 1L, InV’Gamma<‘Tl%,i | Ak\k—l,ir/"k\k—l,i) (17)
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. b
p(x, Ry | z1:6) = N (&, Py) - [ [, Inv-Gamma (0,%,1» | Akis ,”k,z') (18)

where %y is the state estimation at time k; Py, is the estimated covariance at time k; b is the
dimension of the measurement variance; 0']%,1- is the unknown variance of the Gaussian
distribution of the measurement noise; and Inv-Gamma(-) represents the inverse gamma
distribution. Ag;_1; and py iy ; are the inverse gamma distribution parameters and can
be expressed as

Akk—1,i = Pirk—1,ir Prk—1,i = Pittk—1,ir (19)

where p; is the variational attenuation coefficient taking values in the interval (0,1].
Ultimately, the measurement noise covariance can be expressed as

Ry = diag(px1/ Ak, - pkp/ Aip)- (20)

The equations above represent the derivation of the VB algorithm, but this algorithm is
only applicable to linear systems. For the nonlinear navigation model given in Section 2.1,
the CKF algorithm must be introduced to solve the nonlinear problem. In this work, the
VB algorithm is combined with the CKF algorithm to obtain the VBCKF based on the VB,
and its specific filtering process is given as follows:

Step 1: Initialization

%0 = E(x), 21)

Py=E {(xo —Xo) (%0 — io)T}- (22)

Step 2: Time update
Calculate the cubature point at k — 1:

Py 1 =S54 (23)

Xp—1,; = Sk—16;i + Xk—1 (24)

where S;_1 denotes the square root of the covariance of the state’s prior distribution, and
¢; is the cubature point, which is defined as

§i=\/%li,i:1,2,---,m (25)

where m = 2n is the number of cubature points, 7 is the dimension of the state vector, and
I; can be expressed as

10 0 -1 0 0
01 -0 0 -1 -+ 0

L=4. . . . ) (26)
00 1 0 0 —1

Propagate the cubature point:

Xpk—1,i = fxk—1,1) (27)
Predict the state: 1
X1 = %)::-11 Xplk—1,i (28)
1 «—m . R
Py = %Zizl xklk—l,ixlz\k—l,i - xk\k-1x;f\k_1 + Qk (29)
Adk=1,i = Pirk—1,i 1=1,2,...,b (30)

Mrjk—1i = Pitk—1,; 1=12,...,D (31)
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Step 3: Measurement update
Calculate and propagate the volume points:

Pyq = 5k\k-15;{\k_1 (32)
Xijk—1,i = Skk—18i + Fxk—1 (33)
Zkk—1,i = h(Xk\kq,i) (34)

Calculate the predicted measurements:

1 m

21 = azizl Zk(k—1,i (35)
Calculate the cross covariance:
1 m T o 2T
Py, = %Zizl Xk|k—1,izk|k71,i — Xklk—1 Zlk—1 (36)

Update the parameters of the inverse gamma distribution:
Aki =1/2+ Agk_v,is i = Prfk—1,i 37)

Perform N iterations to calculate the covariance IA{,ZI of the measurement noise:

Ry = diag (pi /My, mia/ M) (38)

Calculate the self-covariance:

1

T
1 m 2 2 )
Pt = azizl (Zkjk—1,i — Zkjk—1) (Zk|k—l,i - zk|k—1) + Ry (39)

Update the filter gain, the state, and the covariance:

K =Py, /P! (40)

A = g + KN (2 — 2k1) (41)
1 1 1 1T

P = Py — KPP PLH(KETY) (42)

Conducta p ; posterior update:

= (%) 43)

1 T
= it 5 i (20— 20) (-5 (44)

Stop the iteration when n = N, and let p; = y}c\,’i, & = &Y, and Py = PY. To ensure the
accuracy and speed of the algorithm, the number of iterations was set at N = 3 in this work.

At this point, the complete VBCKEF filtering process is over. In the measurement update
step, the improved filter uses the VB method to estimate the covariance of the measurement
noise iteratively, and then it updates the system state.

3.3. MEMS-INS/PC Loosely Coupled Navigation Method Based on NARX-VBCKF

When the PC signal is available, as shown in Figure 3a, the integrated navigation
system is in its training mode. The inputs to the NARX include the specific force f and the
angular velocity w from the INS, as shown in (13). The incremental heading angles A@pc
calculated from the PC heading angles collected at different moments in time are used as
the network outputs, as shown in (14). The GNBR training algorithm is used to determine
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the relationship between the heading angle increment A@pc, the specific force f, and the
angular velocity w. Simultaneously, the INS information and the PC information are input
into the loosely coupled navigation model based on the VBCKEF for optimal estimation
to obtain the heading angle error of the INS; the heading information is then corrected to
obtain the optimal heading angle.

In the case of lost or inaccurate PC signals, as shown in Figure 3b, the integrated
navigation system shifts into its predictive mode. At this point, the specific force f and the
angular velocity w of the INS are still available, and using this information as the inputs to
the trained neural network allows the neural network to predict the angular increment in
the PC heading A@pc. The PC heading angle at the current moment can be obtained by
accumulating the heading angle increments from the time that the predictions started. The
new PC heading angle can replace the original, inaccurate PC heading angle information
that was input into the VBCKF-based loosely coupled navigation model to estimate the
INS heading angle error, and the optimal heading angle can then be obtained by correcting
the INS heading angle. This improves the accuracy of the integrated navigation system in
case of PC signal loss or inaccuracy.

4. Field Test and Analysis

To verify the proposed data- and model-driven MEMS-INS/PC seamless navigation
method, field testing was conducted on an in-house-built UV platform using an INS and an
in-house-made PC. The MEMS-INS/PC integrated navigation system and the experimental
setup are shown in Figure 4. The system and sensor parameters are given in Table 1. The
integrated navigation system consists of an INS, a PC, and a development board integrated
and packaged in a carbon fiber enclosure. The system can collect the raw information
from gyroscopes, accelerometers, and the PC. The reference navigation data come from a
high-precision navigation system (Model: SPAN-KVH1750), and the computer is mainly
used to receive and process the data. To evaluate the superiority of the proposed algorithm,
the dynamic experiment was performed using the UV, and the following nine methods
were compared:

(1) “Reference” indicates the output from the reference navigation system.

(2) “Pure INS” indicates the INS output alone.

(3) “PC” indicates the PC output.

(4) “BP” denotes compensation using the BPNN.

(5) “RBF” denotes compensation using the RBF.

(6) “NARX” denotes compensation using the NARX.

(7) “NARX-EKF” represents the extended Kalman filter (EKF) algorithm based on
the NARX.

(8) “NARX-CKF” represents the CKF algorithm based on the NARX.

(9) “NARX-VBCKF” represents the proposed algorithm.

Table 1. Sensor detalils.

Sensor Parameter Value

INS Heading angle accuracy 0.2° /min
PC Frame rate 22FPS
SPAN-KVH1750 Heading angle accuracy 0.035°

During testing, to evaluate the effectiveness of the proposed algorithm in complex
occluded environments and large-scale maneuver scenarios, we set up two complete
occlusions and one incomplete occlusion during the UV steering process. These three cases
are described as follows:

Case 1: During the 90-110 s steering period, the lens cover was used to cover the
PC completely;
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Case 2: During the 135-150 s steering period, time-varying measurement noise covari-
ance was generated through the shelter of leaves;

Case 3: During the 180-195 s steering period, the lens cover was used to cover the
PC completely.

Polarization
Compass

KVH1750

Figure 4. Field testing equipment.

4.1. Comparison of Different Neural Networks

In this part of the study, to verify the effectiveness of the NARX data-driven method
during PC information loss or anomalies, the proposed method was compared with other
traditional neural network algorithms, including the BPNN and RBF, and the predictive
compensation effects of the different neural networks were then analyzed. The test was
conducted at 8:00 on 30 May 2023 at No. 3, Xueyuan Road (112.45° E, 38.02° N), Taiyuan,
China. The heading of the UV is shown in Figure 5, and the periods of the three test cases
are indicated. In cases 1 and 3, the PC output had a fixed value because the polarization
sensor was completely obscured, and in case 2, a small variation occurred in the PC output
because of measurement noise. During the complete travel process of the UV, the INS
data and the PC data collected during the 0-90 s period were used as inputs to the neural
network to obtain the network model, and the PC heading angle was then predicted online
using the network model in cases 1-3. The magnified portion of Figure 5 shows that the
prediction of the NARX neural network was better than that of the other two methods.
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Figure 5. Heading angles compensated by different neural networks.

To illustrate the superiority of the NARX more intuitively, the error curves for Methods
2,4,5, and 6 are shown in Figure 6, and the statistical properties of the three neural network
methods are summarized in Table 2. As shown in Figure 6, the error accumulates over
time in the pure INS mode. When the NARX is used to perform predictive compensation,
the heading angle error is suppressed to some extent. The enlarged portion of Figure 6
shows that the maximum error of the NARX-assisted navigation method is no more than
2.5°, which is related to the NARX’s improved dynamic adaptability based on time series
analysis and prediction. In contrast, the other two neural-network-assisted navigation
methods can have maximum errors of more than 12° because of their inability to capture
the time dependencies in the data. Table 2 shows that the root-mean-square (RMS) error of
the NARX is 70.61% lower than that of the BPNN and 72.48% lower than that of the RBF;
these results prove that the NARX-assisted navigation method improves the heading angle
compensation accuracy effectively when the PC information is lost or abnormal.

Table 2. RMS, MEAN, MAX, and MIN heading angle errors for the three neural network
methods (unit: °).

Method RMS Mean Max Min
BP 2.79 0.91 12.96 —-7.01
RBF 2.98 0.96 19.43 —1.74

NARX 0.82 0.15 2.24 —1.73
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Figure 6. Heading angle errors compensated by different neural networks.

4.2. Comparison of Different Integrated Methods

In this section, to provide further validation of the effectiveness of the model-driven
approach, different filtering model algorithms are compared based on the data-driven
approach presented in the previous section. The heading angles for the six methods are
shown in Figure 7. The errors of these different methods are then shown in Figure 8. Table 3
lists the statistical properties of the heading angle errors for the different methods. The
two enlarged sections of Figure 7 show that the NARX-EKEF filtering method suffers from
hysteresis, leading to large fluctuations in the error curve, and is thus unacceptable. As
shown in the three enlarged sections of Figure 8, after 90 s, the accuracy of the NARX-EKF
and NARX-CKF methods decreases significantly because of the effects of measurement
noise. In contrast, the NARX-VBCKF method can always maintain high filtering accuracy
because of the introduction of the VB approach to suppress the effects of time-varying
measurement noise on the combined model. Table 3 shows that when compared with the
NARX-EKF and NARX-CKF methods, the NARX-VBCKF heading angle errors are reduced
by 87.96% and 72.53%, respectively. These results indicate that the NARX-VBCKF method
proposed in this article offers the best filtering accuracy, and all its measurement indexes
are comparatively superior.

Table 3. RMS, mean, max., and min. heading angle errors for the three integrated methods (unit: °).

Method RMS Mean Max. Min.
NARX-EKF 6.23 0.49 183.2 —124.7
NARX-CKF 2.73 1.20 6.29 —3.87

NARX-VBCKF 0.75 0.13 2.38 —1.52

In summary, among the integrated methods described above, only the proposed
dual data- and model-driven MEMS-INS/PC seamless navigation method can satisfy
the navigation needs of UVs in both complex occlusion environments and large-scale
maneuvering processes. In addition, the robustness and accuracy of the proposed NARX-
VBCKF method are better than those of the other integrated methods described above.
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Figure 8. Heading angle errors for different integrated methods.

5. Conclusions

In this article, a new seamless MEMS-INS/PC navigation method based on a dual
data- and model-driven approach has been proposed to reduce heading error accumulation
in IoT applications, such as autonomous driving. In the data-driven part, a NARX based on
the GNBR training algorithm is used to deal with the nonlinear relationship between the
INS information and the PC heading angle increment; this relationship effectively captures
the time dependence in the data and simultaneously ensures that the most important input

variables are selected without overfitting the model. In the model-driven part, a nonlinear

MEMS-INS/PC loosely coupled integrated navigation model is developed to suppress
the effects of time-varying measurement noise on the integrated navigation system by
introducing the VB method, while the CKF method is used to deal with the nonlinearities
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in the model. Field test results show that the proposed method improves the estimation
accuracy and the robustness of the integrated navigation system in cases of anomalous
measurements and unknown measurement noise covariance when compared with the
traditional purely model-driven integrated navigation method. Future work will consider
the addition of a geomagnetic compass to the integrated navigation system to enable pitch
and roll angle compensation.
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